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PREFACE

Books on Nonparametric Statistics are not as numerous as, say, those on

Design of Experiments, or Regression Analysis. We feel that there is a need

for an alternative text book for students which can also be a reference book

for practitioners of statistical methods. The present book is offered with

this need in view. The emphasis here is on the heuristic and theoretical

base of the subject along with the usefulness of Nonparametric Methods

in various situations. The audience we have in mind is that of advanced

undergraduate and graduate students along with users of these methods.

The first chapter is an Introduction to Statistical Inference in general

with the role of Nonparametric Statistics within it. The second to ninth

chapters deal with classical methods, and the last three chapters deal with

more computation intensive methods which are often only asymptotically

nonparametric. The book ends with an Appendix which brings together

many of the probabilistic results required to prove the asymptotic distri-

bution theory, relative efficiency, etc. We also include some examples to

illustrate the methodology and some exercises for the students. We have

not included any tables of critical points as they are now generally available

in common software packages along with programs to calculate the statis-

tics. At many places we advocate the use of the public domain software

package R.

We have extensive experience in teaching such courses, in developing

such methodology and also applying it in practice. We hope that the road

map we provide here is effective towards these three aims.

Prof R.V.Ramamoorthy read an earlier version of the chapter on

Bayesian Nonparametric Methods and we gratefully acknowledge his com-

ments which were useful in improving the chapter.

v
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Chapter 1

PRINCIPLES OF STATISTICAL
INFERENCE

1.1 Introduction

Statistical inference is the methodology to discover statistical laws regard-

ing the outcomes of random experiments and phenomena. Randomness is

prevalent in many aspects of everyday experience. Whether it will rain or

not on a particular day, the price of a particular stock on the stock market,

the outcome of the toss of a coin, the weight of a newly born baby, the in-

crease in milk yield of a cow by adding certain supplements to its feed, the

time required for a chemical reaction to be completed in the presence of a

fixed level of a catalytic agent, the number of emissions from a radio-active

source in a fixed interval of time, the time for which an electric bulb will

function before it fuses, are all unpredictable prior to the event. Some of

the above may be regarded as outcomes of controlled experiments whereas

others are observations on uncontrolled phenomena. However the common

theme of unpredictability, i.e., randomness of outcomes runs through all of

them. It is impossible to exactly predict the outcome of the next trial of

any of the above or similar cases.

All the same, it is our common experience that these outcomes of ran-

dom trials exhibit certain patterns of regularity in long sequences. These

patterns of regularity are called statistical laws governing the outcomes.

For example, if the same coin is tossed again and again, the ratio of num-

ber of heads to the total number of tosses seems to stabilize to a number

p (0 ≤ p ≤ 1) as the number of tosses increases indefinitely. We call the

coin fair or unbiased if p happens to be 1/2. This number p, which may be

thought to be intrinsic to the coin in question, is called the probability of

obtaining a head at a trial and may be said to be the statistical law gov-

erning the outcomes of the random experiment consisting of tossing this

1
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coin. In general, the purpose of statistical inference is to discover the sta-

tistical laws governing the outcomes of a random experiment by repeated

performance of the experiment or by making repeated observations of a

phenomenon.

1.2 Mathematical Structure on Random Experiments

In order to make progress in the analysis of the situation we have to in-

troduce and impose certain useful mathematical structure on the random

experiment being conducted or the random phenomena being observed.

For any random experiment under study we assume that the set of

all possible outcomes is well defined and known. For example, the set

for tossing a coin consists of two outcomes only: {H,T}, head and tail;

the set for counting the number of emissions from radio active source is

{0, 1, 2, · · · } the class of all non-negative integers without a finite upper

bound, the set for the life of an electric bulb is half of the real line [0,∞),

again without a finite upper bound. This set of all possible outcomes is

called the sample space of the random experiment. Sometimes, for the sake

of convenience the sample space assumed for a random experiment might

be somewhat different from strict reality; in the coin tossing experiment

standing on edge, losing the coin, etc. are not taken into account. Also with

measuring quantities like weight, length, time, etc. the actual observations

are accurate only to the extent of the smallest possible unit that can be

recorded by the measuring instrument, say, one gram, one millimetre, one

second, etc. But again for the sake of convenience continuous intervals are

accepted as the sample spaces. Such simplifications are often carried out

wherever no ambiguity is involved.

We usually denote the sample space of a random experiment by the

Greek letter Ω, the elements in it, i.e., the individual outcomes (or elemen-

tary events) by w and subsets of it, called events, by A,B, etc. We need

not and do not always take into consideration all possible subsets of Ω, but

only a subclass of these is often relevant and sufficient. The subclass of

subsets which is to be taken under consideration must, however, satisfy the

characteristic properties of a σ - algebra. These may be specified as: A is

a σ - algebra of subsets of Ω if

(i) Ω ∈ A,

(ii) If A1, A2, · · · ,∈ A, then ∪∞i=1Ai ∈ A, and

(iii) If A ∈ A then Ac ∈ A.
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If Ω = {H,T}, then A = {φ, {H}, {T}, {H,T}} is the relevant σ - algebra.

If Ω = {0, 1, 2, · · · } then the relevant σ algebra would be the class consist-

ing of all elementary events {0}, {1}, {2}, · · · , their countable unions and

complements which is the power set of Ω. If the random experiment con-

sists of measuring an angle, then the sample space Ω would be (0, 2π] with

a possible σ - algebra given by all half open intervals of the type (a, b] with

0 < a ≤ b ≤ 2π, their complements and countable unions, which leads to

the Borel σ - algebra of subsets of Ω.

Over the mathematical structure provided by (Ω,A), we then define

the probabilistic or statistical law governing the occurrence of the various

outcomes of the random experiment. It is a probability measure defined by

the set function P from A to [0, 1] and is assumed to satisfy the following

axioms

(i) P (Ω) = 1.

(ii) P (∪∞i=1Ai) =
∑∞
i=1 P (Ai), provided Ai ∩Aj = φ ∀ i 6= j, (count-

able additivity).

The measure P (A) of any event A is said to be its probability. Loosely

speaking it is the limiting value of the ratio of trials with outcomes be-

longing to A to the total number of trials, as the number of trials tends to

infinity. If a fair coin is tossed then one may specify P{H} = 1
2 = P{T}

i.e., equal probabilities for events {H} and {T}. Then P (Ω) = 1 and

P (φ) = 0 completes the distribution of the probabilities on the entire σ -

algebra. On the other hand if it is not known to be a fair coin then all

possible probability distributions are specified by P{H} = p, 0 ≤ p ≤ 1.

Then P{T} = 1 − p, P (Ω) = 1 and P (φ) = 0, completes the probability

distribution. The above description would hold for any random experiment

whose sample space contains only two outcomes, e.g., {Rain, No rain},
{ Defective, Nondefective}, etc. More complex experiments will have larger

sample spaces and would require more sophisticated probability measures

over the corresponding σ - algebras of events. Building upon the foun-

dations provided by Laplace, Bernoulli, Gauss and others, an extremely

fruitful and elegant theory of Probability has been developed in the twen-

tieth century, with the above axiomatization first given by Kolmogorov.

Outstanding textbooks by [Cramér (1974)], [Feller (1968)], [Feller (1971)],

[Loève (1963)], [Fisz (1963)], [Billingsley (1995)] and others cover the rele-

vant material more than adequately.

We shall borrow freely from the results of probability theory as long as

it is thought that they are well known. Sometimes, results which are purely
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probabilistic may be discussed in the Appendix because of their importance

in the theory of nonparametric inference.

1.3 Random Variables and their Probability Distributions

The triplet (Ω,A,P) consisting of the sample space, the relevant σ - algebra

of its subsets and the probability measure on it completely determines the

probabilistic or statistical law governing the outcomes of a random exper-

iment. The first two of these, viz., Ω and A are inherent in the structure

of the experiment and are always taken as known. If P , the true proba-

bility measure is also known then there is no task left for the statistician,

because one can then specify the probability of any event belonging to A.

However, when the probability distribution P is unknown then the statis-

tician endeavours either to completely determine it or to answer various

questions regarding it on the basis of the outcomes recorded in several rep-

etitions of the experiment. In this book we shall assume that the repetitions

(replications) of the experiment obey the same law and are statistically in-

dependent, that is, the outcomes of the earlier replications do not have any

bearing on the performance of the later replications. It is possible to ana-

lyze experiments for which the above conditions do not hold, but we will

not discuss those techniques.

The examples of random experiments cited at the beginning bring out

the fact that the outcomes of these may not always be numerical. Some-

times they may be qualitative. Our development is going to vitally depend

upon the numerical (or at least ordinal) properties of the outcomes. There-

fore we convert the outcomes to numerical entities through the device of a

random variable. It is a function X(w) on Ω to a convenient subset X of

the real line R

X(w) : Ω→ X ⊂ R.

Through the function X, every elementary outcome w is associated with

a number X(w). This number X(w) is itself regarded as the outcome of the

experiment for subsequent use. The condition on a function X from Ω→ R

for it to be regarded as a random variable, is that it should be measurable

with respect to the σ - algebra A. For our purpose it is adequate to see

that for any half open interval of the type (−∞, a], with −∞ < a < ∞,

of the real line, its inverse image X−1(−∞, a] = {w : −∞ < X(w) ≤ a},
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Fig. 1.1 Random variable

which is a subset of Ω, be a member of the chosen σ - algebra A. Then

the probability under P of the set X−1(−∞, a] is attributed to the subset

(−∞, a] of the real line. In short we formulate the probability distribution

of the random variable X through the following correspondence

P [−∞ < X ≤ a] = PX{(−∞, a]} = P{X−1(−∞, a]}.

It is often denoted by a function F (a), i.e. F (a) = P [−∞ < X ≤ a],

called the cumulative distribution function, c.d.f. for short, of the random

variable X. This function carries all the probabilistic information regarding

the random variable X. It is known to satisfy the following properties:

(i) limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

(ii) It is nondecreasing.

(iii) It is right continuous.

If the random experiment consists of tossing a coin with probability of

showing head as p, then one may associate a random variable X(H) =

1, X(T ) = 0, with it which will then have the c.d.f.

F (x) =


0 if −∞ < x < 0

1− p if 0 ≤ x < 1

1 if 1 ≤ x <∞.

The function F (x) changes with values of p ranging between [0, 1]. Thus,

unless we know what p is, we have a whole family of c.d.f.’s which may be

denoted by F = {Fp, 0 ≤ p ≤ 1}.
At this point we shall take for granted familiarity with properties of

various c.d.f.’s and the corresponding probability mass functions (p.m.f.),

probability density functions (p.d.f.), continuity with respect to a suitable



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 6

6 NONPARAMETRIC STATISTICS: THEORY AND METHODS

-1 0 1 2

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

F(
x)

Fig. 1.2 Distribution function

measure (often the Lebesgue measure), their Radon - Nikodym derivatives,

moments, moment generating functions (m.g.f.), characteristic functions

(c.f.) and other entities involved in the calculus of probabilities. Develop-

ment up to the standard laws of large numbers and central limit theorems

will also be expected to be known. A few results have been listed in the

Appendix.

1.4 Parametric and Nonparametric Statistical Models

Usually with certain introspection and analysis of the experiment we reach

a family of probability distributions for the outcomes, or often a family of

c.d.f.’s for the random variable. Thus our original triplet (Ω,A,P) is now

replaced with a new one (X,B,F) where X is the range or the sample space

of the random variable, B is the Borel σ - algebra, i.e. the σ - algebra

of subsets of R generated by half open intervals of the type (−∞, x] by

completing it under countable unions and complements, and a family F of

c.d.f.’s in which the true probability law of the outcomes is known to lie.

(i) In the single coin tossing experiment we have above specified the

family of c.d.f.s.

(ii) If a coin is tossed n times and the random variable gives the num-

ber of heads in these n trials without regard to the order of their
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occurrence then the Binomial family B(n, p), 0 ≤ p ≤ 1, will be

appropriate.

(iii) For electron emissions it is found that the Poisson family P (λ) with

parameter λ > 0 is applicable.

(iv) For many experiments the Normal (Gaussian) family N(µ, σ2) with

−∞ < µ <∞ and 0 < σ2 <∞ is found suitable.

(v) Sometime all that we may be able to say about the random variable

is that its probability distribution is continuous and symmetric

about a centre µ, i.e., P [X ≤ µ− x] = P [X ≥ µ+ x] ∀ x ≥ 0 or

equivalently

F (µ− x) = 1− F (µ+ x−) ∀ x > 0.

(vi) An even less informative family (hence larger) of probability dis-

tributions is the family of continuous distributions, i.e. F = {all F

such that it does not have any jumps}.
(vii) Another family is that of all c.d.f.’s with expectation existing i.e.

F = {all F such that
∫∞
−∞ xdF (x) < ∞} where the integral may

be interpreted as a Lebesgue - Stieltjes integral without worrying

whether F is continuous or not.

Such a family chosen on the basis of prior information, without any

recourse to the data obtained through the conduct of experiments, is called

the statistical model for the experiment. Choice of the model can be data

based, but we shall not deal with such families.

In the first four of the above families the functional form of the c.d.f.,

or equivalently that of the p.m.f. or p.d.f., is known. A specific member

within the family can be pinpointed by choosing the value of p in [0, 1] in

cases (i) and (ii), the value of λ in (0,∞) in case (iii) and the value of (µ, σ2)

in (−∞,∞) × (0,∞) in case (iv). Since in the remaining three cases the

model does not specify the functional form of the c.d.f., in order to choose

a single member from it first we will have to agree on the functional form

and then specify the member within it by assigning the values of the con-

stants appearing in it. The constants like p, λ, (µ, σ2) which appear in the

functional form of the c.d.f. are called the parameters of the distribution.

Thus we are able to classify statistical models as

(i) parametric: those in which the functional form of the c.d.f. is

known and only the values of at most a finite number of real valued

parameters may remain to be specified and

(ii) nonparametric: those in which the functional form of the c.d.f. is

yet to be specified.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 8

8 NONPARAMETRIC STATISTICS: THEORY AND METHODS

The same classification may equivalently be described as

(i) Parametric model: a model in which the members can be put into

1:1 correspondence with some subset of a finite dimensional Eu-

clidean space,

(ii) Nonparametric model: a model in which the members can not be

put into 1:1 correspondence with any subset of a finite dimensional

subset of the Euclidean space.

This classification may not be totally devoid of ambiguity, but is ser-

viceable in most contexts.

Once a model has been adopted the procedures of statistical inference

are invoked to answer further questions about the true probability distri-

bution. In parametric models the questions are then about the values of

the parameters which index the probability distributions within the speci-

fied family. In nonparametric models the questions could be about certain

functionals of the c.d.f. like mean, median, other quantiles, etc. or regard-

ing qualitative aspects of c.d.f., e.g., is the c.d.f. symmetric, is one c.d.f.

F (x) less than or equal to another c.d.f. G(x) for all x? etc. The methods

of inference developed for parametric models tend to depend heavily upon

the parametric family under consideration. Methods developed as ‘optimal’

for one family may not be so for another. Whereas methods developed for

nonparametric families may be ‘reasonable’ for the whole model consisting

of many parametric families without being ‘optimal’ for any. While laying

down ‘optimality’, ‘goodness’ or ‘reasonableness’ criteria, we shall primar-

ily adhere to the so called frequentist principles of statistical inference as

developed by the K. Pearson - Fisher - Neyman - E. S. Pearson school and

widely adopted by the statistical community. Criteria based on subjective

prior distributions (Bayesian) in the context of nonparametric models are

introduced in Chapter 12.

1.5 Estimation of Parameters

The purpose of statistical inference is to discover the statistical law govern-

ing a random variable within the specified model, or advance our knowledge

regarding this law by further restricting the model with the help of obser-

vations. In a parametric model the point estimation procedure uses the

observations to estimate the value of all or some of the unknown param-

eters of the given parametric family. The estimated value is accompanied

with its standard error which is the standard deviation of the sampling
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distributions of the statistic (function of the observations) that is used as

the estimator, to provide an idea of the possible spread of such estimates

when calculated from repeated random samples. Alternatively a confidence

interval is provided for the parameter with a stated confidence coefficient.

It is claimed that the unknown value of the parameter is contained in this

interval. The end points of the interval depend upon the random sample,

and the confidence coefficient is the proportion of times such confidence

intervals will actually contain the unknown parameter in long sequence of

repeated experiments. This coefficient is chosen to be of the order of 0.95 or

0.99. Statistical inference is not complete without some measure of preci-

sion of the procedure, e.g., the standard error or the confidence coefficient.

In order to obtain these it is necessary that the sampling distribution of the

statistic on which the procedure is based should be known under the spec-

ified model. It is so known when the model is parametric but is very rarely

known under nonparametric models because of the fact that many families

of c.d.f.’s are allowed under such models. With the help of a transformation

it is possible to obtain estimates and confidence intervals for a certain kind

of parameters in nonparametric models, but a theory of optimal estima-

tion is possible under parametric models only. The theory of estimation

of parameters which we develop in non-parametric inference will have the

necessary accompaniment of the measures of precision, without the exact

optimality properties like shortest confidence intervals, smallest variance,

etc. which are available within parametric models.

A basic property that we like point estimation procedure to possess is

consistency. If a statistic Tn (a function of observations (X1, X2, · · · , Xn))

is an estimator of θ based on n observations then Tn is said to be consistent

for θ if

lim
n→∞

Pθ[|Tn − θ| > ε] = 0 ∀ ε > 0.

This essentially says that consistent estimator Tn of θ must lie in a small

interval around the true value of θ with probability approaching 1 as the

number of observations (sample size) becomes large.

The statistics which have a completely known sampling distribution,

even when the family of c.d.f.’s from which the observations arise is not

known beyond the fact that it is a family of continuous c.d.f.’s, are known

as distribution free statistics. Inference in nonparametric models has to

be preferably based on such statistics. Lacking such statistics we look for

those statistics whose sampling distribution is free of the family of c.d.f.’s

from which the observations arise asymptotically, i.e., in the limit as the
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sample size n → ∞. Such statistics are called asymptotically distribution

free. The known asymptotic sampling distribution may be used in place of

the exact sampling distribution, which is unknown, as an approximation in

samples of not a very small size.

Sometimes the Law of Large numbers and the Central limit Theorem

also show that certain common estimators are asymptotically distribution

free. For example to estimate the mean of a distribution we often use X̄,

the sample mean. The classical central limit theorem tells us that if F has

finite variance σ2 then,

√
n

(X − µ)

σ
→ N(0, 1) as n→∞.

Then 100(1−α)% confidence interval for the population mean µ is given

by

[X − z1−α/2
σ

n
, X + z 1−α

2

σ

n
],

where z1−α/2 is the upper 100α2 % critical value of the standard normal

distribution. If σ is not known, it may be replaced in the above by its

estimate s =
√∑n

i=1(xi − x)2/(n− 1), and the asymptotic properties of

the confidence interval will hold by the combination of the Central limit

Theorem and Slutsky’s Theorem.

However, optimal estimation of parameters is natural only within finite

dimensional parametric families and will not be pursued in this book. The

concepts of sufficiency and completeness of statistics are also very important

in various ways.

A statistic Tn (a function of observations X1, X2, . . . , Xn) is said to be

sufficient for θ if the conditional distribution of X1, X2, . . . , Xn given the

value of Tn does not depend upon θ. Thus it is felt that once we have

calculated Tn from the data, there is no additional information left in the

sample which is relevant for inferences regarding θ.

A statistic Tn (or the family of sampling distribution of Tn) is said to

be complete for θ if

Eθ[g(Tn)] = 0 ∀ θ

implies that

g(Tn) ≡ 0, a.e.

that is to say, if a function g of Tn has expectation 0 ∀ θ then the function

must be uniformly 0.
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The other major procedure of statistical inference is testing of hypothe-

ses. Statistical hypotheses are statements regarding the statistical laws

governing outcomes of random experiments (in terms of the distributions

of the random variables). For example, it may be claimed that

H : X ∼ N(µ, σ2), −∞ < µ <∞, σ2 > 0.

This is read as “the hypothesis is that the random variable X has a Nor-

mal distribution, with unspecified values of the mean µ and variance σ2.”

Another statement could be

H1 : X has a symmetric distribution about µ, −∞ < µ <∞
or

H2 : X ∼ F, Y ∼ G and G(x) = F (x−∆), ∆ > 0.

The last statement says that “X and Y have the same probability dis-

tribution” except that values of X are shifted to the right by a positive

constant ∆ as compared to the values of Y .

There is very little difference between a model and a hypothesis, ex-

cept that a model is accepted as true from prior considerations and the

validity of the hypothesis is sought to be established with the help of obser-

vations. The common position of the statistician is that the experimenter

can usually summarize the present knowledge regarding the statistical law

as a hypothesis: it is called the null hypothesis. The experimenter has an

alternative hypothesis in mind. It does not yet have the accepted status,

but is only a tentative suggestion. These two hypotheses are set up as the

null and alternative hypotheses:

H0 : the currently accepted status

HA : the tentative suggestion, perhaps based on some intuition, previous

data, etc.

The purpose of a test of hypothesis is primarily to see whether the data

suggests the rejection of the null hypothesis (current status) in favour of

the alternative hypothesis (newly suggested by the experimenter). Any ex-

perimenter recognizes that the current status and the suggested alternative

are not to be regarded as on par. The current status, being the estab-

lished theory at this point of time, is to be viewed with some respect and

to be abandoned for the new suggestion only if overwhelming experimen-

tal evidence is in favour of the new suggestion. The philosophy is that it

is better to stick to the current status even if it is wrong, than to accept

the new suggestion if it is possibly wrong. The burden of proof that the

suggested alternative is the more appropriate statistical law is put on the

experimenter. To make the ideas clear consider the following decision chart
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Table 1.1

H0 is retained H0 is rejected in favour of HA

H0 is true 3 1

HA is true 2 4

The statistical procedure has to take only one of the two actions (i)

Reject H0, (ii) Do not reject H0.

Obviously the decisions represented by cells numbered 1 and 2 corre-

spond to errors in decision making and those represented by cells numbered

3 and 4 refer to correct decisions. The decision 1, i.e., to reject H0 when it

is true is called the Type I error and the decision 2, i.e. to retain H0 when

the alternative is true is called Type II error. The error of Type I is to be

regarded as much more serious than the error of Type II.

Since the actions are to be taken on the basis of data collected as out-

comes of random experiments which are subject to variation from trial to

trial, it is recognized that it is impossible to suggest rules which will com-

pletely eliminate errors. A statistical test of hypothesis is a rule which

will have known probabilities of these errors. In fact a test would be so

constructed that it will have specified probabilities of the errors of the two

types. The concept of precision of a statistical inference procedure is crys-

talized through the probabilities of Type 1 and Type II errors.

In accordance with the asymmetry of the null and alternative hypoth-

esis, the principle of statistical inference in this context is: keep the prob-

ability of Type 1 error at a low level (say, .01 or .05, etc.) and among all

tests having this low level of probability of Type 1 error (called the signif-

icance level of the test) choose the test which minimizes in some way the

probability of Type II error. This would ensure that the null hypothesis

(which is the current status) will be wrongfully rejected only in a known

low proportion of cases in long sequences of repetitions while doing our best

to keep low the probability of Type II error.

Again the above prescription can be totally achieved only in relatively

simple problems. Particularly the problems of such test construction have

been solved with parametric models with only one unknown (real valued)

parameter say θ. In case the null hypothesis is simple, i.e., specifying only

a single probability distribution, say,

H0 : θ = θ0

and the alternative hypothesis is one sided, i.e.,

HA : θ > θ0
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or

H ′A : θ < θ0

then tests with minimum probability of Type II error for a specified prob-

ability of Type I error can be constructed in certain types of parametric

families. In situations with more complex null and alternative hypotheses

the construction of such optimal tests is not feasible. Then we, at all costs,

maintain the fixed low level of significance, say α (i.e. probability of Type

1 error) and seek some other desirable properties which the test should

possess when the alternative hypothesis is true. One such property is con-

sistency of the test. It says that the probability of Type II error should

tend to 0 as the number of observations tends to infinity. Or equivalently

the power of the test (which is precisely probability of the Type II error

subtracted from 1) should tend to 1 for any fixed distribution included in

the alternative hypothesis as the sample size increases. This assures that

while maintaining the probability of rejecting wrongfully the current status

at a low acceptable level, the probability of accepting the alternative if in

fact it is correct, tends to 1 with increasing sample size.

The use of fixed levels of significance has been criticized on the ground

that there is no sanctity attached to these numbers such as 0.05 or 0.01.

Even if the value of the statistic just falls short of the level .05 critical

point we will not reject H0. However, the same data would have led to

its rejection if we had decided to use, say .055 as the level of significance.

There may not have been any particular reason for choosing 0.05 over .055

as the level in the first place. Same comments apply to values of the statistic

just exceeding the critical point. Hence, often the statistician reports the

smallest level of significance at which the observed value of the statistic

would have led to the rejection of the H0. This information is adequate for

making the rejection/acceptance decision at any fixed level of significance.

Besides, it allows some further insight in the situation at hand through the

largeness or smallness of this number. This number (the smallest level of

significance at which the H0 would be rejected) is called the P -value of the

data.

In order to be able to fix the probability of Type I error, which is a

probability to be calculated under the null hypothesis, we must know the

sampling distribution of the test statistic under it. If the null hypothe-

sis itself is a nonparametric family consisting of many parametric families

of distribution functions, then usually it is not possible to have a single

probability distribution for the statistic which is to be used as the test
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statistic. In some situations the probability integral transformation dis-

cussed in Chapter 2 saves the day. After transforming the data through

it we see that the probability of certain subsets of the sample space called

rank sets can be calculated under the null hypothesis and tests based on

these rank tests will have the specified levels of significance. Such a test

which retains its level of significance for a nonparametric null hypothesis,

i.e., one which encompasses many parametric families of distribution func-

tions, is called a distribution free test. However, it is practically impossible

to obtain the exact probability of Type II error or the power of any such

test; leave alone choosing the test with maximum power among all such

tests for all alternatives included in the alternative. Then tests which are

intuitively felt to be able to discriminate between the null and the alter-

native hypotheses are considered. Also certain weaker optimality criteria

like locally most powerful rank (LMPR) structure are brought to bear on

the problem. Help is taken of the invariance principle, if relevant. In the

subsequent chapters these concepts will be properly introduced and used

for development of tests in nonparametric models.

The above discussion clearly indicates that the problem of testing of

hypotheses in the context of nonparametric models is too complex to lead

to unique optimal tests and in any given situation there may exist several

useful tests without any clear preference for the entire alternative hypoth-

esis. Then measures of comparison have to be brought into play to make a

choice. The concept of asymptotic relative efficiency (ARE) as introduced

by Pitman and further developed by Noether is a very useful tool. It pro-

vides a single number which summarizes the comparison of two tests of the

same null hypothesis when used against certain parametric sequences of al-

ternatives which tend to the null hypothesis. We shall develop the concept

of ARE and its use for comparison of tests in the Appendix.

1.6 Maximum Likelihood Estimation

A principle of estimation which has been proved to be extremely valuable

in parametric families is the principle of maximum likelihood estimation.

Generalizations of this principle have been found useful in nonparametric

families while estimating entire distribution functions. Hence we describe

here this principle in parametric situations briefly and then explain its

generalizations.

Let θ be the identifying parameter for the class of p.d.f.’s {fθ, θ ∈ Θ}, Θ

is the parametric space which is a subset of R. The data is obtained through
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a random experiment whose outcomes are governed by the p.d.f. fθ(x), θ

being unknown and required to be estimated. The data consists of the ran-

dom sample x1, x2, · · · , xn, the realization of n independent random vari-

ables X1, X2, · · · , Xn with identical density fθ(x). The joint p.d.f. of these

rv.’s is
∏n
i=1 fθ(xi) and one may regard

∏n
i=1 fθ(xi)dxi as the probability

element of the observed data. Now we don’t know θ; we have to estimate it.

It is some value in Θ. We choose to accept that value of θ which provides

the maximum value of
∏n
i=1 fθ(xi) for the given data x1, x2, · · · , xn. In

other words, loosely speaking, we estimate θ by θ̂ if we feel that the p.d.f.

fθ̂(x) gives the larger probability element to the observed data among all

possible models. The principle of maximum likelihood essentially states

that choose θ̂ to be the estimator of θ if

L(θ̂|x1, · · · , xn) =

n∏
i=1

fθ̂(xi)

= sup
θ
L(θ|x1, · · · , xn)

= sup
θ

n∏
i=1

fθ(xi).

The function

L(θ|x1, · · · , xn) =

n∏
i=1

fθ(xi)

as a function for the given data x1, · · · , xn is called the likelihood function of

θ and θ̂ the maximum likelihood estimator (MLE) of θ. One may paraphrase

the principle of maximum likelihood by saying that given several models

for the outcomes of the experiment, we choose the one under which the

observed data has the maximum likelihood of appearing. We cannot bring

ourselves to accept as the correct model one which gives less probability to

the observed data than some other model. In the very simple experiment,

say tossing a coin, suppose that we observe a head on a single toss. Now if

the choice of probabilities of a head is between 1
3 and 1

2 (θ = 1
3 or 1

2 ) then

we will go for θ̂ = 1
2 as this gives larger probability to the observed data (a

head).

Such estimators exist and are consistent with limiting Normal distribu-

tion under very weak regularity conditions, but in some pathological cases

they may not exist or even if they do exist, they are seen to have undesirable

properties.

There are other principles of estimation such as minimum variance un-

biased estimation, etc., which will not be detailed here.
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1.7 Observation with Censored Data

So far we have considered only one scheme of data collection, namely a

random sample or a collection of the value of independent and identically

distributed random variables with distribution F . In many experiments in-

volving lifetimes, such as reliability studies of engineering/mechanical sys-

tems or survival studies in biomedical situations, schemes which entail cen-

sored observations are used or are inherent in the situation. Nonparametric

and semiparametric methods have been successfully adapted and developed

for such data.

In studies involving lifetimes, the time taken for experimentation can be

too long and is always uncertain. Type I and Type II censoring is adopted

at the design stage to have (a) a fixed time and (b) a comparatively shorter

time, respectively for experimentation.

1.7.1 Type I (Time) Censoring

Suppose n statistically independent and identical items are put into opera-

tion (or put on test) simultaneously for investigating the common statistical

law governing their lifetimes. The classic data collection scheme would be

to continue until all the items have failed thus yielding the random sample

of size n from F . But to have a fixed (and often shorter) time for experi-

mentation, the scheme is to terminate the experiment after a fixed time t0,

only record the lifetimes which were shorter than or equal to t0 and record

for the remaining items the fact that their lifetimes were greater than t0,

or in other words, to say that they were censored at time t0. Let f be

the p.d.f. corresponding to the c.d.f. F . We denote by ti the lifetime of

the i-th item, if it is observed; δi = 1 if the lifetime is observed and 0 if it

is censored; and of course t0, the censoring time. The likelihood of the n

observations thus made is

L(f, t0|t1, · · · , tn, δ1, δ2, · · · , δn)

=

n∏
i=1

{f(ti)}δi{1− F (t0)}1−δi ,

0 < ti ≤ t0.

1.7.2 Type II (Order) Censoring

In this scheme also n items are put on test and the experiment is termi-

nated as soon as k (1 ≤ k ≤ n) items have failed. The integer k is chosen in
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advance of the experimentation. Thus the time for which the experiment

continues is again random, but shorter than what will be needed for observ-

ing the failure of all the n items. This scheme is adopted to eliminate the

possibility, which exists in Type I scheme, of not recording any completed

lifetime at all. Since the data is in the form of the k smallest order statistics

of a random sample of size n, the likelihood may be written as the joint

density of these

L(f |x(1), x(2), · · · , x(k))

=
n!

(n− k)!

k∏
i=1

f(x(i)) {1− F (x(k))}n−k,

0 ≤ x(1) ≤ · · · ≤ x(k) <∞.

Since we are dealing with life times, which are positive valued random

variables, we take the lower limit as 0 rather than −∞ in both cases dis-

cussed above and also in the case mentioned below.

1.7.3 Type III (Random Censoring)

This type of censoring is more in the nature of experiments than a matter of

design. It is observed that in lifetime studies on human or other biological

entities it is comparatively difficult to get the requisite number of items for

experimentation at the same time. Also, such subjects after entering the

study, may be withdrawn before the completion of the lifetime (i.e. death)

from the study. These withdrawals will not necessarily occur at the same

age for every subject. If a study of the lifetime of patients under terminal

cancer is organized, it may be that some patients are withdrawn from the

study (for whatever reasons, e.g., trying alternative therapy), die of some

cause other than cancer (competing risks), etc.

The situation is modelled by two random variables: a lifetime X and a

censoring time C. For each subject one of these yields a realization, X, if

the lifetime is observed and C, if it is censored prior to the completion. Thus

the observations on n such independent subjects are (Ti, δi), i = 1, 2, · · · , n
where

Ti = min(Xi, Ci),

and

δi = I[Xi ≤ Ci] =

{
1 if Xi ≤ Ci
0 if Xi > Ci,
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are the actual recorded observation and the indicator of whether it was

uncensored or a censored life. The simplest model then assumes that X

and C are independent with distributions F and G (densities f and g)

leading to the following likelihood function

L(f, g|t1, t2, . . . , tn) =

n∏
i=1

{f(ti)G(ti)}δi{g(ti)F (ti)}1−δi

where F (x) = 1− F (x) and G(x) = 1−G(x), respectively.

If we take the censoring time distribution G(x) to be degenerate at t0, a

fixed time of censoring, then Type III censoring reduces to Type I censoring.

Under the conditions stated above Type III censoring does not reduce to

Type II censoring since the censoring time in Type II, which is X(k) the

k-th order statistic of X1, X2, · · · , Xn the n lifetimes, is not independent of

them.

1.8 Ranked Set Sampling

The Ranked Set Sampling scheme was introduced by [McIntyre (1952)].

For a while it did not attract the attention it deserved, but there has been

a surge in the interest in it over the last twenty years or so. [Patil et al.

(1994)], [Barnett (1999)], [Chen et al. (2003)], [Wolfe (2004)] may be seen

as some of the landmark contributors.

Let us first describe the basic framework of this methodology. It con-

sists of the following stages. Suppose we are interested in a characteristic

represented by the values of a random variable X taken by each of the units

in the population. Let X have a continuous probability distribution with

c.d.f. F and p.d.f. f . Let µ be the expectation of X and σ2 its variance.

First choose n units from the population as a simple random sample.

By some (hopefully inexpensive) procedure select the unit with the smallest

value of X. Let it be X[1].

A second independent simple random sample of size n is chosen and the

unit with the second smallest value X[2] of the character is selected. Simi-

larly, continue this process until one has X[1], X[2], . . . , X[n], a collection of

independent order statistics from n disjoint collections of n simple random

samples.

This constitutes the basic Ranked Set Sample. These are independently

distributed with respective p.d.f.s
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f(i)(x[i]) =
n!

(i− 1)!(n− i)!
F (x[i])

i−1(1−F (x[i])
n−if(x[i]), −∞ < x[i] <∞.

(1.8.1)

Note that we obtained n2 simple random samples from the population, but

retained only one (with the appropriate rank) from each group of n samples.

So the total effort has been to rank n random samples of size n each, and

retaining only the i-th (i = 1, 2, . . . , n) order statistic from the i-th group

respectively, which are to be actually measured.

It is expected that ranking is cheap and measuring is expensive. Ranking

n2 observations and using n of them after measurement is thus a sampling

method of boosting the efficiency of the statistical procedures from that

based merely in groups of n simple random sample measurements.

In order to retain the reliability of the rankings, it is usually suggested

that it be carried out in small groups, say upto 4, 5, 6 in size. However, this

would limit both the versatility and efficiency of the procedures. Hence

recourse is taken to replicating the whole process m times. Thus mn2 units

are examined, each group of n is ranked within itself and the i-th order

statistic is obtained from m groups, leading to the data

X[i]j , i = 1, 2, . . . , n j = 1, 2, . . . ,m.

This constituted balanced RSS sampling. In unbalanced sampling instead

of m replications for each order statistic, one will have mi replications of

the i-th order statistic.

Parametric estimation and testing of hypothesis is well studied under

this scheme of sampling. See, for example, [Chen et al. (2003)]. Some

nonparametric procedures and their properties too have been discussed in

the literature. We shall include some of these in the appropriate chapters

of the book.

1.8.1 Estimation of the Mean

Let us now consider the estimation of µ, the mean of F . If we use k

SRS observations then X̄, its sample mean, is an unbiased estimator with

variance σ2/k. The mean

X̄∗ =
1

n

n∑
i=1

X[i]

of the k RSS observations is also unbiased for µ as seen below.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 20

20 NONPARAMETRIC STATISTICS: THEORY AND METHODS

E(X̄∗) =
1

n

n∑
i=1

E(X[i])

=
1

n

n∑
i=1

∫ ∞
−∞

x
n!

(i− 1)!(n− i)!
F (x)i−1(1− F (x))n−if(x)dx

=

∫ ∞
−∞

x[

n∑
i=1

(
n− 1

i− 1

)
F (x)i−1(1− F (x))n−i]f(x)dx

=

∫ ∞
−∞

xf(x)dx

= µ.

1.9 Introduction to Bayesian Inference

It is given in statistical inference that different statisticians working with

the same procedure with well defined properties will come to the same

conclusion with the same data. This is called ‘objective inference’ and is

a characteristic of the so called ‘frequentist’ approach. On the other hand,

the Bayesian approach allows inputs from the statistician (or the scientist

at the back of the statistician) in the inference procedure. This is said to

be ‘subjective inference’ or ‘Bayesian inference’ since the basic setup in the

procedure depends on the use of the famous Bayes theorem given below.

Let there be two events A and B with positive probabilities. Then

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A),

which leads to

P (B|A) =
P (A|B)P (B)

P (A)
.

Now consider the problem of estimation of a parameter θ on the basis

of data x = (x1, x2, . . . , xn) coming from a probability density f(x|θ). The

likelihood principle described earlier says that regard f(x|θ) = L(θ|x) as

a function of θ for the given data and estimate θ by θ̂ which is the value

of θ for which L(θ|x) is maximized. In this procedure there is no scope

for the statistician to incorporate his personal (i.e. subjective) beliefs. But

in many cases the statistician/scientist does have preferences about the

true value of the parameter θ. The Bayesian paradigm proposes that the

preferences or degrees of belief be summarized by a probability distribution

p(θ): the greater the value of p(θ), the greater is the degree of belief in the



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 21

PRINCIPLES OF STATISTICAL INFERENCE 21

corresponding value of θ. So in a manner of speaking θ is regarded as a

random variable, and the density f(x|θ) a conditional density of the data

given the value of the random variable θ. Then by a simple application of

the extended version of Bayes theorem we can write

f(x|θ)p(θ) = f(x, θ) = p(θ|x)m(x)

and

p(θ|x) =
f(x|θ)p(θ)
m(x)

.

Here m(x) is the marginal p.d.f. of x given by
∫

Θ
f(x|θ)p(θ)dθ, where Θ is

the parametric space. The two p.d.f.’s p(θ) and p(θ|x) are called the prior

and posterior density of θ, that is the degrees of belief the statistician holds

initially and the modified degrees after the observation of the data x. A

point estimate of θ can be taken to be the mode of p(θ|x) that is the value

where the posterior distribution is maximum (rather than where L(θ) is

maximum). The name Bayes estimator is given to the expectation E(θ|x)

of the posterior distribution. The first of the estimators, the mode, retains

the maximum degree of (posterior) belief, where as the Bayes estimator

is the one which minimizes the posterior risk, i.e., the expected squared

posterior error ∫
Θ

(θ − θ̃)2p(θ|x)dθ,

which is minimized at θ̃ = E(θ|x) among all values of θ̃ in Θ.

Similar analysis can be done with respect to other loss functions also.

The above is a parametric treatment. In a later chapter we see that use

of the Bayesian principle in a nonparametric set up is much more difficult

and computer intensive.

1.10 Remarks

Other statistical problems of interest include ranking, selection, and the

vast array of multivariate problems. Again the development of nonparamet-

ric methods for these problems has been rather limited as we lack adequate

information for calculating exact error rates which indicate the precision of

the procedures.

By now the above discussion brings out the fact that estimation pro-

cedures and tests of hypothesis, under nonparametric models, should be

based on distribution free statistics. If appropriate distribution free statis-

tics are not forthcoming then we look for asymptotically distribution free
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statistics so that the precision of the estimators and the level of significance

of the tests may at least approximately be known.

Even in case of most distribution free statistics the exact sampling dis-

tribution, though known, become very complicated with increasing sample

size. We then obtain the limiting sampling distributions of the statistics

for use as approximations to the exact distribution.

Details of principles of statistical inference, methods of estimation and

testing hypothesis may be found in [Lehmann (1991)], [Lehmann and Ro-

mano (2006)], [Fraser (1957)], [Rohatgi and Saleh (2015)], [Wilks (1962)]

etc.

We should mention some well-known books on Nonparametric meth-

ods. The earlier rather theoretical books are [Fraser (1957)], [Hájek and

Šidák (1967)], [Puri et al. (1971)] and [Randles and Wolfe (1979)]. The

later books catering for applied statisticians are [Conover and Conover

(1980)] and ([Sprent and Smeeton (2016)], fourth edition). Some more

recent books [Govindarajulu (2007)], [Wasserman (2007)], [Gibbons and

Chakraborti (2011)] and [Hollander et al. (2013)] contain a blend both the-

ory and methods.
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Chapter 2

ORDER STATISTICS

2.1 Random Sample from a Continuous Distribution

If a random experiment is performed n times in such a way that the out-

comes in any trial do not affect those in other trials then we say that we

have n statistically independent trials. If X1, X2, · · · , Xn are the random

variables representing the outcomes then these would have a common con-

tinuous c.d.f. F (x) with p.d.f. f(x). Suppose F is unknown; only known

to belong to the class J of all continuous distributions. This is a non-

parametric model. Symbolically we write X1, X2, · · · , Xn ∼ i.i.d. random

variables from F . The actual realizations of these random variables after

the experiments have been performed will be denoted by lower case let-

ters x1, x2, · · · , xn. These are real numbers being the observed values of

the random variables X1, X2, · · · , Xn respectively, or the realized random

sample.

2.2 Order Statistics

We define new random variables X(1), X(2), · · · , X(n) in the following way:

X(1) = min(X1, X2, · · · , Xn),

i.e., the smallest among all observations,

X(2) = min({X1, X2, · · · , Xn} −X(1)}),

i.e., the smallest among all observations except X(1),

X(i) = min({X1, X2, · · · , Xn}−{X(1), X(2), · · · , X(i−1)}), i = 2, . . . , n−1,

23
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X(n) = max(X1, X2, · · · , Xn).

(X(1), X(2), · · · , X(n)) are called order statistics of the random sample

X1, X2, · · · , Xn.

Their observed values are the ordered values x(1) ≤ x(2) ≤ · · · ≤ x(n) of

the realized observations x1, x2, · · · , xn. These are called the sample order

statistics. We also call X(i) and x(i), i = 1, 2, . . . , n, the i-th order statistic

and the i-th sample order statistic, respectively.

Once the order statistics are computed, the information as to which was

the observation number one, number two, etc., is lost. So it is a reduction of

the data in this sense. One may also notice that the vector of observations

(x1, x2, · · · , xn) can denote any point in the space Rn, provided the original

observation x′is are in R. But the vector of order statistics

(x(1), x(2), · · · , x(n)) ≡ (y1, y2, · · · , yn)

can denote any point only in the subset of Rn

{y ∈ Rn and y1 ≤ y2 ≤ · · · ≤ yn}

which is much smaller than Rn itself.

2.3 Sampling Distribution of Order Statistics

The joint density of the observation X1, X2, · · · , Xn is

f(x1, x2, · · · , xn) =

n∏
i=1

f(xi), −∞ < x1, x2, . . . , xn <∞. (2.3.1)

As already explained the range of the order statistics

X(1), X(2), · · · , X(n) is −∞ < x(1) ≤ x(2) ≤ · · · ≤ x(n) < ∞. Let A1

be an arbitrary measurable set in this range and g(x(1), x(2), · · · , x(n)) be

the joint density of the order statistics. Then,

P [(X(1), · · ·X(n)) ∈ A1] =

∫
· · ·
∫
A1

g(x(1), · · · , x(n))dx(1) · · · dx(n).

(2.3.2)

Let A1, A2, · · · , An! be the sets in Rn obtained by permuting the co-

ordinates of points in A1. Observe that the same value of order statistics is

generated by all the permutations of (x1, x2, · · · , xn) and the joint density
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function is symmetric in its arguments. We can write

P [(X(1), · · · , X(n)) ∈ A1] =

n!∑
j=1

P [(X1, X2, · · · , Xn) ∈ Aj ]

=

n!∑
j=1

∫
· · ·
∫
Aj

n∏
i=1

f(xi)dxi

= n!

∫
· · ·
∫
A1

n∏
i=1

f(xi)dxi. (2.3.3)

Comparison of (2.3.2) and (2.3.3) tells us that the joint density of the

order statistics (X(1), X(2), · · · , X(n)) is

g(x(1), · · · , x(n)) = n!

n∏
i=1

f(x(i)), −∞ < x(1) ≤ · · · ≤ x(n) <∞. (2.3.4)

This expression for the joint density easily gives, by direct integration,

the marginal density of one, two or more order statistics. We obtain the

marginal density of X(i) as

gX(i)
(x) =

n!

(i− 1)!(n− i)!
f(x)(F (x))i−1(1− F (x))n−i,−∞ < x <∞.

(2.3.5)

The joint density of X(i) and X(j) for i < j is

gX(i),X(j)
(x, y) = [

n!

(i− 1)!(j − i− 1)!(n− j)!
]

[f(x)f(y)(F (x))i−1(F (y)− F (x))j−i−1(1− F (y))n−j ],

−∞ < x < y <∞. (2.3.6)

In particular the marginal density of the smallest order statistics X(1)

is

gX(1)
(x) = nf(x)(1− F (x))n−1, −∞ < x <∞,

(2.3.7)

and that of the largest order statistics X(n) is

gXn(x) = nf(x)[F (x)]n−1, −∞ < x <∞. (2.3.8)

The joint density of X(1) and X(n) is

gX(1),X(n)
(x, y) = n(n− 1)f(x)f(y)[F (y)− F (x)]n−2,

−∞ < x < y <∞. (2.3.9)
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The c.d.f. of X(i) is seen to be

GX(i)
(x) = P [X(i) ≤ n]

= P [at least i of X1, X2, · · · , Xn

are less than or equal to x]

=

n∑
j=i

P [exactly j of X1, X2, · · · , Xn

are less than or equal to x]

=

n∑
j=i

(
n

j

)
(F (x))j [1− F (x)]n−j , −∞ < x <∞.

(2.3.10)

In particular,

GX(1)
(x) = 1− (1− F (x))n,

and

GX(n)
(x) = (F (x))n. (2.3.11)

Differentiating GXi(x) as obtained in (2.3.10) leads to the same expres-

sion for gX(i)
(x) as obtained in (2.3.5).

2.4 Sufficiency and Completeness of Order Statistics

The concept of sufficiency provides a useful summarization of the data

without losing any statistically relevant information. There can be many

sufficient statistics for the same statistical family. For the family of all

absolutely continuous distributions, or for any subfamily of it, the order

statistics are a sufficient statistics. This is proved by observing that,

P [(X1, X2, · · · , Xn) ∈ A|X(1) = x(1), · · · , X(n) = x(n)] =
m(A)

n!
,

where m(A) is the number of points, from the n! points whose coordinates

are given by the permutations of (x(1), x(2), · · · , x(n)), included in A. A

complete proof may be seen in [Fraser (1957)]. As this conditional proba-

bility does not depend upon the probability distribution of X1, X2, · · · , Xn,

we have sufficiency for X(1), X(2), · · · , X(n).

Note that order statistics are sufficient statistics of dimension n which

increases with the sample size.
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Suppose F is the class of all absolutely continuous distributions. It can

also be seen from [Fraser (1957)] that if

E[g(X(1), · · · , X(n))] = 0 ∀ f ∈ F ,
then

g(X(1), · · · , X(n)) ≡ 0. (2.4.12)

Hence order statistics are also complete for the family of all absolutely

continuous distribution functions.

In statistical theory it is well know that if we can have a statistic which

is a function of a complete and sufficient statistic then it is the unique

minimum variance unbiased estimator (UMVUE) of its expectation. See

Rao - Blackwell and Lehmann - Scheffé theorems, say, in [Lehmann (1991)],

[Casella and Berger (2002)]

2.5 Probability Integral Transformation

Suppose the random variable X has a continuous c.d.f. F (x). Consider the

transformation

Y = F (X). (2.5.13)

Then Y is a random variable since F : R→ (0, 1] is a monotone increasing

(also right continuous) transformation. It is easy to see that if F is a

continuous c.d.f. then Y itself has the uniform distribution over (0, 1]. Let

G(y) be the c.d.f. of Y . Then, for 0 ≤ y < 1

G(y) = P [Y ≤ y]

= P (X ≤ F−1(y)]

= FF−1(y) = y.

Hence,

G(y) =


0 if y < 0,

y 0 ≤ y < 1,

1 if y ≥ 1.

Here

F−1(y) = inf{x : F (x) ≥ y}.

This transformation is useful in specifying the probability of X being in

certain sets even if we do not know its distribution function F , as long as it

is continuous. For example, consider two i.i.d. random variables X1 and X2

both with the same distribution function F . Then consider the probability
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of the set {(x1, x2) : −∞ < x1 ≤ x2 < ∞} in R2 or P [X1 ≤ X2]. This

set is invariant under any continuous monotone increasing transformation

(g(x1), g(x2)) applied to (x1, x2), i.e.

{(x1, x2) : −∞ < g(x1) ≤ g(x2) <∞} ≡ {(x1, x2) : −∞ < x1 ≤ x2 <∞}.

Hence,

P [g(X1) ≤ g(X2)] = P [X1 ≤ X2].

If we specify g = F then

P [X1 ≤ X2] = P [F (X1) ≤ F (X2)]

= P [Y1 ≤ Y2],

where Y1 and Y2 are independent random variables with U(0, 1) distribu-

tions. Hence,

P [X1 ≤ X2] = P [Y1 ≤ Y2] =

∫ 1

0

∫ x2

0

dx1dx2 =
1

2
.

Another useful transformation is given by

Z = − log[1− F (X)]. (2.5.14)

Since Y = F (X) has U(0, 1) distribution, 1 − F (X) = 1 − Y too has

U(0, 1) distribution.

P [Z ≤ z] = P [− log(1− Y ) ≤ z] = P (1− Y ≥ e−z] = 1− e−z, 0 ≤ z <∞.

That is to say that the transformed random variable Z has the exponential

distribution with mean 1.

Comments:

(i) One can obtain the probability of sets which are invariant under

continuous monotone transformations in the above manner by ex-

ploiting the properties of the probability integral transformation

given in (2.5.13).

(ii) These results are of great value in deriving sampling distributions

of certain statistics when we only know that the data has arisen

from continuous probability distributions.

(iii) We deliberately construct statistics which depend upon X through

the transformations (2.5.13) and (2.5.14) which are denoted above

by Y and Z, respectively, so that the sampling distributions are

tractable. And they are also distribution-free as they do not depend

on the choice of underlying c.d.f. F , as long as it is continuous.
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(iv) The probability integral transform is used to generate random vari-

ables from non uniform distributions. For example, the c.d.f. of

exponential random variable with mean 1 is F (x) = 1−e−x. Then,

Y = 1−e−X is a U(0, 1) random variable. Hence, x = −loge(1−y)

is an observation from standard exponential distribution. Or, in

general, if y is an observation from U(0, 1), then x = F−1(y) will

be an observation from the c.d.f. F .

2.6 Order Statistics of Uniform and Exponential Random

Samples

In section 2.5 we saw that certain simple transformations take an arbitrary

continuous random variable to the uniform and exponential random vari-

ables. In this section we derive the expressions for the p.d.f. and other

functions of order statistics from these random samples.

2.6.1 Uniform Distribution

Let X1, X2, . . . , Xn be a random sample from U(0, 1) distribution. The

density of the U(0, 1) random variable is

f(x) = 1, if 0 < x < 1

= 0, elsewhere. (2.6.15)

We get the joint density of order statistics from uniform distribution is

g(x(1), x(2), · · · , x(n)) = n!, 0 < x(1) ≤ · · · ≤ x(n) < 1, (2.6.16)

and the marginal density of the ith order statistics X(i) from U(0, 1) is

gX(i)
(x) =

n!

(i− 1)!(n− i)!
xi−1(1− x)n−i, 0 < x < 1, (2.6.17)

which is the Beta (i, n− i+ 1) distribution. Hence,

E(X(i)) =
i

n+ 1
,

and

V ar(X(i)) =
i(n+ 1− i)

(n+ 2)(n+ 1)2
.
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The joint density of the ith and the jth order statistics X(i) and X(j) for

i < j from U(0, 1) distribution is given by

gX(i),X(j)
(x, y) =

x!

(i− 1)!(j − i− 1)!(x− j)!
xi−1(y − x)j−i−1(1− y)x−j ,

0 < x ≤ y < 1 (2.6.18)

and

Cov(X(i), X(j)) =
i(n+ 1− j)

(n+ 1)2(n+ 2)
. (2.6.19)

In particular,

Cov(X(1), X(n)) =
1

(n+ 1)2(n+ 2)
,

Cor(X(1), X(n)) =
1

n
.

Hence, correlation between X(1) and X(n) is inverse of the sample size n.

Substituting i = 1 and j = n in (2.6.18) we obtain the joint distribu-

tion of the smallest and the largest order statistics of the uniform random

sample, as

gX(1),X(n)
(x, y) = n(n− 1)(y − x)n−2, 0 < x ≤ y < 1. (2.6.20)

Consider the transformation

R = X(n) −X(1), S = X(1).

Integrating the joint density of (R,S) with respect to S will give us the

sampling distribution of R, the sample range, in the case of a random

sample from U(0, 1) distribution as,

gR(r) = n(n− 1)rn−2(1− r), 0 < r < 1. (2.6.21)

Hence, the sample range has Beta(n− 1, 2) distribution.

2.6.2 Exponential Distribution

Let X1, X2, . . . , Xn be i.i.d. exp(1) random variables. Then the p.d.f. of

X1 is

f(x) = e−x, 0 < x <∞, (2.6.22)

and the c.d.f. of X1 is

F (x) = 1− e−x, 0 < x <∞. (2.6.23)
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Then the joint density of n order statistics from exp(1) is

gX(1),··· ,X(n)
(x(1), x(2), · · · , x(n))

= n!

n∏
i=1

e−x(i) , 0 < x(1) ≤ · · · ≤ x(n) <∞, (2.6.24)

and the pdf of the ith order statistic X(i) from exp(1) is

gX(i)
(x) =

n!

(i− 1)!(n− i)!
(1− e−x)i−1e−(n−i+1)x, 0 < x <∞. (2.6.25)

Consider the following 1:1 transformation

Yi = X(i) −X(i−1), i = 1, 2, · · · , n,
X(0) = 0.

Then, the joint p.d.f. of Y1, Y2, . . . , Yn is

fy1,··· ,yn(y2, · · · , yn) = n!e−
∑n
i=1(n−i+1)yi , 0 < y1, y2, . . . , yn <∞.

(2.6.26)

This shows that Y1, Y2, · · · , Yn are independently and exponentially dis-

tributed with means 1
n−i+1 , i = 1, 2, · · · , n.

Hence Zi = (n−i+1)Yi, i = 1, · · · , n which are called normalized sample

spacings are once again independent and identically distributed exp(1) ran-

dom variables. These are of particular interest in reliability theory, leading

up to the concept of total time on test.

Also these results lead to

E(X(i)) = E

 i∑
j=1

Yj

 =

i∑
j=1

1

(n− j + 1)

and

V ar(X(i)) = V ar

 i∑
j=1

Yj

 =

i∑
j=1

1

(n− j + 1)2
.

When the random sample is not from the uniform or exponential dis-

tribution, it is usually not possible to obtain tractable expressions for the

p.d.f. or even the moments of the order statistics.

Comments:

(i) Using the ‘delta’ method one can write down approximate expres-

sions for the moments when the original distribution is an arbitrary
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continuous distribution with c.d.f. F and p.d.f. f . The first two

moments approximately are:

E(X(i)) ≈ F−1

(
i

n+ 1

)
,

and

V (X(i)) ≈
i(n− i+ 1)

(n+ 1)2(n+ 2)

[
f

{
F−1

(
i

n+ 1

)}]−1

.

(ii) Under regularity conditions the asymptotic distribution of the stan-

dardized version of X(i) as n → ∞ in such a way that i
n → p,

0 < p < 1 is standard Normal, that is to say,(
p(1− p)

nf2(F−1(p))

)−1/2

(X(i) − F−1(p))→ N(0, 1) as n→∞.

In case i
n → 0 or 1, as n→∞ then the above normality does not

hold and the limiting distribution (with different normalization) is

one of three possible extreme value distributions. See e.g. [Gumbel

(1958)].

(iii) If we look at this asymptotic result carefully, the asymptotic vari-

ance of the i-th order statistic is of order 1
n , that is, tending to 0 as

n→∞. Hence, the i-th order statistic is a consistent estimator of

its asymptotic expectation F−1(p), which is the quantile of order

p of the distribution F .

(iv) If we were to base confidence intervals on this asymptotic result,

we will see that the length of the confidence interval will involve

the density function f which may be unknown.

In the next section we see methods of obtaining exact distribution-

free confidence intervals for population quantiles, based on the probability

integral transformation.

2.7 Confidence Intervals for Population Quantiles Based on

Simple Random Sampling

Let ξp be the quantile of order p (0 < p < 1) of the continuous distribution

function F . Intuitively speaking it is the number such that a percentage

100p of the total population is numerically below or up to ξp. Rigorously

it is defined as

ξp = inf{x : F (x) ≥ p}
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leading to a unique value. ξ1/2 is the median, the well known measure of

central tendency, ξ1/4 and ξ3/4 are the lower and upper quartiles of the

distribution.

Let X(r) and X(s) (r < s) be two order statistics. Then

P [X(r) ≤ ξp < X(s)] = P [X(r) ≤ ξp]− P [X(s) ≤ ξp]

=

n∑
i=r

(
n

i

)
[F (ξp)]

i[1− F (ξp)]
n−i

−
n∑
i=s

(
n

i

)
[F (ξp)]

i[1− F (ξp)]
n−i.

(2.7.27)

Assuming continuity, so that F (ξp) = p, we get

P [X(r) ≤ ξp < X(s)] =

s−1∑
i=r

(
n

i

)
pi(1− p)n−i.

The last expression is totally free of the unknown c.d.f. F (x), the unknown

distribution function and depends only on p, the order of the quantile for

which we are seeking the confidence interval.

Hence by choosing the values of r and s appropriately, one can adjust

the confidence coefficient as close as possible to 1−α. Typically we choose

r and s such that
r−1∑
i=0

(
n

i

)
pi(1− p)n−i ≈

n∑
i=s

(
n

i

)
pi(1− p)n−i ≈ α

2
,

to obtain ‘symmetric’ confidence intervals. For the median, p = 1/2 the

symmetric confidence interval will be (X(r), X(n−r+1)), 1 ≤ r ≤ (n+1
2 ) and

would have confidence coefficient

2

r−1∑
i=0

(
n

i

)
(
1

2
)i.

For example, if the sample size n = 20, and we take r = 6, then

2

5∑
i=0

(
20

i

)
(
1

2
)i ≈ 0.0414.

This leads to (X(6), X(15)) as the confidence interval with confidence coef-

ficient 1− α = 0.9586.

It is also possible to choose upper or lower confidence intervals for ξp
by considering events of the types {X(r) ≤ ξp} and {ξp < X(s)} in an

analogous manner.
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2.8 Confidence Intervals of the Population Quantiles Based

on Ranked Set Sampling

Ranked set sampling was discussed in Chapter 1. Suppose X[1], X[2], . . . ,

X[n] is a collection of independent order statistics from n disjoint collections

of n simple random samples. This constitutes a sample under ranked set

sampling. The marginal distribution of X[i] is that of the ith order statistic

from a random sample of size n. But X[1], X[2], . . . , X[n] are independent.

This is a collection of independent but not identically distributed random

variables. Then, for r < s, suppose [X[r], X[s]] is a confidence interval for

ξp. Since X[r] and X[s] are independent, the confidence coefficient is given

by

P [X[r] ≤ ξp ≤ X[s]]

= P [X[r] ≤ ξp][1− P [X[s] ≤ ξp]]

=
{ n∑
j=r

(
n

j

)
pj(1− p)n−j

}
{

1−
n∑
j=s

(
n

j

)
pj(1− p)n−j

}
. (2.8.28)

One notes two properties here.

(i) E(X[s] − X[r]) = E(X(s) − X(r)). That is the expected length of

the confidence interval based on ranked set sampling is the same

as the expected length of the confidence interval based on simple

random sampling.

(ii) If r and s are chosen such that the confidence coefficient for the

traditional confidence interval based on simple random sampling is

1−α with probability α
2 in each tail then the confidence coefficient

of the confidence interval based on ranked set sampling is

(1− α

2
)2 = 1− α+

α2

4
,

which increases the coverage probability by α2

4 .

One should note that X[r] and X[s], being order statistics from in-

dependent simple random samples, may not satisfy the condition that

(X[r] < X[s]). In some cases one may not get a proper confidence interval.

In this case one could order the two statistics X[r] and X[s] as X(rs1) and
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X(rs2) and use [X(rs1), X(rs2)] as the confidence interval. The confidence

coefficient of the modified interval is

P [X(rs1) ≤ ξp ≤ X(rs2)]

= P [{X[r] ≤ ξp ≤ X[s]}or{X[s] ≤ ξp ≤ X[r]}]
= P [X[r] ≤ ξp ≤ X[s]] + P [X[s] ≤ ξp ≤ X[r]]

= P [X[r] ≤ ξp][P [ξp ≤ X[s]]]

+ P [X[s] ≤ ξp][P [ξp ≤ X[r]]]. (2.8.29)

Again, if r and s are chosen such that the confidence coefficient for

the traditional confidence interval based on simple random sampling is

1 − α with probability α
2 in each tail, then the coverage probability of

[X(rs1), X(rs2)] is

(1− α

2
)2 + (

α

2
)2 = 1− α+

α2

2
.

This confidence interval adds a further α2

4 to the confidence coefficient of the

confidence interval based on simple random sampling. However, this comes

at the cost of some increase in the expected length of the new confidence

interval [X(rs1), X(rs2)]. It can be seen that the expected length of this

interval is

E[X(rs2) −X(rs1)]

= EF[s]
[2XF[r](X)−X] + EF[r]

[2XF[s](X)−X], (2.8.30)

where F[s] is the c.d.f. of X[s].

To increase the flexibility of the confidence intervals one could take m

independent groups of n2 observations for ranking purposes. From these

one could obtain

X[i]j , j = 1, 2, . . . ,m, i = 1, 2, . . . , n.

These are m replicates of the order statistics. These N = nm indepen-

dent order statistics be ordered from the lowest to the highest as

X(1) ≤ X(2) ≤ . . . ≤ X(N).

Then 1 ≤ r < s ≤ N can be chosen appropriately to obtain 100(1 − α)%

confidence interval for the pth quantile ξp. For details see [Öztürk and

Deshpande (2004)]. Similar ranked set sampling based confidence inter-

vals for quantiles of finite populations have been discussed in [Öztürk and

Deshpande (2006)].
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2.9 Tolerance Intervals

The tolerance interval is an interval (U,L) with random endpoints such

that it contains at least a given proportion 1 − γ of the population with

probability not less than 1− α.

We again exploit the probability integral transformation. (X(r), X(s))

for r < s is a random interval. We can write down the following probability

P [F (X(s))− F (X(r)) > 1− γ] = P [U(s) − U(r) > 1− γ],

where U(s) and U(r) are the r-th and s-th order statistics from the U(0, 1)

population. Their joint density function is given by

fU(r),U(s)
(x, y) =

n!

(r − 1)!(s− r − 1)!(n− s)!
xr−1(y − x)s−r−1(1− y)n−r,

0 < x < y < 1.

From the above it is easy to derive the density of U(s) − U(r) = V as

g(v) = n

(
n− 1

s− r − 1

)
vs−r−1(1− v)n−s+r, 0 < v < 1

giving us

P [X(s) −X(r) > 1− γ] =

∫ 1

1−γ
g(v)dv,

which can be evaluated for given values of γ. Thus by choosing r and s

appropriately the probability can be made greater than or equal to 1− α,

the required tolerance coefficient.

Thus, by choosing r and s appropriately, we obtain (X(r), X(s)) as the

interval which contains at leat 1 − γ proportion of the population with at

least probability 1− α.

Comments:

(i) The tolerance interval depends on r and s through s − r. Hence,

the tolerance intervals are not unique.

(ii) Usually, it is possible to answer the question: What is the smallest

sample size such that the sample range (X(1), X(n)) will contain at

least a proportion (1− γ) of the total population with probability

no less than 1 − α? It would be the smallest n which satisfies the

inequality

P [F (X(n))− F (X(1)) ≥ 1− γ] ≥ 1− α.
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For further details on order statistics we refer to the books [David and

Nagaraja (1981)] and [Arnold et al. (1992)].

2.10 Exercises

(1) Let X(1), X(2), · · · , X(10) be the order statistics based on 10 indepen-

dent identically distributed observations from a continuous distribution

with 80th percentile 20. (i) Determine P (X(8) < 20). (ii) Determine

P (X(6) < 20 < X(9)).

(2) Let X(1), X(2), · · · , X(7) be the order statistics based on 7 indepen-

dent identically distributed observations from a continuous distribution

with 70th percentile 22. (i) Determine P (X(6) < 22). (ii) Determine

P (X(6) < 22 < X(7)).

(3) Let X(1), X(2), · · · , X(n) be the order statistics based on a random

sample of size n from a continuous distribution F. Show that the

distribution of (X(1), X(2), · · · , X(n)) is same as the distribution of

(F−1(U(1)), F
−1(U(2)), · · · , F−1(U(n)), where U(1), · · · , U(n) is the or-

der statistics based on a random sample from U(0, 1).

(4) Let X(1), X(2), · · · , X(n) be the order statistics based on a random sam-

ple of size n from a continuous distribution F. Determine the condi-

tional hazard rate of X(j+1) given X(j) = x in terms of the hazard rate

rF (x) = f(x)/(1− F (x)) of F .

(5) Consider a k-out-of-m system, that is a system with m components

which works as long as k out of them components are working. Suppose

the component lifetimes are independent and identically distributed

with a common continuous distribution F. Express the distribution of

the system lifetime in terms of F .
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Chapter 3

EMPIRICAL DISTRIBUTION
FUNCTION

3.1 Inference in the Nonparametric Setting

Let us denote by F (x) the c.d.f. of the random variable X representing the

random outcomes of an experiment. The approach of parametric inference

is to suggest, on prior grounds, a family F̧ = {Fθ, θ ∈ Θ} of distribution

functions. Members of this family are identified by the value of the param-

eter θ which is either real or vector valued (finite dimensional). Whenever

θ is unknown it is estimated or hypothesis regarding it are tested on the

basis of data collected by repeating the random experiment several times.

For example, one may assume normal, exponential, binomial, Poisson, etc.

families as the circumstances suggest. However, we are often faced with

situations where such a family is hard to specify. If the experiment con-

sists of measuring the blood pressure of a number of subjects then it may

be difficult to say that random outcomes are governed by a probability

distribution belonging to some such specific family. Therefore we adopt

estimation and testing methods whose properties do not depend upon any

particular family.

The statistical problems are now estimation of the entire distribution

function F , or its values F (x) at a specific argument x, or on the other

hand, quantiles, i.e., the argument x where F (x) takes specific values. One

would like to test hypotheses regarding these entities also. We have seen

how to estimate quantiles (both point and interval estimation) through the

probability integral transformation in the previous chapter. In this chapter,

we consider statistical inference for the entire distribution function. The

empirical distribution function, nonparametric estimators arising in sur-

vival analysis and the bootstrap estimator of the distribution function are

39
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discussed in this chapter. However, the nonparametric Bayesian estimator

of the distribution function is discussed in Chapter 12.

3.2 The Empirical Distribution Function

By repeating the experiment n times independently under the same con-

ditions, one obtains the realization x1, x2, . . . , xn of a random sample

X1, X2, . . . , Xn, from the distribution function under investigation, say

F (x). Its values at the real x may be estimated in the following way.

Define the empirical distribution function (e.d.f)

Fn(x) =
1

n

n∑
i=1

I[Xi ≤ x].

Essentially it estimates F (x) = P [X ≤ x] by the relative frequency of

the event [Xi ≤ x, i = 1, 2, . . . , n] in the random sample. If the order

statistics of the random sample are X(1) ≤ X(2) ≤ . . . ≤ X(n) and its sample

realization is x(1) ≤ x(2) ≤ . . . ≤ x(n), then an equivalent representation of

e.d.f. is given by

Fn(x) =


0, if x < X(1),
i
n if X(i) ≤ x < X(i+1), i = 1, . . . ,n− 1

1 if X(n) ≤ x.

(3.2.1)

A particular estimate Fn(x) is illustrated in the Figure 3.1.

It is a jump function, with each jump equal to 1/n and located at the

n order statistics (X(1), X(2), . . . , X(n)). Thus Fn(x) will always yield a

discrete (right continuous) distribution function giving probability 1/n to

each of the order statistics. In case of ties, the appropriate adjustment to

the jump size at the tied observations will be made, more specifically if k

observations are tied, the jump size is taken to be k/n. The distribution

function F (x), which is being estimated, may or may not be discrete. How-

ever, we shall see later that in all cases Fn(x) tends to be closer and closer

to F (x) at all x, with probability 1 as n, the sample size, becomes larger

and larger. Hence it is a very attractive estimator of F (x).

3.3 Properties of the Empirical Distribution Function

The empirical distribution function Fn(x) is an unbiased and a weakly

consistent estimator of the unknown distribution function F (x).
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Fig. 3.1 Empirical Distribution Function

It is easy to see that for a fixed x

E[Fn(x)] =
1

n

n∑
i=1

E[I[Xi ≤ x]]

= P [X ≤ x]

= F (x). (3.3.1)

Hence Fn(x) is unbiased for F (x). It is also weakly consistent, since

V ar(Fn(x)) = V ar(
1

n

n∑
i=1

I[Xi ≤ x])

=
1

n2
nV arI[X ≤ x]

=
F (x)(1− F (x))

n
→ 0 as n→∞. (3.3.2)

The Borel strong law of large numbers also applies, giving

Fn(x)→ F (x) as n→∞ with probability 1 at fixed x.

The following theorem shows that the empirical distribution function

Fn(x) is a uniformly strongly consistent estimator of the unknown distri-

bution function F (x).
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Theorem 3.3.1 (Glivenko-Cantelli Theorem): Let X1, X2, . . . , Xn be

i.i.d. random variables from distribution F (x). Let Fn(x) be the correspond-

ing empirical distribution function. Then

P [ sup
−∞<x<∞

|Fn(x)− F (x)| → 0 as n→∞] = 1.

Proof (outline): Let j = 1, 2, ..., k and k = 1, 2, .... Let xkk be∞. Define

xjk to be the largest value of x such that

F (x− 0) ≤ j

k
≤ F (x).

Thus for every k, the points x1k, x2k, ..., xk−1k provides a partition of the

real line given by (−∞, x1k], (x1k, x2k], ..., (xk−1k,∞). The convergence

with probability 1 of Fn(x) to F (x) at each end point of the above interval

follows from the Borel strong law of large numbers. This is so because F (x)

is the probability of the event [X ≤ x] and Fn(x) is the relative frequency of

this event in independent trials. Then by elementary rules of intersections

and unions of events (of probability 1) we get the uniform convergence of

Fn(x) to F (x) at all the endpoints of the above intervals with probability

1. Using the nondecreasing nature of the functions Fn(x) and F (x) and the

definition of xjk it is assured that the absolute difference |Fn(x) − F (x)|
for x within any of the above intervals is not more than the absolute dif-

ference at one of the endpoints of one of the interval plus 1/k. Since k

can be arbitrarily large, we can chose it so as to make 1/k as small as we

please ensuring the uniform convergence over (−∞,∞) of Fn(x) to F (x)

with probability 1. See ([Loève (1963)], pp 20-21) for details.

�

This theorem shows that Fn(x), −∞ < x < ∞ is a good estimator of

the true distribution function F (x), especially if the number of observations

is not too small. The functionals (parameters) of the true distribution

function may then be estimated by the corresponding functionals of Fn(x).

For example the mean of F may be estimated by the mean of Fn(x) which

turns out to be X̄, the sample mean. This is a point estimator.

We have seen that nFn(x) =
∑n
i=1 I[Xi ≤ x]. This can be interpreted

as the number of successes in n independent trials with probability of

success equal to F (x) at each trial. Hence, for a fixed x, nFn(x) has a

Binomial(n, F (x)) distribution.

Therefore, from De-Moivre Laplace Theorem it follows that

nFn(x)− nF (x)√
nFn(x)(1− Fn(x))

→ N(0, 1) as n → ∞. (3.3.3)
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3.4 The M.L.E. of the Distribution Function

When we wish to carry out inference in nonparametric framework, our class

of possible distributions is F̧, the class of all distributions, members of which

cannot be identified by a real or finite dimensional vector valued parame-

ter. We can however, provide a justification for the empirical distribution

function as a generalized maximum likelihood estimation procedure for the

distribution function F itself as follows.

Among the regularity conditions for the existence of M.L.E., there is

one which states that all the members of the class F̧ should be absolutely

continuous with respect to a common measure so that the corresponding

Radon-Nikodym derivatives with respect to this measure will define the

densities f. However this is impossible if F̧ consists of all the probability

distribution functions as we now want. [Kiefer and Wolfowitz (1956)] have

generalized the concept in the following manner. Let P̧ = {P} be an

arbitrary class of probability measures and let P1 and P2 belong to it. Let

f(x, P1, P2) =
dP1(x)

d(P1 + P2)(x)

be the Radon-Nikodym derivative of P1 with respect to P1 +P2. Then P̂ is

defined to be generalized maximum likelihood estimator (G.M.L.E.) of the

distribution of X if

f(x, P̂ , P ) ≥ f(x, , P, P̂ ) ∀P ∈ P̧. (3.4.1)

Note that if P̂ gives positive probability to x then f(x, P, P̂ ) = 0 unless

P also gives positive probability to x. So we look only among those P which

have P (x) > 0. Then the inequality (3.4.1) reduces to P̂ (x) ≥ P (x) ∀P ∈ P̧.

Say, our data consists of n independent observations x1, x2, . . . , xn.

Let an arbitrary probability distribution give positive probabilities

p1, p2, . . . , pn to these points. Then P (x) =
∏n
i=1 pi. It is obvious that this

is maximized for P̂ which has pi = 1/n, i = 1, 2, ..., n. Hence the empirical

distribution function which gives exactly probability 1/n to each of the ob-

served values of the random variable is G.M.L.E. of the true distribution

function in the sense of [Kiefer and Wolfowitz (1956)].

3.5 Confidence Intervals for the Distribution Function

We first look at a confidence interval for the unknown distribution function

F (x) for a fixed value of x. We know from (3.3.3) that for large n the
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standardized version,

nFn(x)− nF (x)√
nFn(x)(1− Fn(x))

has N(0, 1) distribution. Then, for a given x, this would lead to asymptotic

(1− α)100% confidence interval for F (x)

Fn(x)± z1−α2

√
Fn(x)(1− Fn(x))

n
,

where z1−α2 is the (1− α
2 )100% upper critical point of the standard normal

distribution. These confidence intervals for F (x) do not need the knowledge

of the family to which F belongs but are not exact. Since F (x)(1− F (x))

or Fn(x)(1− Fn(x)) can not exceed 1/4

Fn(x)± z1−α2 0.5(n)−1/2

will provide a conservative confidence interval, meaning the confidence co-

efficient will not be less than (1− α)100% whatever be the value of x. The

95% confidence interval will be

[Fn(x)− 0.98 n−1/2, Fn(x) + 0.98 n−1/2]

as z1−α2 = 1.96.

Confidence bands for the entire distribution function and tests for good-

ness of fit based on empirical distribution are discussed in the next chapter.

3.6 Actuarial Estimator of the Survival Function

Here we look at the actuarial estimator of the survival function S(x) =

F̄ (x) = 1 − F (x). In demographic studies large data sets are available on

the mortality experience of a population. Suppose the study begins with a

cohort (sample size) of size n at time 0. The subjects are observed at fixed

time points

0 = t0 < t1 < t2 < . . . < tk.

Let, for i = 1, 2, . . . , k,

ni = the number in the risk set (i.e. in the study) at time ti,

di = the number of deaths in the ith interval ,

wi = the number of subjects otherwise lost to the study. (3.6.1)

Then, ni−1 − ni = di + wi is the number of subjects which either died

(failed) or were lost or withdrawn for other reasons from the study in the
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ith interval. As an approximation it is assumed that the wi withdrawals

took place uniformly over the ith interval or in other words only n′i−1 =

ni−1 − wi/2 subjects were really in the ith risk set.

Hence we estimate the conditional probability of a subject failing within

the interval given that it had not failed at the beginning of the interval by

di
n′i−1

.

Using the chain rule for conditional probabilities, the probability of surviv-

ing beyond tj is represented as

P [T > tj ] =

j∏
i=1

P [T > ti|T > ti−1].

Hence the actuarial estimator of the survival function S(x) is given by

ŜACT (tj) = P̂ [T > tj ] =

j∏
i=1

(1− di
n′i−1

).

Strictly speaking the estimator of the survival function is calculated only

at the points t1, t2, ..., tk, but we extend the domain of definition over the

points in between also by attributing to them the value at the left end-point

of the interval in which they are situated. However, it should be noted that

the estimation is appropriate only at the end points of the intervals. The

intervals are not data dependent, hence they neither become shorter nor

increase in number as the data increases.

The formula for the approximate variance of ŜACT (tj) called the

Greenwood formula, is of interest as it would help in building asymptotic

confidence intervals. Note that

logŜACT (tj) =

j∑
i=1

log(1− di
n′i−1

).

Let us assume that the failure (or survival) of subjects in the risk set is

independent of each other and occurs with the same probability qi (or pi).

Then, n
′

i−1 − di will have B(n
′

i−1, pi) distribution with variance n
′

i−1piqi.

Using the delta method we get

V ar[log

(
n
′

i−1 − di
n
′
i−1

)
] =

qi
n
′
i−1pi

.

Ignoring the covariance between d1, d2, ..., dk we get

V ar(logŜACT (tj)) =

j∑
i=1

qi
n
′
i−1pi

.
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Again by the delta method, the approximate variance of ŜACT (tj) is

V ar(ŜACT (tj)) = [ŜACT (tj)]
2

j∑
i=1

qi
n
′
i−1pi

.

The expression for variance of the actuarial estimator of ŜACT (tj) depends

upon the unknown probabilities qi and pi and hence may be estimated by

ˆV ar(ŜACT (tj)) = [ŜACT (tj)]
2

j∑
i=1

di
n
′
i−1(n

′
i−1 − di)

.

By appealing to the central limit theorem, the asymptotic confidence

intervals for S(tj), the value of the survival function at tj , are given by

ŜACT (tj)± z1−α/2

√
ˆV ar(ŜACT (tj)).

Note that tj is an end point of the jth initially chosen interval.

3.7 Kaplan-Meier Estimator of the Distribution Function

If the experiment which provides observations on lifetimes can not be con-

tinued until all the lifetimes are completed, that is, until all the items put

on trial have failed, we get what is called the random right censored data.

With every item we associate two random variables - its lifetime X and

the censoring time C at which the lifetimes got censored. We assume that

the lifetime and the censoring time are independent random variables and

what is actually observed for the ith item is

Ti = min(Xi, Ci)

and

δi =

{
1 if Ti ≤ Ci
0 if Ti > Ci,

which means for the ith individual we observe Ti, the lifetime or the censor-

ing time, whichever is smaller and also δi the indicator of the observation

being a completed (uncensored) lifetime. We wish to use the data (Ti, δi),

i = 1, 2, . . . , n to consistently estimate the unknown c.d.f. F of the lifetime

random variable X. Let G be the c.d.f. of C, the censoring time. Then the

c.d.f. of the observed random variable T is

P (T ≤ t) = 1− (1− F (t))(1−G(t)).



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 47

EMPIRICAL DISTRIBUTION FUNCTION 47

The survival function of T is

P (T > t) = H̄(t) = F̄ (t)Ḡ(t),

where F̄ and Ḡ are the survival functions of X and C, respectively.

If we obtained the empirical distribution function Hn(t) formed by the

data t1, t2, . . . , tn it will be a consistent estimator of H(t) and not of F (t).

So we must make use of (Ti, δi) to remove the effect of the c.d.f. G and

obtain a consistent estimator of F (x) or equivalently of the survival function

F̄ (x). We take inspiration from the actuarial estimator introduced in the

previous section.

Let T(1) ≤ T(2) ≤ . . . ≤ T(n) be the order statistics of the data on T

and define δ(i) = δj if T(i) = Tj . Let R(t) be defined as the set of all items

still not failed at time t. Then R(t) is the risk set at time t. Let ni be the

number of items in the risk set R(T(i)) and let di be the number of items

which fail at the time T(i). It may be noted that for the data with only one

failure at T(i), the indicator function δ(i) = 1 or 0 according to whether T(i)

corresponds to a failure time or a censoring time.

Let (0, T(1)], (T(1), T(2)], . . . , (T(n−1), T(n)] be the intervals I1, I2, . . . , In.

Define

Pi = P (X > T(i)|X > T(i−1)).

That is, Pi is the conditional probability that the item survives through Ii
given that it is working at time T(i−1). Also let

Qi = 1− Pi.

In the absence of tied observations the estimator of Qi is

Q̂i =
di
ni
,

and hence that of Pi is

P̂i = 1− di
ni

=

{
1− 1

ni
if δ(i) = 1

1 if δ(i) = 0.

The survival function at time t is

S(t) = F̄ (t) = P [X > t] =
∏

{i:T(i)≤t}

Pi.

Its product limit or the Kaplan Meier (K-M) estimator is given by

F̄KMn (t) =
∏

{i:T(i)≤t}

(1− Q̂i).
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Hence, when there are no ties,

F̄KMn (t) =
∏

{i:T(i)≤t}

(
1− 1

ni

)δ(i)
(3.7.1)

=
∏

{i:T(i)≤t}

(
1− 1

n− i+ 1

)δ(i)
(3.7.2)

=
∏

{i:T(i)≤t}

(
n− i

n− i+ 1

)δ(i)
. (3.7.3)

If there are d failures tied at any observation point, the factor contribut-

ing to the product term in (3.7.3) will be

(1− d

m
)

where m is the size of the corresponding risk set.

If the last observation is censored then F̄KMn (t) never approaches 0, and

it may be taken as undefined beyond T(n).

The difference between the [Kaplan and Meier (1958)] estimator and

the actuarial estimator is that for the former the end points of the intervals

are the random times of failure/censoring and for the latter the end points

are fixed and chosen before the experiment.

[Kaplan and Meier (1958)] showed the consistency of this estimator.

Taking a clue from the actuarial estimator and again using the delta

method one can obtain the approximate formula for the estimator of the

variance of F̄KMn (t) as

ˆV ar(F̄KMn (t)) = (F̄KMn (t))2
∑

{i:T(i)≤t}

δ(i)

(n− i)(n− i+ 1)
,

when there are no ties and then corresponding modification may be made

to this ‘Greenwood’ formula in case of ties. Most softwares (such as R)

provide commands for the calculation. In R, the package ‘survival’ is used

for the computations (see, e.g.,[Deshpande and Purohit (2016)]).

The calculation of the Kaplan-Meier estimator is illustrated in the fol-

lowing example.

Example 3.1 ([Deshpande and Purohit (2016)]): Recorded failure

and censored data of 12 turbine vanes are given as follows:

142, 149, 320, 345+, 560, 805, 1130+, 1720, 2480+, 4210+, 5280, 6890

(+ indicating censored observations).
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TABLE 3.1

j t(j) δ(j) nj F̄KMn (t(j))

1 142 1 12 0.9167

2 149 1 11 0.8334

3 320 1 10 0.7500

4 345+ 0 - 0.7500

5 560 1 8 0.6563

6 805 1 7 0.5625

7 1130+ 0 - 0.5625

8 1720 1 5 0.4500

9 2480+ 0 - 0.4500

10 4210+ 0 - 0.4500

11 5230 1 2 0.2250

12 6890 1 1 0.0000

Figure 3.2 shows the Kaplan-Meier estimator of the survivor function

for the data in Example 3.1.
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Fig. 3.2 Kaplan Meier estimate of F̄ (x)
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3.8 The Nelson-Aalen Estimator of the Cumulative Hazard

Function

We have discussed the Kaplan-Meier estimator of the c.d.f. in case the

data is subject to random right censoring. It is a step function, with the

steps located at the uncensored observations, and the height changes by a

factor which is the reciprocal of the size of the risk set at that point. Then

there is another estimator of the survival function called the Nelson-Aalen

estimator ([Nelson (1969)], [Aalen (1975)]) which uses an indirect approach

for estimating F (x) through counting processes. Hence, small and large

sample properties of the estimator can be derived by standard martingale

theory.

Along with a continuous distribution function F (x) we also have the

density function f(x), where

f(x) = lim
δ→0

F (x+ δ)− F (x)

δ
,

the probability density function (p.d.f.), which adequately describes the

probability distribution of interest. In the continuous case, another function

of interest is the failure (or hazard) rate function defined as

r(x) = lim
δ→0

1

δ
P [x < X ≤ X + δ|x < X]

= lim
δ→0

1

δ

F (x+ δ)− F (x)

F̄ (x)

=
f(x)

F̄ (x)

(
= − d

dx
logF̄ (x)

)
.

The definition of r(x) makes it clear that we seek the conditional rate of

failure at time x given the survival of the item up to time x. It is also seen

that

F̄ (x) = exp{−
∫ x

0

r(u)du}.

Hence, there is a one to one correspondence between the distribution func-

tion and the hazard rate function. Let us define the cumulative hazard

function R(t) as

R(t) =

∫ t

0

r(u)du.

Then,

F̄ (t) = exp{−R(t)}.
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Here we seek an estimator of R(t), the cumulative hazard function. Let

there be n items which fail according to the c.d.f. F (x), p.d.f. f(x) or

equivalently the failure rate r(x).

Now in the framework of counting processes, define

Yi(t) =

{
1 if the ith item is at risk just prior to time t,

0 if it has either failed or censored before time t.

Define

Ni(t) =

{
1 if the ith item has failed or censored up to time t,

0 otherwise.

That is to say Ni(t) is the observed number of events for the ith item

in the interval (0, t]. Define

N(t) =

n∑
i=1

Ni(t),

which counts the total number of events that have taken place in the time

interval (0, t] in the entire sample. Also, let

Y (t) =

n∑
i=1

Yi(t),

that is, the total number of items still at risk just before time t. The

(random) intensity process of Ni(t) is assumed to be R(t)Yi(t) and that of

the aggregated process N(t) to be

λ(t) =

n∑
i=1

r(t)Yi(t) = r(t)Y (t).

Let T1 < T2 < . . . be the actual failure times (not including the cen-

soring times) of the random sample of n items. The number of failures

observed is random. Without assuming any parametric form for r(t) ( or

for R(t)) we can then propose

R̂(t) =
∑
Ti≤t

1

Y (Ti)
,

as the Nelson-Aalen estimator of R(t). Note that it is an increasing step

function with steps at T1 < T2 < . . . and the addition of 1/Y (Ti) at the

ith ordered failure time. However, this is an estimator for the cumulative

hazard function R(t) and not for the survival function F̄ (t).

Alternatively, the estimator can also be written as

R̂(t) =

∫ t

0

J(u)

Y (u)
dN(u),
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where N(·) is the counting process already introduced and J(u) is the

indicator function of the event {Y (u) > 0}. This avoids the terms with 0 in

the denominator. This is a stochastic integral with respect to the counting

process. It is known that the process defined by

M(t) = N(t)−
∫ t

0

r(u)Y (u)du

is a mean zero martingale. Let

R∗(t) =

∫ t

0

J(u)r(u)du,

then

R̂(t)−R∗(t) =

∫ t

0

J(u)

Y (u)
dM(u)

is a mean zero martingale itself. The estimated variance of R̂(t) is

σ̂2(t) =
∑
Tj≤t

1

(Y (Tj))2

=

∫ t

0

J(u)

(Y (u))2
dN(u).

Further, as n→∞, √
n[R̂(t)−R(t)]

converges in distribution to a mean zero Gaussian martingale with variance

function

σ2(t) =

∫ t

0

r(u)

y(u)
du,

where y(t) is a positive function such that
Y (t)

n

p→ y(t) for all t ∈ (0, τ ] as n→∞.
One can then obtain large sample confidence interval for R(t) by using the

estimated variance and the critical points from the normal distribution.

In the framework of this section, the Kaplan-Meier estimator of the

survival function is

F̄KMn (t) =
∏
Ti≤t

(
1− 1

Y (Ti)

)
,

and its estimated variance is
ˆV ar(F̄KMn (t)) = (F̄KMn (t))2

∑
Ti≤t

1

(Y (Ti))2
,

which is slightly different from the Greenwood expression

(F̄KMn (t))2
∑
Ti≤t

1

(Y (Ti))(Y (Ti)− 1)
.

In the above formula appropriate modifications will have to be made in case

there are tied failure times.
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3.9 The Nonparametric Bootstrap

Let F be an unknown c.d.f. from which the realization x1, . . . , xn of a

random sample X1, . . . , Xn is available. Let us consider the e.d.f. Fn(x)

defined in (3.2.1). The mean of the e.d.f. is

µ̂ =

∫ ∞
−∞

xdFn(x) =
1

n

n∑
i=1

xi = x̄. (3.9.1)

It is the sample mean. Its variance is the sample variance given by

σ̂2 =

∫ ∞
−∞

x2dFn(x)− {
∫ ∞
−∞

xdFn(x)}2 =
1

n

n∑
i=1

x2
i − x̄2. (3.9.2)

The estimators µ̂ and σ̂2 are consistent estimators of µ and σ2, the mean

and variance corresponding to the distribution function F .

Let W = W (X1, . . . , Xn) be a statistic based on the random sample

with an unknown c.d.f. Then GW (w), the c.d.f. of W may be estimated

if we have a large number (say m) of independent random samples of

size n of X observations, from each of which the value of W is calcu-

lated. Let W1,W2, . . . ,Wm denote these values. The e.d.f. obtained from

W1, . . . ,Wm, may be used as an estimator of the unknown c.d.f. of W .

[Efron (1979)] suggested that instead of basing the values of W on in-

dependent random samples obtained from the original distribution F , one

could use random samples from the e.d.f. Fn(x). Now, obtaining obser-

vations from Fn(x) essentially means sampling n observations from the

original sample x1, . . . , xn, with replacement. This can be repeated a large

number of times, say B. From each of these B ‘new’ random samples the

value of the statistic W may be calculated. This is called ‘Bootstrap’ sam-

pling and the collection W ∗1 ,W
∗
2 , . . . ,W

∗
B , the bootstrap random sample of

W .

The expectation and the variance of W may be estimated by

µ̂BW =
1

B

B∑
i=1

W ∗i and σ̂2 B
W =

1

B

B∑
i=1

(W∗i − µ̂B
W)2.

No additional experimentation is required as the ‘data’ consist of random

samples from Fn (and not from F ). The number of distinct (ordered) ran-

dom samples of size n from the values x1, . . . , xn obtained through sampling

with replacement is
(

2n−1
n

)
and may be said to be equally likely.

Since the Glivenko-Cantelli theorem assures that Fn and F will be close

for large n, the estimates obtained through µ̂BW and σ̂2 B
W too are expected

to be close to the expectation and variance of W .



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 54

54 NONPARAMETRIC STATISTICS: THEORY AND METHODS

Actually the e.d.f. GBW (t) of the B values W ∗1 ,W
∗
2 , . . . ,W

∗
B may be

seen as an estimator of the true c.d.f. GW (t) of W . Hence other features

of GW (t), like its quantiles may also be estimated from it. One may also

obtain histograms from this data to view the features of the density function

of W.

If W is an unbiased estimator (maybe only asymptotically so) of a func-

tional θ(F ) of F, then the bootstrap estimator of the standard error of GW
can be used to construct approximate confidence intervals for θ(F ) as long

as we can obtain the values of W for a large number of random samples

obtained from the e.d.f. Fn. (Thus we are able to obtain such approximate

intervals without knowing either F or GW thus qualifying as a nonpara-

metric result.) For details we refer to [Davison and Hinkley (1997)].

3.9.1 Bootstrap Confidence Interval Based on Normal

Approximation

Consider a general functional θ = θ(F ) of the distribution function F . It

is estimated by its value W = θ(Fn) as a functional of the e.d.f. Fn. For

example the mean, the variance or the third moment of F (x) is estimated

by the sample mean X̄, the sample variance or the sample third moment -

which are respectively the mean, the variance and the third central moment

of the e.d.f. Fn.

We calculate σ̂BW , the standard error of the bootstrap sample and suggest

confidence intervals for unknown θ(F ). In case the distribution of W =

θ(Fn) is approximately normal with mean θ(F ) then

(θ(Fn)− z1−α/2σ̂
B
W , θ(Fn) + z1−α/2σ̂

B
W )

may be regarded as 100(1 − α)% C.I. for θ, (zβ is the βth quantile of the

standard normal distribution.)

3.9.2 Bootstrap Percentile Intervals

Let W = θ̂n be an estimator of θ based on the original data summarized

by the e.d.f. Fn. If one formulates a pivotal quantity θ̂n − θ, and if its

distribution were known one could, by usual inversions of inequalities, ob-

tain a confidence interval for θ. If this c.d.f. is unknown, one can use the

bootstrap method as follows.

First obtain bootstrap replications W ∗1 ,W
∗
2 , . . . ,W

∗
B of W . Then obtain

the quantiles of order α/2 and 1−α/2 of the empirical distribution of W ∗b ,
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b = 1, · · · , B, denoted by θ∗α/2 and θ∗1−α/2, respectively. The approximate

100(1− α)% confidence interval for θ is

(2θ̂n − θ∗1−α/2, 2θ̂n − θ
∗
α/2).

Here the central point of the C.I is the estimator of θ obtained from

the original random sample from F and the end points are based on the

estimated standard errors or quantiles obtained from the bootstrap random

sample.

If the original data X1, . . . , Xn is a random sample from a c.d.f. Fθ
where F is known except for the value of the parameter θ, then it is advis-

able to use the parametric bootstrap. It consists of first estimating θ from

the data (say by the maximum likelihood method). Then obtain B boot-

strap samples of size n from the distribution Fθ̂. One uses these additional

bootstrap random samples to augment inference regarding θ.

Basically Bootstrap techniques work because it can be seen that

in very wide setting the random variables
√
n(FBn (x) − Fn(x)) and√

n(Fn(x) − F (x)) behave similarly for large n, where FBn (x) is the e.d.f.

of a bootstrap sample from Fn [Dudley (2014)] pp. 323-324.

3.10 Exercises

(1) Let Fn be the e.d.f. based on a random sample of size n from a distri-

bution function F (x). Show that

Cov(Fn(x), Fn(y)) =
F (min(x, y))− F (x)F (y)

n
.

(2) Show that when there is no censoring the Kaplan-Meier estimator

F̄KMn (t) reduces to the survival function corresponding to the e.d.f.

(that is, the empirical survival function.)

(3) The following are failure and censoring times in years of 10 identical

components, + indicates a censoring time.

5, 7, 5+, 5.8, 11.5, 9.2, 10.2+, 11, 7+, 12+.

(a) Using the Kaplan-Meier (KM) estimator, obtain an estimate of the

probability that the component will survive beyond 8 years.

(b) Obtain the empirical survival function by neglecting all the censored

observations and compare it with the KM estimate.
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(4) Is −log(KM) a consistent estimator for the cumulative hazard

function?

(5) Consider the data 50, 50+, 66, 70+, 85, 92, 110, 110+, 115, 118,

120+, 122

Obtain the Nelson-Aalen estimate of the cumulative hazard function

R(t) at t = 100 and at t = 120. Obtain large sample 95% confidence

intervals for R(100) and for R(120).

(6) Suppose the following data are observations on a random sample of size

25 from an unknown distribution F .

3.7, 0.2, 1.8, 3.6, 5.4

0.5, 4.4, 0.7, 17.2, 2.5

1.8, 4.8, 2.3, 1.9, 7.5

0.6, 0.3, 5.8, 6.5, 3.2,

0.5, 0.1, 1.7, 5.0, 2.7.

(a) Obtain a 95% confidence interval (CI) for the mean based on the

nonparametric bootstrap procedure. (Draw 1000 bootstrap sam-

ples using a computer.)

(b) Compare the above CI with the 95% large sample CI based on the

normal approximation.
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Chapter 4

THE GOODNESS OF FIT
PROBLEM

4.1 Introduction

In Chapter 3 we discussed statistical methods for point and interval estima-

tion of the unknown distribution function F (x) for a fixed x. The estimates

which we obtain are not in closed functional forms but only provide val-

ues of the function at one or all the points. Sometimes the experimenter

has a suspicion or prior belief that the distribution belongs to a particular

parametric family, like the Normal, exponential, Poisson etc. This could be

because the experimental conditions point to a particular distribution as

the appropriate one or because of past experience of similar experiments.

He then wishes to either confirm or reject this prior belief through a ‘test

of goodness of fit’. There are three major ways of carrying out such tests:

(i) chi-squared Goodness of fit test of Karl Pearson [Pearson (1900)],

(ii) the Kolmogorov-Smirnov goodness of fit test based on the empirical

distribution function [Kolmogorov (1933)] [Smirnov (1948)]), and

(iii) the Hellinger distance based methods [Beran (1977)].

We shall describe the methods (i) and (ii) in successive sections. These

will be followed by methods developed for testing goodness of fit of specific

popular distributions such as exponential or Normal. Method (iii) involves

density estimators and will be described in the Chapter 10.

4.2 Chi-squared Goodness of Fit Test

The random sample consists of n observations X1, X2, . . . , Xn. The idea

is to see whether they occur according to a given probability distribution

F0(x). The ideal situation is when we can completely specify the suspected

57
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distribution function F0(x). Often, we can only point to a particular family

without being able to specify the values of its parameters. These two cases

will be dealt with separately.

4.2.1 Completely Specified Distribution Function

We set up the following null hypothesis for testing

H0 : F (x) = F0(x) ∀ x

against the alternative

HA : F (x) 6= F0(x)

over a set of nonzero probability. Choose k > 2 numbers

−∞ = a0 < a1 < . . . < ak−1 < ak =∞.

Let (−∞, a1], (a1, a2], . . . , (ak−2, ak−1], (ak−1,∞] be a partition of the

real line into k intervals. Since F0(x) is completely known, we can

find the probabilities given by it for intervals (−∞, a1], (a1, a2], . . . ,

(ak−2, ak−1], (ak−1,∞]. Let these probabilities be denoted by p1, p2, . . . , pk,

pi > 0, i = 1, 2, . . . , k and
∑k
i=1 pi = 1. Let Oi be the observed number

of observations in the ith interval,
∑k
i=1Oi = n. The probability of the

ith interval is pi hence the expected number of observations in it is npi.

[Pearson (1900)] suggested that we should look at the discrepency between

the observed and expected frequencies through the chi-squared statistics

χ2 =

k∑
i=1

(Oi − npi)2

npi
.

The denominator npi is the normalizing factor to allow for unequal vari-

ances of Oi. If F0(x) is indeed the true distribution function then the

difference between Oi and npi is expected to be small, only due to random,

rather than systematic variation which will arise if the probabilities pi’s

are not the true probabilities. In fact, let us slightly modify the hypothesis

testing problem to:

H ′0 : pi is the probability of interval (ai−1, ai], i = 1, 2, . . . , k

vs

H ′1 : qi (which are not all equal to pi) is the probability of these intervals.
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Then the vector (O1, O2, . . . , Ok) will have a multinomial distribution

under H ′0 and the joint distribution is given by

PH0
(O1 = n1, . . . , Ok = nk) =

n!∏k
i=1 ni!

k∏
i=1

pnii ,

and under H ′1

PH′1(O1 = n1, . . . , Ok = nk) =
n!∏n
i=1 ni!

k∏
i=1

qnii .

The likelihood ratio test for a simple vs. a composite hypothesis is based

on the statistics

L = log
supH′1 PH1

PH′0
= log

∏k
i=1

(
ni
n

)ni∏k
i=1 p

ni
i

= log

k∏
i=1

(
ni
npi

)ni
=

k∑
i=1

ni(log
ni
n
− log pi)

since ni
n are the maximum likelihood estimators of qi.

By Taylor expansion, and neglecting terms of order O( 1
n ) we get

L ≈
k∑
i=1

(ni − npi)2

ni
.

Replacing ni by the quantity npi in the denominator, which it estimates

consistently, we get Pearson’s chi-squared statistic. Hence, asymptotically

the chi-squared statistic has the same distribution as the likelihood ratio

statistic. The latter, by general principles of likelihood theory, is known to

have the chi-square distribution with k − 1 degrees of freedom.

As large deviations between Oi and npi, the observed and expected

frequencies provide evidence against the null hypothesis, we reject it if the

observed value of the chi-squared statistic is greater than the upper α%

value of the chi-square distribution with k − 1 d.f., i.e. the test is to reject

H0 if

χ2 > χ2
k−1,1−α.

It is clear that if there is a distribution F1, different from F0, but spec-

ifying the same probabilities pi for the intervals then the test will not be
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effective in detecting this alternative. The construction of the intervals

is rather arbitrary, it is possible that different decisions may be reached

through different such constructions. The number of intervals should not

be too small, but at the same time it should be kept in mind that the ap-

proximation provided by the asymptotic distribution would not be good if

the probability under the null hypotheses for any of interval is too small. A

rule of thumb that most statisticians recommend and follow is that n and

each pi should be large enough so that no npi is less than 5 or so.

4.2.2 Some Parameters of the Distribution Function are

Unknown

We have said in section (4.2.1) that the stipulated distribution function

F0(x) is completely known. The experimenter sometimes may have an

inkling only of the family of the distribution, but not the values of the pa-

rameters identifying the exact distribution within the family. For example,

the experimenter may suspect, due to the experimental conditions, that the

distribution governing the outcomes is N (µ, σ2), but may not be able to

specify, even as a hypothesis to be tested, the values of the mean µ and the

variance σ2. In such situations, it is usually suggested that the unknown

scalar or vector parameter θ be estimated by its minimum chi-square esti-

mator θ̂. Then the estimated value be substituted in the functional form

of the distribution function F0(x) and the probabilities p̂i, i = 1, 2, . . . , k

should be obtained for the k intervals. Then the statistic

χ2
1 =

k∑
i=1

(Oi − np̂i)2

np̂i

can be used as before. The asymptotic distribution of the statistic χ2
1 based

on p̂i is chi-square with k−p−1 degrees of freedom where p is the number of

parameters (dimensionality of θ) which are estimated from the data. This

result again follows from the standard asymptotic theory of likelihood ratio

tests. So, the critical points for the test should be chosen from the chi-

square distribution with k − p− 1 degrees of freedom. It is thus clear that

we may, at most, estimate k − 2 parameters from the data while testing

goodness of fit.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 61

THE GOODNESS OF FIT PROBLEM 61

[Pearson (1900)] developed the χ2 test of goodness of fit of a simple

(completely specified distribution) null hypotheses and found the asymp-

totic distribution of the statistic to be χ2
k−1 where k is the number of classes

in which the sample space is partitioned. [Fisher (1924)] dealt with the case

when the distribution is not completely specified but contains p unknown

parameters. He proved that if the estimators obtained by the minimum χ2

technique are substituted for the unknown parameters then the asymptotic

distribution is χ2
k−p−1. Furthermore, [Chernoff et al. (1954)] showed that

if estimators obtained by the more efficient maximum likelihood method of

estimation then the asymptotic distribution is that of T = χ2
k−p−1 + Z2

where Z2 =
∑p
i=1 λiX

2
i , Xi, i = 1, 2, . . . , p being independent N(0, 1)

random variables also independent of the χ2
k−p−1 variable and 0 < λi < 1.

Thus, the asymptotic distribution of T is stochastically bounded between

χ2
k−1 and χ2

k−p−1 random variables. In this situation using the critical

points from the χ2
k−1 distribution will lead to a conservative test and using

those from the χ2
k−p−1 distribution will lead to an anticonservative test,

i.e., the actual level of significance will be larger than the stated one.

Example 4.1: The following are supposed to be 50 values generated from

the Poisson distribution with mean 1 using a certain computer programme.

Values 0 1 2 3 4 5

frequency 11 17 10 9 2 1

Thus we wish to test the hypothesis

H0 : F0 , that is, the random variable of interest is Poisson with mean 1.

i Pi = P [X = i] npi npi Oi (npi −Oi)2 (npi−Oi)2
npi

0 0.367879 18.3940 18.3940 11 54.6712 2.9722

1 0.367879 18.3940 18.3940 17 1.9432 0.1056

2 0.183940 9.1970 9.1970 10 0.6448 0.0701

3 0.061313 3.0657 3.9654 12 64.5548 16.2795

4 0.15328 0.7664

5 0.003066 0.1533

Entries in the third column give the expected frequencies for each value

i = 0, 1, . . . , 5. Since the expected frequencies corresponding to 3, 4, 5 are

too small, the entries in the fourth column represent the frequencies after

the last 3 entries have been grouped. The calculated value of the χ2 statistic
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is 19.427.

The upper 5% value of the chi-square distribution with k− 1 = 3 d.f. is

χ2
3,.95 = 7.815. Since the calculated χ2 > 7.815, we reject H0.

The p-value in this case is less than 0.001.

Example 4.2: The data is taken from ‘A Hand Book of Small Data Sets

(1984), No. 181’. (Original Source: [Lieblein and Zelen (1956)]).

The number of cycles to failure of 22 ball bearings are given. The data

is already in the ordered form.

17.88 28.92 33.00 41.52 52.12

45.60 48.48 51.84 51.96 54.12

55.56 67.40 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92

128.04 173.40

The aim is to test

H0 : F0(x) = 1 − e−λx, x > 0, λ > 0, that is, X has exponential

distribution with mean 1/λ. The mean is unknown.

The maximum likelihood estimator of λ is

λ̂ =
n∑n
i=1Xi

=
1

72.3873
= 0.0138.

Partition p̂i np̂i Oi (np̂i −Oi)2/(np̂i)

(0, 40] 0.424540 9.33988 3 4.30349

(40, 80] 0.244306 5.37473 11 5.88748

(80, 120] 0.140588 3.09294 5 1.17587

(120, 160] 0.080903 1.77987 2 0.02723

(160, 200] 0.046556 1.02423 1 0.00057

In the above table p̂i = e−λ̂ai−1 − e−λ̂ai . Thus χ2 = 11.3946.

Note that in this case χ2 is stochastically bounded between χ2
4 and χ2

3.

The .05 level critical points of the respective distributions are χ2
4,.95 = 9.488

and χ2
3,.95 = 7.815.

The null hypothesis is rejected using both the critical points.

If the observed value happens to be between the two critical points, then

one should use conservative procedure, that is, use the critical value with

the smaller level of significance.
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4.3 The Kolmogorov-Smirnov Goodness of Fit Test

This test is based directly on the difference between the empirical distri-

bution function Fn(x) and F0(x) the distribution function specified by the

null hypothesis.

Again, let the null hypothesis H0 completely specify the distribution

function:

H0 : F (x) = F0(x) ∀ x

against the two-sided alternative HA given in (4.2.1). F (x) is assumed to

be a continuous distribution function.

The random sample X1, X2, . . . , Xn is used to construct the empiri-

cal distribution function Fn(x) defined in the Chapter 2. Calculate the

Kolmogorov-Smirnov statistics

Dn = sup
−∞<x<∞

|Fn(x)− F0(x)|. (4.3.1)

The statistic Dn can be expressed as follows

Dn = max(D+
n , D

−
n )

where

D+
n = sup

−∞<x<∞
(Fn(x)− F0(x)), D−n = sup

−∞<x<∞
(F0(x)− Fn(x)).

For calculating the statistic Dn consider the following expressions for D+
n

and D−n .

D+
n = sup

−∞<x<∞
{ sup
X(i)≤x<X(i+1)

(Fn(x)− F0(x))}

= max
0≤i≤n

{ sup
X(i)≤x<X(i+1)

(
i

n
− F0(x))}

= max
0≤i≤n

{ i
n
− inf
X(i)≤x<X(i+1)

F0(x)}

= max
0≤i≤n

{ i
n
− F0(Xi)}

= max{0, max
1≤i≤n

{ i
n
− F0(Xi)}}. (4.3.2)

Similarly D−n can be expressed as

D−n = sup
−∞<x<∞

{ sup
X(i)≤x<X(i+1)

(F0(x)− Fn(x))}

= max
0≤i≤n

{F0(Xi+1)− i

n
}

= max{0, max
1≤i≤n

{F0(Xi)−
i− 1

n
}}. (4.3.3)
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Using (4.3.2) and (4.3.3) in (4.3.1) we get Dn is the maximum of 2n

positive quantities.

4.3.1 Null Distribution of the Statistic

Under the null hypotheses X1, X2, . . . , Xn consist of a random sample from

a continuous distribution F0(x). Because of the 1 : 1 nature of the proba-

bility integral transformation Y = F0(X), for continuous F0, we can write

Dn = sup
0<y<1

|Sn(y)− y|

where Sn(y) is the empirical distribution function of Y1 = F0(X1), . . . ,

Yn = F0(Xn), a random sample from the uniform U(0, 1) distribution.

Hence, irrespective of the functional form of the underlying distribution F ,

the statistic Dn will have the same distribution as the one obtained from

a random sample from U(0, 1) distribution. This distribution, for a given

n can be found by integration but this is quite tedious. Asymptotically

as n → ∞, [Kolmogorov (1933)] obtained the asymptotic distribution of√
nDn as,

G(z) = P [
√
nDn ≤ z]

= 1− 2

∞∑
i=1

(−1)i−1e−2i2z2 . (4.3.4)

Although it is an infinite series, it converges fast, for example

P [
√
nDn ≥ 1.36] is quite closely approximated by .05 when n exceeds 35.

It is easy to see that

E[Sn(y)] = y, 0 < y < 1,

Cov(Sn(y), Sn(z)) =
y(1− z)

n
, 0 < y < z < 1. (4.3.5)

Consider 0 = y0 < y1 < y2 < . . . < yk < 1. Then,

(nSn(y1), n(Sn(y2)−nSn(y1)), ..., n(Sn(yk)−Sn(yk−1)), n(1−Sn(yk))) has

the multinomial distribution MN(n, p1, p2, ..., pk), where pi is the probabil-

ity that Y , a U(0, 1) random variable belongs to the interval (yi−1, yi]. Thus

by the generalized Demoivre-Laplace limit theorem, asymptotically, after

normalization, this vector will have the multivariate normal distribution.

[Doob et al. (1949)] considered the Gaussian stochastic process

Z(t), 0 < t < 1, with the covariance structure given by (4.3.5) and showed
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that the sup0<t<1 |Z(t)| has the Kolmogorov distribution. [Donsker (1952)]

showed that the process
√
n|Sn(y) − y| will asymptotically have the prop-

erties of the process Z(t), hence the distribution of sup0<y<1

√
n|Sn(y)−y|

is the same as that of sup0<t<1 |Z(t)|. This is an outline of the easy proof

of the distribution of Kolmogorov-Smirnov statistic.

From (4.3.4) one can obtain the 100% upper critical point of the distri-

bution. Let us call it d1−α. Then, asymptotically as n→∞,

P [Dn >
dn,1−α√

n
] = α.

Under the null hypotheses F (x) = F0(x), the statistic D+
n has a simpler

asymptotic distribution which can be derived by similar techniques. It is

given by

P [D+
n >

z√
n

]→ 1− e−2z2 as n→∞.

D+
n and D−n are identically distributed.

The exact distribution, under the null hypotheses, of Dn and D+
n for

small sample size n is rather complicated. It has been however tabulated

and exact critical points for use in testing are available.

Hence in either case (n small or large) the test is to reject H0 in favour

of the alternative HA if

Dn > dn,1−α,

where dn,1−α is the upper 100 α% critical point from either the exact or

the asymptotic distribution of the statistic.

In case the experimenter knows that the distribution from which the

data has been realized, if not F0, falls entirely above F0 then it is more

efficient to use the statistic D+
n .

In the opposite case, when the data, if not from F0, is expected to be

from a distribution lying entirely below F0, one should use D−n .

Large values of D+
n and D−n are significant for testing the H0 against

the one-sided alternatives indicated above.

4.3.2 Confidence Bands for F (x) Based on Complete

Samples

Next we look at a confidence band for the entire distribution function F (x).

Confidence bands are random bands with the property that they envelope

the entire c.d.f. from −∞ to ∞ with a certain probability, whereas con-

fidence intervals discussed earlier do this for the value of F (x) at just a

fixed x.
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Consider the random function

Dn = sup
−∞<x<∞

|Fn(x)− F (x)|. (4.3.6)

Asymptotically as n→∞,

P [Dn >
dn,1−α√

n
] = α.

That is,

P [ sup
−∞<x<∞

|Fn(x)− F (x)| ≤ d1−α√
n

] = 1− α

and

P [Fn(x)− d1−α√
n
≤ F (x) ≤ Fn(x) +

d1−α√
n
∀ x] = 1.

0 5 10 15
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0.
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1.
0

x

Fig. 4.1 Two-sided 95% confidence bands

The above result leads to a confidence band (given by the region enclosed

by the dotted lines in Figure 4.1) for the entire unknown distribution func-

tion. The conclusion is that such bands obtained from different data sets

will contain the true distribution function, entirely, in about 1− α propor-

tion of times, in the long run. In a given single application, as is usual with

confidence procedures, we assert that the unknown distribution is within

the band, and we have a (1 − α)100% ‘confidence’ in our assertion. If we
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wish to make the assertion with 95% confidence then the corresponding

value of d1−α is 1.36, provided n is at least 35. Hence the band

Fn(x)± 1.36√
n
, −∞ < x <∞

will be an appropriate one. It is interesting to compare this width with the

maximum width that a 95% confidence interval for F (x) at any fixed x has.

We have seen in the previous section that the confidence interval for F (x)

is Fn(x) ± 0.98/
√
n. The extra width of the band assures that the entire

function F (x) is contained in it with 95% confidence coefficient rather than

just its value at a fixed x.

The upper 100% critical point of the distribution of D+
n is given by

d+
n,1−α. It leads to a one sided confidence band with confidence coefficient

1− α as follows:

P [D+
n ≥

d+
1−α√
n

] = α.

Therefore,

P [ sup
−∞<x<∞

(Fn(x)− F (x)) ≤
d+

1−α√
n

] = 1− α

or

P [F (x) ≥ Fn(x)−
d+

1−α√
n
∀ x] = 1− α.

In Figure 4.2 the broken line provides the lower bounds for the one

sided confidence band for the entire unknown distribution function. In this

case the 95% confidence band is obtained by using d+
0.95 = 1.22. Note that

both the two sided and one sided bands have been modified in the graphs

to exclude values below 0 and above 1 which are impossible values for a

distribution function in any case.

That the bands tend to be rather wide is true. But we must remember

that confidence levels are truly distribution free, and the extra width is the

price paid for it.

4.3.3 Confidence Bands for Survival Function Based on

Censored Random Samples

In the previous chapter we have discussed the Kaplan-Meier estimator of

the survival function when the data is randomly right censored. In this

situation confidence bands for the survival function (or equivalently, for
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Fig. 4.2 One-sided 95% lower confidence band

the distribution function) may be formed using Hall and Wellner’s results

[Hall and Wellner (1980)] as follows.

Let tmax denote the last uncensored time. The [Hall and Wellner (1980)]

asymptotic (1−α) level confidence bands for the survival function F̄ (t) with

t < tmax are:(
F̄KMn (t)−

d∗n,(1−α)√
n

[
F̄KMn (t)

K̄n(t)

]
, F̄KMn (t) +

d∗n,(1−α)√
n

[
F̄KMn (t)

K̄n(t)

])
,

where

K̄n(t) =

{
1 + n

(
ˆV ar(F̄KMn (t))

(F̄KMn (t))2

)}−1

and d∗n,(1−α) are the critical values. For the tables with the critical val-

ues one can see [Hall and Wellner (1980)] and the book by [Klein and

Moeschberger (2005)]. The package ‘km.ci’ in R is used for obtaining these

bands.

The confidence bands in Figure 4.3 are based on the data in Table 3.1.

Confidence bands given above can be used to test for goodness of fit for

a given distribution in the presence of censoring.

A general method for testing goodness of fit of a specific family of dis-

tributions {Fθ, θ ∈ Θ} with unknown values of parameters is to calculate
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Fig. 4.3 Kaplan-Meir estimate and 90% confidence bands of F̄ (x)

Fn(x) and Fθ̂(x), where Fn is the empirical distribution function based

on the data and θ̂ is the maximum likelihood estimator of θ in the above

family. Then calculate the Kolmogorov distance

D̂n = sup
x
|Fn(x)− Fθ̂(x)|.

The exact (or asymptotic) null distribution of the statistic D̂n will not

be free of the function F or the true value θ0 of θ. Hence critical values

from the actual distribution are impractical.

If we use the critical points from the (exact or asymptotic) distribu-

tion of Dn then the test will be conservative meaning, the actual level of

significance will be smaller than the stated level.

The comment made above about estimation of unknown parameters

apply to modifications of one sided tests based on D+
n and D−n also.

4.3.4 Comparison of the Chi-square and Kolmogorov Tests

for the Goodness of Fit Hypotheses

The distribution of the chi-squared statistics, under the null hypothesis, is

known only asymptotically so we do not have any exact critical points for

small sample sizes. Also, the test cannot distinguish the null hypothesis

from another distribution which gives the same probabilities for the system

of intervals. However, there is a well defined method to deal with null
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hypotheses which leave values of some parameters unspecified and can be

applied with equal ease to continuous or discrete distributions.

In case of the Kolmogorov test, exact critical points are available for

small samples also. The test is able to distinguish any distribution which

is different from the distribution under the null hypothesis as long as it is

continuous. However, if certain parameters are unspecified and estimated

from the data then we do not know much about the error rates of the test

except that it behaves in a conservative manner. Also, the distribution of

the test statistic when the null hypothesis specifies a discrete distribution

cannot be provided.

Hence in case of discrete distributions the chi-square test is recom-

mended.

Tests based on Kolmogorov-Smirnov statistics can be used to test

one-sided alternative hypothesis which can not be done with chi-squared

statistics.

Example 4.3: Data from Example 4.2 is used to test the hypothesis

H0 : F0(x) = 1− e−λx, x > 0, λ(> 0) unknown.

The maximum likelihood estimator of λ is given by λ̂ = 0.0138. In the

following Table F̂0(x) = 1− e−λ̂x (Mean = 1/λ̂ = 72.3873).
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i x(i) F̂0(x(i)) i/n max{(i/n− max{(F̂0(x(i)

−F̂0(x(i))), 0} − i−1
n ), 0}

1 17.88 0.218 0.045 0.000 0.218

2 28.92 0.329 0.091 0.000 0.284

3 33.00 0.366 0.136 0.000 0.275

4 41.52 0.436 0.181 0.000 0.300

5 42.12 0.441 0.227 0.000 0.259

6 45,60 0.467 0.272 0.000 0.240

7 48.48 0.488 0.318 0.000 0.215

8 51.84 0.511 0.364 0.000 0.193

9 51.96 0.512 0.409 0.000 0.148

10 54.12 0.526 0.454 0.000 0.117

11 55.56 0.535 0.500 0.000 0.081

12 67.80 0.608 0.545 0.000 0.108

13 68.64 0.612 0.591 0.000 0.067

14 68.88 0.614 0.636 0.022 0.023

15 84.12 0.687 0.682 0.000 0.051

16 93.12 0.724 0.727 0.003 0.042

17 98.64 0.744 0.772 0.029 0.017

18 105.12 0.766 0.818 0.052 0.000

19 105.84 0.768 0.864 0.095 0.000

20 127.92 0.829 0.909 0.079 0.000

21 128.04 0.829 0.954 0.125 0.000

22 173.40 0.909 1.000 0.091 0.000

Thus D22 = 0.300. Note that all entries have been approximated to

third decimal place.

From the table for critical values of the Kolmogorov-Smirnov one sample

test statistic we get d22,0.95 = 0.281 for the two sided test. Since D22 >

0.281 we reject H0. The p-value in this case is 0.038. Note that we get a

conservative test since a parameter has been estimated.

So far we have looked at general tests for goodness of fit. However, one

could have more specific tests for goodness of fit based on statistics sensitive

to departures from certain prime features of the family, such as skewness

β1 = 0 and kutosis β2 = 3 for the Normal distribution or lack of memory

property of the exponential distribution. These generally have more power

for detecting departures from such features at the cost of less generality.

Several such tests are studied in the following sections.
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4.4 Tests of Exponentiality

The two most widely used continuous probability distributions from the

modelling and applications point of view are the exponential and the Nor-

mal distributions. The exponential distribution is the single most distribu-

tion applied for modelling lifetimes. It is the only continuous distribution

with the memoryless property, that is,

P (X > x+ t|X > t) = P (X > x) ∀ x, t ≥ 0. (4.4.1)

Hence it is the proper model for the lifetimes of electronic and other non-

ageing components. Also, it plays a central role in life testing as a norm,

deviations from which have to be noted and studied. So it is extremely im-

portant to test goodness-of-fit of the exponential distribution to collected

sets of data on lifetimes. Besides, the experimenter wishes to understand

what models may be alternative to the exponential distribution. The om-

nibus tests like the Pearson chi-square or Kolmogorov goodness of fit tests

do not provide any information on the alternatives if the null hypothesis is

rejected. Hence certain tests are devised which reject the H0 of exponen-

tiality if certain relevant types of alternatives representing ageing hold.

As mentioned above the exponential distribution uniquely possesses the

memoryless or no ageing property. But there are components which are

subject to wear and tear or those which deteriorate with age. This phe-

nomenon is known as positive ageing. One type of positive ageing is defined

as follows:

P (X > x+ t|X > t] ≤ P [X > x] ∀ x, t ≥ 0, (4.4.2)

with strict inequality for some x and t.

In words we may say that a unit which has already been used for t

units of time has smaller probability of surviving another x units of time

compared to a new (unused) unit ∀ x, t ≥ 0.

A random variable X, or its c.d.f. F , which possesses the property given

in (4.4.2) is said to possess New Better than Used (NBU) property.

A finer positive ageing property is the Increasing failure rate (IFR)

property in which the above inequality is changed to

P (X > x+t2|X > t2] ≤ P [X > x+t1|X > t1], ∀ x > 0, 0 < t1 ≤ t2 <∞.
(4.4.3)

That is, we compare two units which have already been in use for times

t1, t2, t1 ≤ t2, respectively. Then, the probability of both units surviving

additional x > 0 units of times is smaller for the older unit with age t2.
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An alternative interpretation for the IFR property is that the failure rate

r(x) = f(x)/(1 − F (x)) corresponding to random variable X is increasing

in x.

There are many other classes of distributions including the Increasing

failure rate average (IFRA) and the Decreasing mean residual life (DMRL)

classes. A reference to any standard book of Reliability Theory, say [Barlow

and Proschan (1981)], [Deshpande and Purohit (2016)] will give detailed

descriptions of and interrelationships between these and such classes of

distributions.

The class of Increasing Failure Rate Average (IFRA) distributions is

often encountered in reliability as it is the smallest class containing the ex-

ponential distribution and closed under the formation of coherent systems.

The IFRA class may be characterized by the property

[F (x)]b ≤ F (bx) 0 ≤ b ≤ 1, 0 ≤ x <∞, (4.4.4)

with strict inequality for some b and x.

If F is IFRA, the failure rate average 1
x

∫ x
0
r(u)du is increasing in x.

In the following sections we discuss a few tests for exponentiality versus

a few positive ageing alternatives.

4.4.1 The Hollander-Proschan (1972) Test

The testing problem considered in [Hollander et al. (1972)] is

H0 : F (x) = 1− e−λx, x ≥ 0, λ > 0,

unspecified versus the alternative

H1 : F (s+ t) < F (s)F (t) ∀s, t ≥ 0,

that is, F belongs to the NBU class.

Let X1, X2, . . . , Xn be a random sample from the distribution F . Then

the Hollander-Proschan test is based on the U-statistic estimator of the

parameter

γ =

∫ ∞
0

∫ ∞
0

F (s+ t)dF (s)dF (t)

= P [X1 > X2 +X3].

Define a kernel function

h(X1, X2, X3) =

{
1 if X1 > X2 +X3,

0 otherwise.

Let h∗(X1, X2, X3) be its symmetrized version. Then

U =
1(
n
3

) ∗∑
h∗(Xi1 , Xi2 , Xi3)
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where
∑∗

is the sum over all the
(
n
3

)
combinations of the indices (i1, i2, i3)

with i1 < i2 < i3 from the integers {1, 2, . . . , n}.
It is seen that E(U) = γ which is 1/4 under H0 and strictly greater

than 1/4 under H1. Also, the null asymptotic variance of
√
nU is seen to

be 5/432. Hence the asymptotic distribution of

Z =

√
n(U − 1/4)√

5/432
→ N(0, 1) as n→ ∞.

The test is to reject H0 if

Z > Z1−α

where Z1−α is the (1− α)-th quantile of either the exact distribution of Z

or its asymptotic (N(0, 1)) distribution.

Hollander and Proschan have shown that the test is scale invariant. It is

consistent for the entire NBU class of distributions and has good efficiency

for several common models belonging to this class.

4.4.2 The Deshpande (1983) Test

[Deshpande (1983)] studied the following testing problem

H0 : F (x) = 1− e−λx, x > 0, λ > 0, λ unknown,

versus

H1 : (F (x))b ≤ [F (bx)], 0 ≤ b ≤ 1, 0 ≤ x < ∞ and F is not

exponential.

To test the null hypothesis we use the U-statistic estimator of the

parameter

M =

∫ ∞
0

F (bx)dF (x).

It is easily seen that E(M) = 1
(b+1) under H0 and is strictly greater

than 1
(b+1) under H1. Hence the U-statistics

Jb =
1(
n
2

) ∗∑
h∗(Xi1 , Xi2)

where h∗(X1, X2) is the symmetric version of the kernel

h(X1, X2) = 1 if X1 > bX2,

= 0 otherwise,
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and
∑∗

is the sum over all the
(
n
2

)
combinations of (i1, i2) from the integers

{1, 2, . . . , n} with i1 < i2. The asymptotic variance of
√
nJb is

ξ =

{
1 +

b

2 + b
+

1

2b+ 2
+

2(b− 1)

1 + b
− 2b

1 + b+ b2
− 4

(b+ 1)2

}
.

Then by the U-statistics theorem we know that under H0

Z =

√
n(Jb − 1

b+1 )
√
ξ

→ N(0, 1) as n→ ∞.

Hence the test is to reject H0 if Z > Z1−α where Z1−α is again the

exact (1 − α)-th quantile of the exact null distribution or the asymptotic

N(0, 1) distribution of Z.

There is the question of choosing b for defining the statistic. Generally

b = 0.5 or b = 0.9 is recommended. Test based on J0.5 is consistent against

the larger NBU class and J0.9 seems to have somewhat larger power for

many common IFRA distributions.

The statistics Jb is simple to compute. Multiply each observation by the

chosen value of b. Arrange X1, X2, . . . , Xn and bX1, bX2, . . . , bXn together

in increasing order of magnitude. Let Ri be the rank of Xi in the combined

order of these 2n variables. Let S be the sum of these ranks. Then it is

seen that

Jb = {n(n− 1)}−1S.

It may be noted that it is essentially the Wilcoxon rank sum statistic, dis-

cussed in Chapter 7, for the data of X1, X2, . . . , Xn and bX1, bX2, . . . , bXn.

There is a hierarchy of nonparametric classes of probability distributions

such as IFR, IFRA, NBU, NBUE, etc and their duals. Tests have been

proposed for exponentiality against each of these classes in the literature.

See [Deshpande and Purohit (2016)] for some references.

4.5 Tests for Normality

The Normal distribution is the single most commonly used model for de-

scribing the occurrence of outcomes of random experiments and phenom-

ena. Ever since the days of Gauss and Laplace in the nineteenth century

it has been recognized as a very useful model. For a considerable time it

was believed that most of random phenomena actually give rise to nor-

mally distributed data, at least after appropriate transformations. Theory

of errors as developed for application in Physics and Astronomy, basically
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makes the normality assumption. However, by and by, it came to be rec-

ognized that there are many situations where other models are much more

realistically descriptive of real data. Hence there arose the need for testing

whether a given set of data, i.e. realizations of independent, identically dis-

tributed random variables is described well by the Normal distribution or

not. Probability plotting as explained later is a useful graphical tool in this

respect. Here we describe a formal test based on the quantities involved in

probability plotting.

4.5.1 The Shapiro-Wilk-Francia-D’Agostino Tests

Let X1, X2, . . . , Xn be the random sample and X(1), X(2), . . . , X(n) be the

corresponding order statistic. Then the test is based on the statistic

W =

(∑n
i=1 ai,nX(i)

)2∑n
i=1(Xi −X)2

, (4.5.1)

which is the ratio of the slope of the normal probability plot, or the square

of the weighted least squares estimator of the standard deviation, to the

usual estimator of the variance. The values of ai,n for i = 1, 2, . . . , n, n =

2, . . . , 50 have been tabulated. If the sample size is large say greater than 50

the following modified statistic has been proposed by [Shapiro and Francia

(1972)].

W ′ =

(∑n
i=1 bi,nX(i)

)2∑n
i=1(Xi −X)2

∑n
i=1 b

2
i,n

where bi,n = Φ−1
(

i
n+1

)
and Φ is the standard normal distribution func-

tion.

Exact critical values of W (for n ≤ 50) and for W ′(n ≤ 100) are avail-

able.

For even larger sample sizes [d’Agostino (1971)] proposes

D =

∑n
i=1(i− 1

2 (n+ 1))X(i)

n2s
,

where s =
√

[
∑n
i=1(Xi −X)2]. He has provided the exact critical values

for this test for small values of n.

These Shapiro-Wilk-Francia-D’Agostino tests are considered to be om-

nibus tests as they are able to detect departures from normality in all

directions.
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4.6 Diagnostic Methods for Identifying the Family of

Distribution Functions

The goodness-of-fit tests described earlier in this chapter provide the means

of carrying out formal statistical inference, with known probability of first

type of error with respect to the distribution function governing the data.

The methods described in this section are less formal. They provide

indications to the true distribution functions through graphical procedures.

A suspected distribution is at the back of our mind and we compare its

shape (or that of some related functions) with graphs obtained from the

data.

4.6.1 The Q-Q Plot

The Q-Q or quantile-quantile plot compares the theoretical quantiles of a

distribution with the corresponding sample quantiles represented by the

order statistics. Suppose that the suspected distribution function F (x)

belongs to a location-scale family F0

(
x−µ
σ

)
where standard values of µ and

σ, say 0 and 1 give a completely known standardized distribution F0(x) in

this family. For example, F (x) may represent the normal family with mean

µ and variance σ2, with µ = 0 and σ2 = 1 giving the standard normal

distribution.

Let F ∗n(x) be a slightly modified version of the empirical distribution

function given by

F ∗n(x(i)) =
i− 1

2

n
. (4.6.1)

Here the function takes value (i− 1
2 )/n rather than i/n at x(i). A theoretical

distribution may give −∞ and ∞ as the values of F−1(z) at z = 0 and 1.

The modified version F ∗n(t) will avoid this eventuality.

Therefore, one could compare (F ∗n)−1
(
i−1/2
n

)
= x(i) and F−1

0

(
i−1/2
n

)
by plotting the points

(
x(i), F

−1
0

(
i−1/2
n

))
in a graph. If the true distri-

bution F (x) belongs to the location-scale family based on F0(x) then we

expect that this graph called the Q-Q plot will be situated on or near a

straight line. This is because

F−1
0 F (x) = F−1

0 F0

(
x− µ
σ

)
=
x− µ
σ

is a straight line with slope 1
σ and intercept µ

σ . A straight line is easy for the

eye to comprehend and departures from it can be quickly recognized. While
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not proposing a formal test, the plot does give an indication whether the

proposed location-scale family is the appropriate model or not. The slope

and the intercept would provide very rough estimates of the parameters

which could be useful as initial values in an iterative scheme to find, say,

the maximum likelihood estimators or other more formal estimators. The

values of the inverse function F−1
0 at the points (i− 1

2 )/n for i = 1, 2, . . . , n,

are sometimes easy to obtain by direct calculations, sometimes they are

available in well known tables (e.g. Φ−1, the inverse of the standard nor-

mal distribution). For many standard distributions they can be obtained

by using the command ‘q{distribution name}’ in ‘R’; for example for the

normal quantiles use ‘qnorm()’ for the Weibull distribution use ‘qweibull’

etc., or can be obtained by numerical integration or other computer based

calculations. Figure 4.4 shows a Q-Q plot when the data were generated

from a Cauchy distribution with both location and scale parameters equal

to 2 and F0(x) was taken to be the standard Cauchy distribution. Whereas

Figure 4.5 shows a Q-Q plot when the data are from a Normal distribution

with the mean and variance equal to 2 but F0 was taken as the standard

Cauchy distribution. In Figure 4.4, we can see that the points are situated

on a straight line whereas in Figure 4.5 they are not on a straight line.

4.6.2 The log Q-Q Plot

This is a modification of the Q-Q plot. For some positive valued random

variables the distributions of its logarithm belong to a location-scale family.

For example the lognormal or the Weibull distributions have this property.

Therefore, arguing as before, we plot the points
{

log x(i), F
−1
0

(
i− 1

2

n

)}
. For

example, in the Weibull case

F (x) = 1− e−λx
ν

, x > 0.

Hence

F−1(y) =
log[− log(1− y)]− log λ

ν
, 0 < y < 1,

and λ = ν = 1 leads to the standard exponential distributions with distri-

bution function F0(x) = 1− e−x, x > 0 in this family. Hence if we plot the

points (log x(i), log(− log
(

1− i− 1
2

n

)
)) they are expected to lie on a straight

line with slope ν and intercept log λ. Thus the fact that the points look like

being on a straight line will indicate that the distribution is Weibull, and

the slope and intercept leading to preliminary estimation of the parameters.
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Fig. 4.4 Q-Q plot

Figure 4.6 indicates that the data are from a Weibull distribution with 2.4

and −10 as the preliminary estimates of the parameters ν and log λ.

4.6.3 The P-P Plot

The P-P (Probability-probability) plot charts the points (F ∗n(x(j)),

F (x(j), θ̂)) where F is the proposed family of distribution, possibly de-

pendent upon parameter θ. The parameter θ may be estimated by some

method suitable for this family, like the method of maximum likelihood and

the estimate substituted for the true value. As before F ∗n(x(j)) = j−1/2
n .

This plot is restricted to the square (0, 1)×(0, 1) and the points are expected

to lie on the diagonal from (0, 0) to (1, 1) if the model holds.

In Figure 4.7 it will be hard to say that the points do not lie on or near

the diagonal, whereas in Figure 4.8 the plot seems to be concave in nature

rather than the straight line of the diagonal. The shape of the graph of these

points when it is not a straight line also gives some indications regarding
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Fig. 4.5 Another Q-Q plot

the true distribution vis-a-vis the suspected distribution. In particular, if

the graph is concave as in Figure 4.8, it is indicated that rFtrue(x)/rF0
(x)

the ratio of the failure rate of the true distribution with that of the suspected

distribution is increasing. This, in turn, can be interpreted to mean the

data comes from a distribution which is aging faster than the suspected

distribution. These considerations helps us in selecting appropriate models

from the point of view of survival theory.

4.6.4 The T-T-T Plot

The total time on test (T-T-T) plot is very useful for checking adherence

to the exponential model and also departures from it in specific directions

which are of interest in lifetime studies. The basis is the scaled T-T-T
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Fig. 4.6 log Q-Q plot

transform of distribution function defined by

TF (u) =

∫ F−1(u)

0
F (t)dt∫∞

0
F (t)dt

, 0 < u < 1. (4.6.2)

Like other transforms, this is also in 1:1 correspondence with probability

distributions. It is easy to see that for the exponential distribution (F (x) =

e−λx, x > 0, λ > 0) it is the straight line segment (diagonal) joining (0, 0)

with (1, 1). Hence the technique is to define the sample version of the scaled

T-T-T transform as the T-T-T statistic given by
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TFn(i/n) =

∫ F−1
n (i/n)

Fn(t)dt∫∞
0
Fn(t)dt

=

∑i
j=1(n− j + 1)(X(j) −X(j−1))

nX
,

where X is the sample mean and 0 = X(0) ≤ X(1) ≤ . . . ≤ X(n) are

the order statistics of the random sample. The numerator of TFn(i/n) is

the total time on test (or under operation) of all the n items put on test,

simultaneously, up to the i-th failure. Hence the name of the statistic

and the transform. The points
{
i
n , TFn( in )

}
, i = 1, 2, . . . , n are plotted in

the square (0, 1) × (0, 1). If they lie on the diagonal or near it and not

systematically on one side, then the exponential distribution is indicated.
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Fig. 4.8 Another P-P plot

If a systematic pattern, apart from the diagonal, is discernible then certain

alternative models may be more appropriate.

In Figure 4.9 the exponential distribution is indicated, whereas in Fig-

ure 4.10 the jumps in the values of the sample scaled T-T-T transform seem

to become larger and larger indicating a distribution in which failures occur

progressively less frequently in time compared to the exponential distribu-

tion. The dual of the IFR class is the Decreasing Failure Rate (DFR) class

and that of the NBU class is the New Worse than Used (NWU) class. If the

graph appears to be convex then a DFR distribution and if it is only below

the diagonal without being convex then some other NWU distribution is

expected to fit better to the data.
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Fig. 4.9 T-T-T plot
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Fig. 4.10 Another T-T-T plot
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Chapter 5

THE ONE SAMPLE PROBLEM

5.1 Introduction

Let us consider the situation where the same experiment is conducted n

times independently. Thus the random outcomes may be represented by

Y1, Y2, . . . , Yn, a random sample of size n. That is, there is a collection

of n independent and identically distributed random variables with a com-

mon c.d.f. F . We represent the realizations of these random variables by

y1, y2, . . . , yn, which are real numbers. One can answer many questions re-

garding F without knowing the parametric family to which it belongs. For

example, one may want to know whether a given number θ0 is the median

of the distribution, or whether F is a symmetric probability distribution.

One could also test whether a given set of observations constitute a ran-

dom sample. We will take up such one sample problems one by one in this

chapter. In the previous chapter we have already considered the “goodness

of fit problem”, which is also a one sample problem.

5.2 The Sign Test for a Specified Value of the Median

The question of interest here is whether θ0 is the median of a continuous

(or a discrete) distribution F (x), to be answered on the basis of the random

sample Y1, Y2, . . . , Yn obtained from it. The median is defined as the point

θ such that

θ = inf{z : F (z) ≥ 1

2
}.

This definition uniquely defines the median θ and in case F (z) is strictly

monotone in an interval [z1, z2] where F (z1) < 1
2 and F (z2) > 1

2 , then the

solution to F (z) = 1
2 is the median. In such situations we have

P [Y < θ] = P [Y > θ] =
1

2
.

87
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The median is a common and easily understood measure of the location,

or the central tendency of a probability distribution and it always exists.

Let us consider the null hypothesis

H0 : θ = θ0

against the alternative

H1 : θ < θ0, (5.2.1)

where θ0 is a known number. The shift is indicated in Figure 5.1.

Equivalently, by subtracting θ0 from each observation, one could test

H0 : θ = 0 vs H1 : θ < 0.

The Sign statistic is defined as

S− =

n∑
i=1

I[Yi ≤ 0], (5.2.2)

where

I[Yi ≤ 0] =

{
1 if Yi ≤ 0,

0 if Yi > 0.

Thus S− is the number of non positive observations (or negative signs)

in the random sample. Then it is seen that S− has the Binomial distribution

B(n, F (0)) and under H0, F (0) = 1
2 , and under H1, F (0) > 1

2 .

Hence an appropriate test for H0 vs H1 is : Reject H0 if

S− > S1−α,

and the critical point S1−α is the upper α quantile of the B(n, 1
2 ) distri-

bution. It is understood that the Binomial distribution is discrete, hence

it may not be possible to obtain an exact 100α% critical point. But the

distribution quickly tends to the Normal distribution. Under H0,

2√
n

(S− − n

2
)
d→ N(0, 1) as n →∞.

Hence, critical points from the Normal distribution are quite accurate

even for n as small as 20. The power function of the test is given by

PH1(S− > S−1−α), which too can be obtained easily since S−, under H1 will

have B(n, F (0)) distribution and F (0) > 1
2 if θ (< 0) is the true median.

The asymptotic properties too follow similarly. The standardised version

S− − nF (θ)

[nF (θ)(1− F (θ))]
1
2

d→ N(0, 1) as n →∞.
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Fig. 5.1 Densities showing Shift in Median

The standardised version can be evaluated in terms of the values of F (θ)

ranging from 1
2 to 1 under H1.

Example 5.1: A microwave oven is designed to emit a radiation level

of 0.15 through the closed door. The following are the radiation levels of

20 ovens selected at random.

.09, .18, .10, .05, .12, .40, .10, .05, .03, .20,

.08, .10, .30, .20, .02, .01, .10, .08, .16, .11

Does the data support the hypothesis

H0 : F (.15) = .5

against the alternative

H1 : F (.15) < .5?

Since the alternative hypothesis is that the probability of radiation

falling below .15 is less than .5, we should reject H0 when the value of

S− is too small. Here

S− = 14, and
2√
n

(S− − n

2
) = 1.788.

The critical point corresponding to the 5% or any other reasonable level α

value would be negative. The observed value in this case is positive. Hence

H0 is not rejected. The p-value is .96.
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The exact and asymptotic sign test can be implemented in R using the

signmedian.test function in the signmedian.test package.

Comments:

(i) As the example shows the critical region is changed according to the

alternative hypothesis in play.

(ii) The slight modification of the test statistic which counts the number

of observations smaller (or larger) than a value θp, which is the pth

quantile of the distribution, will be appropriate to test H0 : θp = θ0
p. If

S− is the statistic then S− has B(n, p) distribution and asymptotically
S−−np√
np(1−p)

will have standard Normal distribution. The critical region

for a one-sided or a two-sided alternative can be chosen on considera-

tions similar to those discussed above.

5.3 Wilcoxon Signed Rank Test

Again we present a procedure for testing the null hypothesis that the median

of a distribution has the specified value θ0. This time we make a further as-

sumption that the probability distribution is symmetric around its median,

that is, f(θ−x) = f(θ+x), ∀ x. We obtain n independent observations

Y1, Y2, . . . , Yn from this distribution and wish to test H0 : θ = θ0, or equiva-

lently, Xi = Yi−θ0 is a random sample from a symmetric distribution with

0 as the median (or the centre of symmetry). Here we suggest the Wilcoxon

signed rank test. Historically, this one sample procedure came after the cor-

responding two sample Wilcoxon (Mann-Whitney) test discussed in a later

chapter. To compute this test statistic we require two sets of statistics from

the data. First of all

Ψi = I(Xi > 0),

the indicator function of positive (modified) observations and

Ri = Rank of |Xi| among |X1|, |X2|, . . . , |Xn|, i = 1, 2, . . . , n.

Then we calculate

W+ =

n∑
i=1

ΨiRi, (5.3.1)

which gives the sum of the ranks of those observations which were originally

greater than θ0, in the ranking of the absolute value of all the observations,

after subtracting θ0 from each one of them.
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If θ > 0, then one will expect a larger proportion of the observations to

be positive and also these would lie further away from 0 than those with

originally negative signs. Hence for testing H0 : θ = θ0 vs H1 : θ > θ0 one

would use the large values of W+ as the critical region. On the other hand

if the alternative is H1 : θ < θ0, then the natural rejection region will be

small values of W+.

The values of the statistic W+ range from 0 when all Ψi are 0, that

is, all observations are negative to n(n+1)
2 when all Ψi are 1, that is, all

observations are positive. In fact it can be seen that under H0 the vectors

Ψ and R are independent leading to the moment generating function

MW+(t) =
1

2n

n∏
j=1

(1 + etj), (5.3.2)

which by converting it into a probability generating function, can give the

exact null distribution of the statistic W+. It also gives

EH0(W+) =
n(n+ 1)

4
,

V arH0
(W+) =

n(n+ 1)(2n+ 1)

24
. (5.3.3)

The asymptotic distribution of W+, under H0, is Normal, that is,

W+∗ =
W+ − n(n+1)

4√
n(n+1)(2n+1)

24

d→ N(0, 1), as n→∞. (5.3.4)

Thus, for large, or even moderately large sample sizes it is possible to use

the critical points from the standard Normal distribution.

It is possible that the real data exhibit tied observations. Then, we

assign to all the observations in the group the average of the ranks of the

observations in the group. If there are s groups of tied observations with

t1, t2, . . . , ts observation in these groups, then the conditional variance of

the statistic is reduced to

1

24
[n(n+ 1)(2n+ 1)−

s∑
i=1

ti(ti − 1)(ti + 1)].

Replacing the denominator of W+∗ by the square root of this reduced

variance will again lead to a statistic with asymptotically standard Normal

distribution.

Another useful representation of the Wilcoxon signed rank statistic is

W+ =
∑

1≤i≤j≤n

I(Xi +Xj > 0) =
∑

1≤i≤j≤n

Tij (say), (5.3.5)
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where I is the indicator function of the set in the paranthesis. Under the

alternative hypothesis H1 : the distribution of X is not symmetric about

0. This expression enables easy calculation of the mean and the variance

of the statistic W+ under the alternative hypothesis. Let

p1 = P (Xi > 0),

p2 = P (Xi +Xj > 0),

p3 = P (Xi > 0, Xi +Xj > 0),

p4 = P (Xi +Xk > 0, Xi +Xj > 0).

Then, some calculations lead to

E(Tii) = p1, E(Tij) = p2.

Hence

E(W+) = np1 +
n(n− 1)

2
p2.

Besides

V ar(W+) = np1(1− p1) + n(n− 1)(n− 2)(p4 − p2
2)

+
n(n− 1)

2
[p2(1− p1) + 4(p3 − p1p2)]. (5.3.6)

It is seen that under H0,

p1 = p2 =
1

2
, p3 =

3

8
and p4 =

1

3
.

All this can be put together to verify that under H0 the values obtained

earlier in (5.3.3) are also obtained through this general formula also.

Example 5.2: Below are given measurements of paper density

(gms/cubic cm) on 15 samples.

.816 .836 .815 .822 .822 .843 .824 .788

.782 .795 .805 .836 .738 .772 .776

It is expected that above data is a random sample from a symmetric

distribution. The null hypothesis to be tested is

H0 : median = .800.

So we subtract .800 from each observation and rank the absolute values.

We note that several observations are tied together. So we assign the av-

erage rank to all observations in each tied group. The sum of ranks of the

observations which were positive is

1.5 + 4 + 5 + 7.5 + 7.5 + 9.5 + 12.5 + 12.5 + 14 = 74.0.
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Due to the ties the variance is reduced to 1
24 [(15×16×31)−(4×2×1×3)] =

309. The value of the statistic is then

W+∗ =
74.0− 60.0√

309
=

14

17.6
' .795.

Adopting the asymptotic standard Normal distribution, with the alterna-

tive H1 : θ > 0.8, the p-value of the observed statistic is 0.213, which is too

large for rejecting H0. So we do not do so.

In R, the function wilcox.test from the stats package implements the

Wilcoxon signed rank test.

Comments:

(i) A common situation where the testing of θ as the value of the median

of a symmetric distribution arises is the paired data case. Paired data

arises when, among other situations, two measurements are taken on

the same subject, say before and after a treatment is applied. The

subjects could be patients with high fever and the measurements are

made on temperature before and after the administration of a sug-

gested drug. We consider the difference: measurement before the

treatment − measurement after the treatment. The realizations of

the experiment could be observations on a random variable which is

symmetric with median 0 under the null hypothesis of ‘no effect of

drug’. Then one can apply the Wilcoxon signed rank test for testing

this null hypothesis.

(ii) Even if the null hypothesis states that the distribution of the difference

in the paired observations is symmetric about some nonzero value θ0,

the same procedure can be followed by subtracting θ0 from the differ-

ence of observations.

(iii) It should be kept in mind that when rejection occurs, it may be because

(a) the symmetric distribution does not have 0 or θ0 as the centre of

symmetry, or also because

(b) the distribution is not symmetric at all, one tail of the distribution

being heavier than the other.

5.4 Ranked Set Sampling Version of the Sign Test

In section 1.8 we have explained the concept of Ranked Set Sampling (RSS)

methodology and its importance. The importance is mainly due to avail-

ability of auxillary information on experimental units about the relative

ranks of the character in addition to the few order statistics chosen for

actual measurement and further use.
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Thus, k groups of k units are ranked separately and the smallest X(1),

the second smallest X(2), . . . , and the largest X(k) are chosen from the k

groups separately. These are order statistics, but independent since they

are from different groups. This process is repeated m times to yield

X(j)1, X(j)2, . . . , X(j)m, j = 1, 2, . . . , k

which are the independent realizations of all the k independent order statis-

tics. Thus we have finally n = mk observations. This process is adopted

because it is deemed to be difficult to rank k objects (without measuring

the character of interest) for a large or even moderate values of k. Typically

the values of k used are 3, 4, 5. So as not to limit the number of observations

for analysis in this manner, the device of repeating the procedure m times

to make n = mk a reasonably large number of observations.

The observations X(j)i, i = 1, 2, . . . ,m are m independent realizations

of the jth order statistic with c.d.f. F (x− θ). It would have median θ if F

has the median 0.

The sign statistic based on the RSS methodology, as suggested by

[Hettmansperger (1995)] for testing H0 : θ = θ0 is then

S+
RSS =

k∑
j=1

m∑
i=1

I(X(j)i > θ0)

=

k∑
j=1

S+
j ,

where S+
j =

∑m
i=1 I(X(j)i > θ0). It is then noted by [Hettmansperger

(1995)] and by [Koti and Jogesh Babu (1996)] that S+
j are inde-

pendently distributed as Binomial random variables with parameters

(m, 1− I 1
2
(j, k − j + 1)). Here,

Ix(j, k − j + 1) =
1

β(j, k − j + 1)

∫ x

0

uj−1(1− u)k−jdu,

and β(j, k − j + 1) is the above integral from 0 to 1. Hence, under H0,

E(S+
j ) = m(1− I 1

2
(j, k − j + 1)),

E(S+
RSS) =

k∑
j=1

E(S+
j ) =

mk

2
,

V ar(S+
RSS) =

mkλ2
0

4
,
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where

λ2
0 = 1− 4

k

k∑
j=1

(Hj(θ0)− 1

2
)2,

and

Hj(x) =
k!

(j − 1)!(k − j)!

∫ x

−∞
Hj−1(u)(1−H(u))k−jh(u)du.

The c.d.f. H(x) = F (x−θ) and h(x) is its p.d.f under H0. [Hettmansperger

(1995)] has proved that the variance of S+
RSS is smaller than the variance of

S− ( or S+), the sign statistic based on simple random sampling introduced

in Section 2 above. Using the basic non identical but independent Binomial

random variables S+
(i), [Koti and Jogesh Babu (1996)] have obtained the

exact, as well as the asymptotic distributions of S+
RSS under H0. This is

possible since H(θ0) = 1
2 , under H0 and the Binomial distribution has a

known probability of success. The test is to reject H0 : θ = θ0 against

H1 : θ 6= θ0 if

S+
RSS ≥ n− u or S+

RSS ≤ u,

where u is an integer to be read from the tables provided by [Koti and

Jogesh Babu (1996)] such that the probabilities in the tails are as close to
α
2 each for the required value of α.

For example, for k = 3,m = 10 (so that n = 30), the cut off points for

α = .01 (approximately) would be 9 and 21. That is,

PH0 [S+
RSS ≤ 9] = PH0 [S+

RSS ≥ 21] = .005.

Then the standardized version

S+
RSS − EH0

(S+
RSS)√

V arH0
(S+
RSS)

d→ N(0, 1), as n→∞.

The values of λ2
0 are available in Table 5.1 of [Chen et al. (2003)]. For

example, for k = 4 the value of λ2
0 is 0.547. This gives an idea of the

reduction of variance of S+
RSS and the increase in efficiency of the RSS

procedures over the SRS procedures.

5.5 Ranked Set Sampling Version of the Wilcoxon Signed

Rank Test

Next we define the Wilcoxon signed rank statistic based on ranked set

sampling (RSS) data. As already specified X(j)i, i = 1, 2, . . . ,m are m in-

dependent realizations of the jth order statistic distribution j = 1, 2, . . . , k,
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km = n. Define

W+
RSS =

∑
(r1,i1)

∑
(r1,i1)

I(
X(r1)i1 +X(r2)i2

2
> 0), (5.5.1)

where the summation is over 1 to k for r1 and r2 and over 1 to m for i1
and i2, subject to either i1 < i2 or r1 ≤ r2 if i1 = i2. This statistic is also

suggested for testing the H0 : θ = 0, where θ is the centre of symmetry of a

continuous symmetric distribution F (x, θ). The expectation and variance

of W+
RSS under H0 can be obtained through the distribution and probability

density functions of uniform order statistics. It can be verified that

EH0
(W+

RSS) =
n(n+ 1)

4
,

where n = mk, which is the same as the expression for EH0(W+
SRS). The

variance calculations, even under the null hypothesis are more involved.

The details are given in [Chen et al. (2003)]. It is shown there that the

leading term in the expression of variance under H0 is n3

6(k+1) . Hence using

the central limit theorem, it is seen that,

n−
3
2 [W+

RSS −
n(n+ 1)

4
]
d→ N(0,

1

6(k + 1)
) as n→∞. (5.5.2)

Thus the test, for moderately large n, can be carried out based on the

above normalized version of the statistic by using the critical points from

the standard Normal distribution.

It should be noted that the gain in the efficiency of the RSS procedure

over the SRS procedure is of the order k+1
2 as that is the ratio of the two

asymptotic variances.

5.6 Tests for Randomness

The assumption regarding the data X1, X2, . . . , Xn collected from a prob-

ability distribution F (x) is that it is a random sample, which means that

these are identically distributed and independent random variables. The

test procedures in the earlier sections of this chapter do not question any

part of this assumption. Now we consider testing the hypothesis of random-

ness. To simplify the situation, let us assume that the population consists

of only two types of symbols, say {H,T} or {M,F}, etc. Consider the

following three sequences of outcomes of size 10 consisting of 5 symbols of

each type.

(i) {H T H T H T H T H T},
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(ii) {H H H H H T T T T T},
(iii) {H T T H T H H H T T}.

The first and the second sequences do not appear to be random as in

(i) the symbols H and T alternate and in (ii) the symbols H precede the

T ′s. Whereas the third outcome appears to be random more readily. The

sequences of two types of symbols may be generated by a random sample

from a distribution. Record + for those greater than the sample median

(or some other landmark) and − for those below the sample median. In

fact, in more involved circumstances one may have three or more types of

symbols as well, for example, the roll of a dice gives 6 possible outcomes.

A Run is defined to be a sequence of symbols of the same type preceeded

and succeeded by symbols of another type or no symbol at all.

Since lack of randomness is indicated by some pattern in the arrange-

ment of the two types of symbols, one could count R the number of runs

of like symbols in the sequence to test the null hypothesis that there is

randomness. Let there be n symbols corresponding to the n observations

in the random sample and let n1 and n2 be the number of symbols of Type

I and Type II, respectively. Let

R1 = be the number of runs of Type I

R2 = be the number of runs of Type II .

Then, R, the number of runs is given by

R = R1 +R2.

In the 3 sequences given above, the realizations of (R1, R2) are (5, 5), (1, 1)

and (3, 3), respectively. R takes the values 10, 2 and 6, respectively. It

should be noted that, in general, r2 = r1 − 1, r1, r1 + 1, only.

First we take an approach conditional on a given number of symbols of

the two types, viz, n1 and n2. Let n = n1 + n2. We assume that all the(
n
n1

)
possible arrangements of the two types of symbols are equally likely to

occur under the null hypothesis of randomness. So to find the probability

distribution of (R1, R2) the number of runs of the two types, we must count

the number of arrangements that lead to the various values of (R1, R2).

The number of distinguishable ways of distributing n items into r dis-

tinct groups is the same as the total number of ways of putting up r − 1

barriers in one of the n− 1 available distinct places for such barriers. This

can be achieved by choosing (r − 1) of (n − 1) places without repetition,

which can be done in
(
n−1
r−1

)
ways. Hence one can arrange n1 symbols of the

first kind and n2 symbols of the second kind in r1 and r2 distinct runs in
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(
n1−1
r1−1

)(
n2−1
r2−1

)
ways. However, r1 can either be r2 − 1, r2, r2 + 1. If it is r2

then one can do so in twice as many ways starting with either of the two

types. Hence,

PH0
[R1 = r1, R2 = r2] = c

(
n1−1
r1−1

)(
n2−1
r2−1

)(
n
n1

) ,

where,

c = 2 if r1 = r2,

= 1 if r1 = r2 − 1 or r2 + 1.

The above joint distribution leads to the distribution of R = R1 +R2, the

total number of runs, by summing over the probabilities of the relevant

sets. Then for r = 2, 3, . . . , n we have

PH0
[R = r] =


2

(n1−1
r
2
−1 )(n2−1

r
2
−1 )

( nn1
)

if r is even,

(
n1−1
r−1
2

)(
n2−1
r−3
2

)+(
n1−1
r−3
2

)(
n2−1
r−1
2

)

( nn1
)

if r is odd.

The exact distribution of R given above may be used to calculate

EH0
(R) and V arH0

(R). But this is tedious. A simpler way for the same is

discussed below.

Let us impose the sequence Y1, Y2, . . . , Yn on the sequence of two types

of symbols as follows

Y1 = 1,

Yi =

{
1, if the ith element is different from the (i− 1)th element

0, if they are identical,

for i = 2, 3, . . . , n. Then, it is obvious that

R =

n∑
i=1

Yi = 1 +

n∑
i=2

Yi.

Then, marginally, Yi is a Bernoulli random variable with

E(Yi) = P (Yi = 1) =
n1n2(
n
2

) , i = 2, 3, . . . , n.

This quickly gives

EH0
(R) = 1 +

(n− 1)n1n2(
n
2

) = 1 +
2n1n2

n
.
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Since, Y1, Y2, . . . , Yn are not independent, the calculation of V arH0(R) is a

little more complicated. But it can be seen that

V arH0(R) =
2n1n2(2n1n2 − n1 − n2)

n2(n− 1)
.

If we let λ = limn→∞
n1

n , then [Wald and Wolfowitz (1940)] have proved

that under H0,

R∗ =
R− 2nλ(1− λ)

2λ(1− λ)
√
n

d→ N(0, 1) as n→∞.

Thus, the test of H0 would be to reject if R∗ > z1−α2 or R∗ < zα
2

where z(.) denotes the quantile of the specified order of the standard Normal

distribution, provided n is large.

The probability of rejection under the alternative of lack of randomness

tends to 1, thus showing that the test based on R is consistent.

Comments:

As alluded above, the two types of objects to be arranged in a sequence

can arise in many ways indicated below:

(i) outcomes from a sample space with only two points,

(ii) if X is a random variable with median 0, then positive and negative

observations,

(iii) if X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are random samples from distri-

butions F (x) and G(x) respectively, then rank all of these in increasing

order. The X ′s and Y ′s in this order form the runs of the two types

of objects.

Example 5.3: Let following be the sequence of genders of people wait-

ing in a queue to purchase movie tickets:

MFMFMFFFMFMFMFMMMMFMFFMFF.

Here n = 25, n1 = 12, n2 = 13, R = 18, R∗ = 1.852. The value of R∗ is

greater than the 10% two-sided critical value or one sided 5% critical value

of 1.65 from the standard Normal distribution. Hence we can conclude

that there is some mild evidence against the null hypothesis that males and

females take their place at random in the queue.

In R, the function runs.test from the tseries package can be used to

implement this test for randomness.

In this section we have discussed the test based on R, the total number

of runs. One may also base tests on (i) the length of the longest run and (ii)
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the runs up and down, if the sequence consists of real valued observations,

or similar information in case the sequence consists of ordinal values. We

do not discuss these statistics here.

After the development of the distribution theory of the run statistics

under H0 by Wald and Wolfowitz in the forties of the last century, there

was considerable work on investigating power properties of these tests for

certain alternatives describing dependence such as Markov dependence by

[David (1947)] and [Bateman (1948)]. We refer the interested readers to

these papers. [Wald and Wolfowitz (1940)] and [Blum et al. (1957)] have

established the consistency of the test for the alternative hypothesis F (x) 6=
G(x) for some x, where F and G also satisfy a specific condition (called

condition t).

5.7 Nonparametric Confidence Interval for the Median of

a Symmetric Distribution Based on the Signed Rank

Statistic

Let the data be Y1, Y2, . . . , Yn. To test the H0 : median = 0 against

H1 : median 6= 0 we use the signed rank statistic W+ given in (5.3.1). The

critical region is |W+| > wα, where wα is the appropriate critical point.

The statistic W+ can also be developed as below.

Let
Xi+Xj

2 , i ≤ j be the m = n(n+1)
2 pairwise averages. These are

called Walsh averages. The median of these m averages is a point estimate

of the population median (or the centre of symmetry). By subtracting this

median from each of the observation makes the value of W+ as close to its

null expectation n(n+1)
4 as possible. Let

uα =
n(n+ 1)

2
+ 1− wα

2
,

where wα
2

is the upper α
2 th quantile of the null distribution of W+.

Now consider the points θL and θU from the ranked Walsh averages

where θL is the uαth ordered Walsh average and θU is the (m+ 1− uα)th

ordered Walsh average. Then if θ is the centre of symmetry (median) of

the distribution, then

1− α = P (θL < θ < θU ) (5.7.1)

for all θ and for all continuous distributions.

The null distribution of W+ and the program for the computations

required for the test statistic, the point estimate and the confidence interval

are available in the R functions wilcox.test and psignrank in the package

stats.
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5.8 Exercises

(1) Suppose the data are:

0.848, 0.413, 1.058, 0.858, 0.350, 1.582, 0.372,

0.566, 1.097, 0.939, 0.761, 0.864, 0.712, 0.264,

0.138, 1.124, 0.383, 1.194, 2.072, 0.690.

Use the sign test and the Wilcoxon signed rank test to test the null

hypothesis H0 : median = 1 versus the alternative H1 : median < 1.

(The data are observations from the Weibull distribution with shape

parameter 2 and the scale parameter 1. Thus the true median is 0.833.)

(2) Students in a class were divided in two batches of 10. One batch was

given a quiz in the morning before their lectures and the same quiz was

given to the other batch in the afternoon after their lectures. The quiz

scores out of 10 are given below.

Morning batch scores Afternoon batch scores

6, 5, 8.5, 7, 6, 2.5, 10, 10, 4.5, 5.5,

9, 5, 5, 10, 8.5 7, 6, 8, 9.5, 6.5.

Use the run test to determine whether the time of the quiz has an effect

on the scores.

(3) Show that the statistic W+ can be written as a linear combination of

two U-statistics.

(4) Prove that W+ =
∑n
i=1 ΨiRi and

∑n
i=1(1−Ψi)Ri are identically dis-

tributed under the null hypothesis.

(5) Prove that the one sided test based on S− is unbiased.
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Chapter 6

OPTIMAL NONPARAMETRIC
TESTS

6.1 Introduction

Let us say that the data X1, X2, . . . , Xn is a random sample or a collection

of independent and identically distributed random variables from the con-

tinuous distribution function F . This may be stated as the following null

hypothesis

H0 : X1, X2, . . . , Xn are i.i.d. random variables with a continuous

c.d.f F (x) and p.d.f f(x). (6.1.1)

In Chapter 2 we have introduced order statistics X(1), X(2), . . . , X(n) of

a random sample X1, X2, . . . , Xn. Let Xi be the rith order statistic, that is,

the ith observation happens to be the rith ordered observation. We denote

the event

{Xi ≡ X(ri)} as {Ri = ri},

that is, Ri being called the (random) rank of the ith observation and ri is

its realization in the random sample.

The vector R = (R1, R2, . . . , Rn)′ is called the rank vector of the ran-

dom sample. It takes n! values r which are the n! permutations of the

vector {1, 2, . . . , n}. Let X(.) = (X(1), X(2), . . . , X(n)) be the vector of or-

der statistics. Then, X(.), the vector of the order statistics and R, the

vector of ranks are sufficient to rebuild the sample.

Further, if X(i), the ith order statistic is actually Xti the tthi observa-

tion in the random sample, then we define ti to be the antirank of the

order statistic X(i). The vector t = (t1, t2, . . . , tn)′ and the vector of ranks

r = (r1, r2, . . . , rn)′ are in 1:1 correspondence. Hence the probability dis-

tribution of R and T will provide the same probabilities for n! sets in their

sample spaces, although numbered differently.

103
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Under H0

P (R = r) =

∫
. . .

∫
−∞<xt1<...<xtn<∞

n∏
i=1

f(xi)dxi,

=
1

n!
,

by applying the probability integral transformation Y = F (X) and inte-

grating over all the variables successively.

Thus, we have seen that all the n! rank sets {R = r} where r is any one of

the vectors generated by the permutation of {1, 2, . . . , n}, have probability
1
n! . A union of k such sets where α ' k

n! will provide a critical region with

size α approximately. The question about which set should form this union

will be answered by the probability of these sets under the alternative to

the above H0 that we have in mind. Under an alternative hypothesis, that

is, when the n random variables do not have the same distribution (without

giving up independence at the moment), the probabilities of n! rank sets are

expected to be unequal. We then choose k of these sets to form the critical

region which have the largest probabilities giving us the Most Powerful

Rank test. Of course there are two major difficulties here. Firstly, the

alternative hypothesis may not be known so precisely. Secondly, even if

known, it would be a very difficult and time consuming task to calculate

the n! probabilities and then sort them in a decreasing order. However, in

next section we discuss how to derive such tests.

6.2 Most Powerful Rank Tests Against a Simple

Alternative

Consider the following simple alternative hypothesis

H1 : X1, X2, . . . , Xn are independent random variables with Xi

having a continuous c.d.f. Fi and p.d.f. fi, respectively.

Then, one may write the probability of a typical rank set

PH1(R = r) = PH1 [R1 = r1, R2 = r2, . . . , Rn = rn]

=

∫
. . .

∫ n∏
i=1

fi(xi)dxi, (6.2.1)

where the integration is over the region −∞ < xi1 < xi2 < . . . < xin < ∞
such that Xi has rank ri, that is, xi occupies the rthi place in the above

order, i = 1, 2, . . . , n.
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The integral may be rewritten as

PH1
(R = r) =

n!

n!

∫
. . .

∫
r

∏n
i=1 fri(xri)∏n
i=1 f(xi)

n∏
i=1

f(xi)dxi,

=
1

n!
E[

n∏
i=1

fri(X(ri))

f(X(i))
], (6.2.2)

where the expectation E is with respect to the joint distribution of the

order statistics X(1), X(2), . . . , X(n) of a random sample from F (x). This is

Hoeffding’s formula, [Hoeffding (1951)] which may sometimes be useful.

The MP rank test for H0 against this H1 is then:

Reject H0 whenever PH1(R = r) ≥ cα, (6.2.3)

where cα is the critical point such that k ' αn! of the values of

PH1(R = r) are larger than cα and the remainng (n!−k) values are smaller,

thus simultaneously ensuring that the size of the test is α and the power is

maximized. This formulation may be regarded as the marginal version of

the Neyman-Pearson lemma for rank tests. It brings out the dependence of

the MP test on the (integrated) likelihood ratio of the order statistics. All

the same, one must acknowledge that barring exceptional circumstances,

such precise knowledge of the distribution under the alternative is not

available.

In the parametric setup the probability distributions are within a family

and characterized by the value of a real or a vector parameter. There is

a popular nonparametric description of departure from the null hypothesis

which may adequately describe the experimental situation. The so called

Lehmann alternatives first introduced in (1953) say that

H1 : Xi ∼ F∆i ,

where ∆1,∆2, . . . ,∆n are positive constants, but not all equal. Similarly,

the Cox proportional hazards model [Cox (1972)] specified the alternative

H1 : Xi ∼ 1− (1− F )∆i ,

using one of these in the above formula makes PH1
(R = r) free of basic

distribution F and depend only on the constants ∆1,∆2, . . . ,∆n. Thus

these alternatives are called semiparametric. Physically, if ∆i is a positive

integer, then F∆i and 1 − (1 − F )∆i represent the distributions of the

maximum and the minimum of ∆i i.i.d. random variables with common

distribution function F . Besides the second representation describes the

proportional hazards model propogated by Cox. Probabilistically these
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provide families of stochastically monotonically increasing (or decreasing)

distributions as ∆i’s change. The probabilities of the rank orders will not

depend on F but only on the ∆i’s.

Let the order statistics of the random sample X1, X2, . . . , Xn be Xi1 <

Xi2 < . . . < Xin where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n).

Then, the vector (i1, i2, . . . , in) is called the vector of antiranks of the ran-

dom sample, meaning that Xi1 has rank 1, Xi2 has rank 2, . . . , Xin has

rank n. There is a 1-1 correspondence between the rank vectors and the

antirank vectors. [Savage (1956)] has obtained the probabilities of these n!

vectors of antiranks. Since there is 1:1 connection between the vector of

ranks and antiranks, these are also the probabilities of the rank vectors.

PH1
(R = r) = PH1(Xi1 < Xi2 < . . . < Xin)

=

∏n
i=1 ∆i∏n

k=1(
∑k
j=1 ∆ij )

, (6.2.4)

where (i1, i2, . . . , in) is the vector of antiranks corresponding to the rank

vector r.

Apart from the Lehmann alternatives it is almost impossible to obtain

the probabilities of the rank orders, thus preventing us from deriving useful

most powerful rank tests. Also it is only seldom that we will know the exact

probability distribution for which we need the rank order probabilities.

6.3 Locally Most Powerful (LMP) Rank Tests

Let the random sampleX1, X2, . . . , Xn have a joint pdf f(x1, x2, . . . , xn,∆),

where ∆ is a real valued parameter. It could be the familiar location/scale

or some other parameter. What we require is that it should distinguish

between the null and the alternative hypotheses in the following manner

H0 : ∆ = 0 and H1 : ∆ > 0.

We assume that the null hypothesis H0, that is, ∆ = 0 implies that

X1, X2, . . . , Xn are i.i.d. random variables from a continuous distribution

and the alternative hypothesis H1 (∆ > 0 ) excludes this case. For example,

one may have

f(x1, x2, . . . , xn,∆) =
n∏
i=1

f(xi, ci∆), ci 6= 0 ∀ i.

Thus, ∆ = 0 leads to
∏n
i=1 f(xi, 0), the joint distribution of i.i.d. ran-

dom variables and ∆ 6= 0 gives independent but not identically distributed

random variables.
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As mentioned earlier, it would be difficult to obtain the probability for

value of ∆ 6= 0. In this situation we note that, by Taylor expansion

P∆(R = r) =
1

n!
+ ∆

∂

∂∆
P∆(R = r)|∆=0 + o(∆)

=
1

n!
+ ∆T (r) + o(∆), (6.3.1)

where the statistic T (r) = ∂
∂∆P∆(R = r)|∆=0 6= 0. So for small values of

∆ (> 0), that is, for alternatives near to the null hypothesis, one can say

approximately that

P∆(R = r) > cα

is the same as

T (r) > kα,

for appropriate kα. T (r) is essentially the slope of the power as a function

of ∆ at ∆ = 0. Hence the test would be size α test which maximizes

the slope of the power function at ∆ = 0. This is the generally accepted

concept of a locally most powerful test; a LMP rank test in our context.

We shall see that T (r) is very often a manageable function of r and

simple tests emerge of this approach. Using (6.2.2) we can write

T (r) =
∂

∂∆
E[

n∏
i=1

f(X(ri),∆)

f(X(i))
], (6.3.2)

evaluated at ∆ = 0. We see that this is a linear rank statistic of the form

T (r) =

n∑
i=1

g(ri), (6.3.3)

where g(ri) is a function of ri, the rank of the ith observation alone.

6.4 Rank Statistics and Its Null Distribution

It is clear that R, the vector of rank statistics, provides a very natural

base for the construction of nonparametric methodology. The probability

integral transformation Y = F (X), where F is the c.d.f. of X leads to

the easy calculation of probabilities of the rank set, that is, the probability

distribution of R under the null hypothesis of X1, X2, . . . , Xn being i.i.d.

continous random variables.

Later we will see that many of the important rank test statistics turn

out to be of the form

T (r) =

n∑
i=1

cia(Ri). (6.4.1)
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This notation is originally from [Hájek and Šidák (1967)]. The c′is are

called regression constants and a(Ri)
′s are called scores based on rank Ri,

of Xi i = 1, 2, . . . , n in the random sample.

Theorem 6.1. Under H0 of section 6.1:

E(S) = nc̄ā

V ar(S) =
1

n− 1
[

n∑
i=1

(ci − c̄)2
n∑
i=1

(ai − ā)2], (6.4.2)

where ā = 1
nai, c̄ = 1

nci.

Proof: The proof of the expectation follows from the fact that

E(S) =

n∑
i=1

ciE(a(Ri))

and a(Ri) has the discrete uniform distribution over (a1, a2, . . . , an), due

to the fact that

P (Ri = k) =
{number of permutations in which Ri = k}

{Total number of permutations}

=
(n− 1)!

n!
=

1

n
.

Then

V (S) =

n∑
i=1

c2iV (a(Ri)) + 2
∑

1≤i<j≤n

cicjCov(a(Ri), a(Rj)). (6.4.3)

Due to discrete uniform distribution of Rj over {1, 2, . . . , n} we can obtain

V ar(a(Ri)) =
1

n

n∑
i=1

(a(i)− ā)2,

and

Cov(a(Ri), a(Rj))) = − 1

n(n− 1)

n∑
i=1

(a(i)− ā)2.

Substituting these in (6.4.3) and a little rearrangement gives the variance

formula of the theorem.

Although the terms in the sum of the linear rank statistic are not

independent, the standardized version of the statistic has asymptotically

a standard normal distribution under any one of the following condi-

tions. The conditions are on both the regression constants and the scores.

They are
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(i) Noethers’s condition:∑n
i=1(cni − c̄n)2

max1≤i≤n(cni − c̄n)2
→∞ as n→∞.

Here the constants are dependent on n, the number of observations and

the condition essentially says that no individual constant should be too

far away (dominate) from the mean.

(ii) Hajek’s condition:

Let us assume that the scores a(i)′s are generated by function Φ(u),

0 < u < 1, that is,

an(i) = Φ(
1

n+ 1
), i = 1, 2, . . . , n.

Then, the condition says that the Φ(u) is a square integrable score

function, that is,

0 <

∫ 1

0

(Φ(u)− Φ̄)2du <∞,

where Φ̄ =
∫ 1

0
Φ(u)dy.

Theorem 6.2. Let Tn(R) =
∑n
i=1 cnian(Ri) be a linear rank statis-

tic where the constant c′s and the score a′s satisfy one of the above two

conditions. Then

T ∗n(R) =
Tn(R)− ETn(R)√

V (Tn(R))

d→ N(0, 1) as n→∞.

Proof: The proof depends on an intermediate lemma which proves

the asymptotic normality of the standardized version of the statistic∑n
i=1 cniani(Ui) where U1, U2, . . . , Un are i.i.d. uniform (0,1) random vari-

ables. Then the next stage is to prove that T ∗n(R) and T ∗n(U) have asymp-

totically the same distribution. For details see [Hájek and Šidák (1967)],

[Randles and Wolfe (1979)], etc.

As indicated at various places above, this proof depends upon the dis-

crete uniform distribution of R which holds under the null hypothesis of this

chapter. It is also noted that the discrete uniform distribution of R over the

n! permutations of {1, 2, . . . , n} holds under the more general continuous

exchangeable joint distribution for (X1, X2, . . . , Xn).

We shall point out in subsequent chapters that the popular Wilcoxon-

Mann-Whitney, Fisher-Yates-Terry-Hoeffding normal scores test and many

other tests use constants and scores corresponding to the LMP rank tests

in certain cases and which also satisfy the conditions (i) and (ii) and have

asymptotically normal distributions under the null hypothesis.
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6.5 Exercises

1. Let X1, X2, . . . , Xn be i.i.d. random variables from a continuous distri-

bution F (x) and Y1, Y2, . . . , Ym from F (x − θ), θ > 0. Find the scores for

the Locally Most Powerful Rank test when

(i) X has standard Normal distribution,

(ii) X has standard logistic distribution.

2. Let X1, X2, . . . , Xn be i.i.d. random variables from a continuous

distribution F (xθ), θ > 1 and Y1, Y2, . . . , Ym from F (x). Find the scores

for the Locally Most Powerful Rank test when

(i) X has standard Normal distribution,

(ii) X has standard exponential distribution.
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Chapter 7

THE TWO SAMPLE PROBLEM

7.1 Introduction

Historically, after the chi-square goodness of fit test and Spearman’s rank

correlation discussed in Chapters 4 and 9, respectively, the two sam-

ple Wilcoxon-Mann-Whitney test [Wilcoxon (1945)], [Mann and Whitney

(1947)] was the major contribution to nonparametric methods.

Let us describe the two sample problem first. The data consists of

X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

, two independent random samples from

probability distributions F (x) and G(x), respectively. The null hypothesis

to be tested is

H0 : F (x) = G(x) ∀ x. (7.1.1)

Thus, under the null hypothesis, all the n = n1+n2 observations come from

the common distribution, say, F (x) and form a random sample of size n

from it. We further assume that F (x) and G(x) are continuous cumulative

distribution functions. This is a direct extension of the field of applicability

of the two sample t-test. The t-test is used for comparing the Normal

probability distributions with different means and with the same variance.

Now we do not restrict to the normal distribution family.

Under the null hypothesis all the n observations constitute a random

sample, the theory of Optimal Rank Tests developed in Chapter 6 applies

readily here. Let us take up tests appropriate for the various two sample

alternative hypothesis - location and scale one by one. Two sample test for

goodness of fit is also discussed.

111
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7.2 The Location Problem

Recall that the two sample t-test is meant to detect the difference in means

(locations) of two normal distributions. Without assuming normality let us

set up this problem as

H0 : F (x) = G(x) ∀ x,

vs

H1 : F (x) = G(x−∆) ∀ x, ∆ ≥ 0. (7.2.1)

If the densities corresponding to F (x) and G(x) exist then the following

Figure 7.1 would indicate the situation under H1.
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Fig. 7.1 Densities with Location Shift

It is indicated that the densities differ only in their location parameters

and will be identical if ∆ = 0. We use expression (6.3.2) to derive the

statistic on which the locally most powerful rank test would be used. The

approach of LMP rank tests allows us to derive tests which are appropriate

in the two sample location case for certain known families.



October 2, 2017 15:46 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 113

THE TWO SAMPLE PROBLEM 113

We see that for a rank order r = (r1, r2, . . . , rn),

P∆(R = r) = n1!n2!

∫
· · ·
∫
R=r

f(wi −∆ci)dwi, (7.2.2)

where ci = 0 for the first sample and ci = 1 for the second sample. Then,

under regularity conditions which allow interchange of the integration and

the limit (as ∆→ 0) operations, we obtain

T (R) =

n∑
i=1

ciE(
−f ′(wi)
f(wi)

)

=

n1+n2∑
i=n1+1

E[
−f ′(w(Ri))

f(w(Ri))
], (7.2.3)

as given in (6.3.2) where Rn1+1, Rn1+2, . . . , Rn1+n2
are the ranks of the sec-

ond sample in the combined order and w(1), w(2), . . . , w(n1+n2) are the order

statistics corresponding to the combined random sample. The expectations

of the ratio, called scores, can be easily calculated for many distributions.

For details of these derivations refer to [Hájek and Šidák (1967)] or [Govin-

darajulu (2007)].

Two common and classic nonparametric tests are seen to be LMP rank

tests through this approach.

7.2.1 The Wilcoxon Rank Sum Test

Suppose that we wish to derive the LMP rank test for the logistic distribu-

tion. Then

f(x) = (1 + e−x)−2.

This can also be expressed as

f(x) = F (x)(1− F (x)).

This enables us to explicitly calculate

−f ′(x)

f(x)
= (2F (x)− 1).

Then T (R) is a linear function of

W =

n2∑
j=1

Rn1+j , (7.2.4)

the rank sum of the second random sample. Besides being the LMP rank

test for the logistic distribution, the Wilcoxon test has a very high asymp-

totic relative efficiency (ARE) of 0.95 against the two sample t-test for the
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Normal distribution. It is obvious that it is very simple to apply. Its mean

and variance under the null hypothesis can be obtained from Theorem 6.1

as

EH0
(W ) =

n2(n+ 1)

2
,

V arH0
(W ) =

n1n2(n+ 1)

12
. (7.2.5)

If there are ties in the observations, say in k groups with t1, t2, . . . , tk
observations in each group, then assigning the midrank to each of the ob-

servations in the tied group reduces the variance to

V arH0,T (W ) =
n1n2(n+ 1)

12
−
n1n2

∑k
i=1 ti(t

2
i − 1)

12n(n− 1)
.

Further Theorem 6.2 assures that under H0,

W ∗ =
W − EH0(W )√
V arH0(W )

d→ N(0, 1) as n→∞.

This allows the use of the standard normal tables for the choice of critical

points when sample size is large

7.2.2 The Mann-Whitney Test

The Wilcoxon rank sum statistic W given in (7.2.4) is linearly related to

the Mann-Whitney statistic U defined as

U =

n1∑
i=1

n2∑
j=1

I(Xi ≤ Yj), (7.2.6)

where I is the indicator function of the event.

It is readily seen that

U =

n2∑
j=1

(Rj −mj), (7.2.7)

where Rj is the rank of Yj (j = 1, 2, . . . , n2) and mj is the number of

observations from the Y -sample which are less than or equal to Yj . Hence

Rj − mj is the number of pairs (Xi, Yj) in which the X observation is

smaller than the Y observation, and their sum is the sum of the indicator

function of all such events. Therefore,

U = W −
n2∑
j=1

j = W − n2(n2 + 1)

2
. (7.2.8)

Hence the formula for the mean and variance of U can be derived from

those of W and the asymptotic normality of U too follows.
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7.2.3 Comments

(i) Although we have described the Wilcoxon-Mann-Whitney test as the

LMP rank test for the logistic distribution, it should be understood

that it predates the development of LMP rank tests. One of the moti-

vations was to seek tests for the alternative of ‘stochastic dominance’.

Let

H0 : F (x) = G(x) ∀ x

vs

H1 : F (x) ≥ G(x) ∀ x,

with a strict inequality holding for some x. The random variable Y is

said to stochastically dominate the random variable X. We illustrate

the alternative hypothesis in Figure 7.2 below.
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Fig. 7.2 Stochastic Dominance
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The alternative hypothesis says that F (x) ≥ G(x) ∀ x, or the proba-

bility that the random variable X is less than or equal to x is larger

than the probability that the random variable Y is less than or equal

to the same number x, for every x. Or the random variable Y tends to

take a larger value with a larger probability than the random variable

X. This is a larger class of hypothesis than the location alternative

hypothesis. It is seen that

PH1 [X ≤ Y ] =

∫ ∞
−∞

F (y)dG(y)

≥
∫ ∞
−∞

G(y)dG(y)

=
1

2
= PH0

[X ≤ Y ].

(ii) We see that

E(
U

n1n2
) = E(I(Xi ≤ Yj))

= P (X ≤ Y ).

Hence U is able to discriminate between the H0 and the extended

alternative H1 of stochastic dominance. This heuristic observation

provides a justification for the use of the Mann-Whitney U test (and

equivalently for the Wilcoxon W test) for this testing problem, apart

from it being the LMP rank test for the Logistic distribution.

(iii) Essentially, it is being argued that observations coming from a distri-

bution with large mean, or one which leads to larger observations with

a large probability will yield observations with larger ranks. Hence

large values of the sum of ranks of these observations support the al-

ternative hypothesis. The theory of rank tests of Chapter 6 provides

the null distribution of the test statistic which is entirely distribution

free for continuous random variables.

7.3 Two Other Tests

In Chapter 6 it was noted that many of the important rank test statistics

turn out to be of the form

T (R) =

n∑
i=1

cia(Ri), (7.3.1)
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where

ci =

{
0 for i = 1, 2, . . . , n1,

1 for i = n1 + 1, n1 + 2, . . . , n1 + n2.

Thus, T (R) represents the sum of scores corresponding to the second sample

observations. In the Wilcoxon test described in section (7.2) the ranks are

the scores. Expression (6.3.2) gives the scores for the LMP rank tests for

different distributions.

Here we describe two more systems of scores which have been suggested

in the literature and are used in practice.

(i) The scores proposed by Fisher-Yates-Terry [Terry (1952)] and [Hoeffd-

ing (1951)] are the expected values of the normal order statistics,

a(i) = E(V(i)), (7.3.2)

where V(i) is the ith order statistic of a random sample of size n from

the N(0, 1) distribution. These arise as the appropriate scores for the

LMP rank test for the normal distribution.

Thus the statistic is

C1 =

n∑
i=1

ciE(V(Ri)), (7.3.3)

with ci = 0 for the X observations and 1 for the Y observations. Ef-

fectively, it is the sum of the expectations of normal order statistics

corresponding to those order statistics in the combined order, which

correspond to the second random sample. These expected order statis-

tics, not being scores as simple as the ranks themselves, need to be

tabulated for various n, or their computation needs to be included in

the software to be used for calculating the statistics C1 and carrying

out the test based on this set.

(ii) The second system of scores is proposed by Van der Waerden and is

a(i) = Φ−1(
i

n+ 1
), (7.3.4)

where Φ is the cumulative distribution function corresponding to the

standard normal distribution. These scores are the asymptotic ex-

pectation of the order statistics used as scores in Fisher-Yates-Terry-

Hoeffding test statistics given in (7.3.2). The test statistic is once

more

V2 =

n∑
i=1

ciΦ
−1(

Ri
n+ 1

),
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with ci being indicators of the second sample observations as before.

The values of the scores are more easily available than the normal

scores suggested by Fisher et al. But the null mean and variance of

both these statistics C1 and V2 is a bit more complicated to compute

than that of the Wilcoxon statistics (7.2.4).

The general theory of rank tests ensures that as n → ∞

C1 − EH0(C1)√
V arH0

(C1)
and

V2 − EH0(V2)√
V arH0

(V2)
,

are asymptotically normally distributed with mean 0 and variance 1. This

allows us to use the standard normal distribution tables for obtaining the

critical points for the tests. These are expected to be quite accurate for

even moderately large sample sizes.

The null variances of the two test statistics are

V arH0
(C1) =

n1n2

(n1 + n2)(n1 + n2 − 1)

n1+n2∑
i=1

[E(X(i))]
2,

and

V arH0
(V2) =

n1n2

(n1 + n2)(n1 + n2 − 1)

n1+n2∑
i=1

[Φ−1(
i

n1 + n2 + 1
)]2.

Let

limn1,n2→∞
n1

n
= λ (0 < λ < 1).

Asymptotically, V arH0
(n

1
2C1) as well as V arH0

(n
1
2V2) are equal to

λ(1− λ)

∫ 1

0

[Φ−1(u)]2du = λ(1− λ),

since Φ(x) is the standard normal distribution function.

All the above tests are easy to apply, there may be some difficulty in

obtaining the values of E(X(i)), i = 1, 2, . . . , n. So we demonstrate the use

of Van der Waerden statistic.

Example 7.1: Let the data be such that n1 = 10, n2 = 5 and 2, 5, 6, 8

and 9 are the ranks of the observations from the second random sample.

Then we need the value of Φ−1( i
16 ) for these 5 choices of i to calculate the

value of the test statistic and for all i = 1, 2, . . . , n for its variance. Note

that Φ−1( i
n+1 ) = −Φ−1(1− i

n+1 ) because of the symmetry of the standard

normal distribution.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 119

THE TWO SAMPLE PROBLEM 119

Table 7.1 - Calculation of Van der Waerden statistic

i Φ−1( i
16 ) i Φ−1( i

16 )

1 -1.534 9 .157

2 -1.150 10 .318

3 -.8871 11 .488

4 -.674 12 .674

5 -.488 13 .887

6 -.318 14 1.150

7 -157 15 1.534

8 0

V2 = −1.799 and the exact variance, under H0, is 2.514, giving us the

standardized value of V ∗2 = −1.799√
2.514

= −1.134. This value is well within

the acceptance region of a two-sided test at 5%, or even at 10% level of

significance. Thus there is no evidence to reject the null hypothesis of

equality of the two distribution functions.

This test can be implemented by using the function

‘posthoc.vanWaerden.test’ from the package ‘PMCMR’ in ‘R’.

Comments:

(i) Both the above tests perform very well if the data happens to be actu-

ally from the normal distribution. The asymptotic relative efficiency

of the Van der Waerden test is 1 w.r.t. the two sample t-test.

(ii) This is remarkable since one of the early objections to nonparametric

tests used to be their alleged lack of power. Here we see that these tests

are fully efficient compared to the two sample t-test and they retain

the probability of Type I error, even when the data does not follow the

normal distribution. As a matter of fact the ARE of these Fisher-Yates

(1932), [Terry (1952)], Hoeffding (1951) test compared to the t-test is

not less than 1 for any distribution at all. The ARE of the Wilcoxon-

Mann-Whitney [Wilcoxon (1945)] test compared to the two sample

t-test is not less than .864 for any distribution, [Lehmann (1951)] and

[Chernoff and Savage (1958)] proved these astounding results which

completely refute the allegations of low power.
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7.4 Introduction to the Two Sample Dispersion Problem

So far, in the earlier sections of this chapter, we have considered the location

problem. The two distributions F (x) and G(x) from which the data has

arisen are identical (that is, H0 : F (x) = G(x) ∀ x) or differ only by their

locations, that is, H1 : F (x) = G(x− θ) ∀ x, θ 6= 0.

Now we consider the two sample dispersion or scale problem. Again the

null hypothesis is

H0 : F (x) = G(x) ∀ x
against the alternative hypothesis

H1 : F (x) = G(θx) ∀ x, θ > 0, θ 6= 1.

(7.4.1)

The following Figure 7.3 will demonstrate the relative positions of F (x)

and G(x) under the scale model.

The above description is somewhat restrictive in the following sense.

The two c.d.f.’s have the same value, that is, achieve the same probability

at x = 0. Besides the procedures given below will be seen to work well

when this common quantile is the median, that is, essentially saying that

the locations are 0, that is, F (0) = G(0) = 1
2 . A generalization is to consider

the problem of testing

H0 : F (x) = G(x) ∀ x

against

H1 : F (x−m) = G(θ(x−m)) ∀ x,

where m, rather than 0, is the common median. So we either assume that

the two distributions have median 0, or can be adjusted to have median 0.

In the Normal distribution case one would use the F test based on the ratio

of two sample variances of the two random samples. Here we suggest two

tests based on linear rank statistics and a third one which may be regarded

as a generalization of the Mann-Whitney U-statistic approach.

While retaining the restriction that the common median or another

quantile is known, one could extend the alternative hypothesis in a non-

parametric manner. One may say that the alternative hypothesis is

H1 : F (x) ≤ G(x) ∀ x ≤ 0 and F (x) ≥ G(x) ∀ x > 0. (7.4.2)

This alternative is illustrated in Figure 7.4.
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Fig. 7.3 Distributions with Scale Shift

Thus we do not specify any parametric relationship to describe the

alternative hypothesis, only specify that under the alternative hypothesis

the distribution F gives a larger probability to any interval around 0, than

the distribution G.

7.5 The Mood Test

The Mood test statistic fits neatly in the class of linear rank statistics

of the type (6.4.1). Rank all the observations from the two samples to-

gether from the smallest to the largest, R1, R2, . . . , Rn being the ranks of

X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 taken together. Define

Mn =

n∑
i=1

cia(Ri),
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Fig. 7.4 Distributions with one giving larger probability to intervals around ‘0’

where

ci = 1 for i = n1 + 1, . . . , n

= 0 for i = 1, . . . , n1,

and

a(Ri) = (Ri −
n+ 1

2
)2. (7.5.1)

Therefore, Mn is the sum of squares of deviations of the ranks of Y obser-

vations from n+1
2 , the average of ranks of all n observations. It is clear that

the statistic will be large if the random sample from the second population

has a larger number of observations further away from the common quantile

0, compared to the first sample. This should be the case when H1 is true.

Hence the test would be to reject this H0 if Mn is too large. The critical

region should be appropriately modified for the other one sided alternative

or for the two-sided alternative.
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Using Theorem 6.1 for the statistic Mn with scores given in (7.5.1) and

using standard formulas for the sums of positive integers, their squares,

cubes and fourth powers, we get the following simple expressions for its

mean and variance under the null hypothesis.

E(Mn) =
n2(n2 − 1)

12
,

and

V ar(Mn) =
n1n2(n+ 1)(n2 − 4)

180
.

The normal approximation holds for the null distribution of

M∗n =
Mn − EH0

(Mn)√
V arH0

(Mn)
,

and appropriate one-sided or two-sided critical points from the standard

normal distribution may be used to carry out the test when the sample

sizes are large.

This test can be carried out by using the function ‘mood.test’ in the

package ‘stats’ in ‘R’.

7.6 The Capon and the Klotz Tests

The Capon test is also based on a linear rank statistic which uses the squares

of the expected values of standard Normal order statistics as scores. Thus

Cn =

n∑
i=1

ciE(V(Ri))
2,

where V(i) is the ith order statistic from a random sample of size n from

the standard normal distribution. The test based on this statistic is the

locally most powerful rank test for the scale alternatives (for the Normal

distribution with common median). Later Klotz proposed an approximate

and asymptotically equivalent system of scores as

a(i) = [Φ−1(
i

n+ 1
)]2. (7.6.1)

The test statistic is

Kn =

n∑
i=1

ciΦ
−1(

Ri
n+ 1

)2,
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The asymptotic normality of both the statistics follow from the general

limit theorem for linear rank statistics. The means and variances of the

two statistics Cn and Kn, under H0, are

E(Cn) = n2,

V ar(Cn) =
n1n2

n(n− 1)

n∑
i=1

(E(V (i)
n )2)2 − n1n2

(n− 1)
,

and

E(Kn) =
n2

n

n∑
i=1

Φ−1(
i

n+ 1
)2,

V ar(Kn) =
n1n2

n(n− 1)

n∑
i=1

[Φ−1(
i

n+ 1
)]4 − n1

n2(n− 1)
[E(Kn)]2.

Then, under H0, both

Cn − EH0
(Cn)√

V arH0
(Cn)

and
Kn − EH0

(Kn)√
V arH0

(Kn)

have asymptotically standard normal distribution. Therefore, standard

normal critical points may be used for moderately large sample sizes for

these tests.

Comment: The tests considered in this chapter so far are useful when

the two distributions have a common median and possibly different scale

parameters. If the medians are not equal, then we carry out ‘studentization’

through subtracting the sample median of the combined random sample.

Often, the asymptotic normality of the test statistics still holds.

Example 7.2: Fifty boys were divided into two groups of twenty five

boys each. Boys in group I are subjected to exhortations to do well in a

test where as those in group II were not subjected to such exhortations.

It was felt that variability will be more in the first group than the second.

The observed scores are:

The Mood statistic for this data is Mn = 5936.25. The null mean and

variance are 5206.25 and 442000, respectively. The standardized value is

1.10. This is within the acceptance region for α = .05 or even α = .1 one

tailed test. Hence it can not be concluded that the variability in the first

group is more than the variability in the second group.

Any of the other test statistics may also be used in this problem by

using the appropriate scores. The scores are given in the table on the next

page.
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Exhortation No Exhortation

139 360 295 360 335 360 49 140 120 162

130 181 91 182 203 131 129 249 38 44

153 360 155 225 71 82 195 47 138 65

124 38 36 203 294 287 54 133 62 220

175 360 360 45 189 131 118 98 131 90

7.7 The Sukhatme-Deshpande-Kusum Tests

At the end of section 7.4 we introduced the following problem. Let F (x)

and G(x) be the cumulative distribution functions of X and Y , respectively.

Under H0 they are identical. However, a way of stating that their disper-

sions are different is to say that upto a point m0 the distribution function

F (x) is below the distribution function G(x) and beyond m0 the distribu-

tion function G(x) is below the distribution function F (x). This may be

stated as

H0 : F (x) = G(x) ∀ x
and

H1 : F (x) ≤ G(x) ∀ x ≤ m0, F (x) ≥ G(x) ∀ x > m0.

The alternative is illustrated in Figure 7.5. If the point m0 is such that

F (m0) = G(m0) = 0 or F (m0) = G(m0) = 1, then it becomes the stochas-

tic dominance problem. However, if F (m0) = G(m0) 6= 0, 1 then, it is a

generalization of the scale problem.

Originally [Sukhatme (1958)] had proposed a test where m0 was envis-

aged to be the common median of the two distributions. [Deshpande and

Kusum (1984)] proposed an extension which works well where m0 is the

common quantile of any order α (α 6= 0, 1). It is based on a U-statistic

which is an extension of the Mann-Whitney U-statistic for the stochastic

dominance alternative. Let X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 be inde-

pendent random samples from F (x) and G(x), respectively. w.l.o.g. take

m0 = 0.

We define a kernel

φ(xi, yj) =


1 if 0 ≤ xi < yj or yj < xi ≤ 0,

0 if xi < 0 < yj or yj < 0 < xi or xi = yj ,

−1 if 0 ≤ yj < xi or xi < yj ≤ 0.
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Fig. 7.5 Distributions with unequal dispersions

The U-statistic based on this kernel is

T =
1

n1n2

n1∑
i=1

n2∑
j=1

φ(xi, yj). (7.7.1)

If H1 is true, we would expect T to take large values. Hence H0 is to be

rejected if T is greater than an appropriate critical value. By exchanging

the role of F and G we specify the other one-sided alternative hypothesis.

The two sided alternative hypothesis and the appropriate critical region

may also be similarly specified.

There exists a formulation of this statistic which corresponds to the

Wilcoxon rank sum test for the location problem. Let us rank the positive

observations of the two samples together and also rank the negative ob-

servations from the two samples together. Let W+ be the number of pairs

(xi, yj) in which both are positive and the yj observation is greater than the

xi observation. Let W− be the number of pairs (xi, yj) in which both are

negative and the −yj observation is greater than the −xi. Also, let n+
1 and

n+
2 be the number of positive x′s and positive y′s. Then n−1 = n1−n+

1 and

n−2 = n2 − n+
2 will be the respective number of negative x′s and negative
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y′s. Then it is seen that

T =
1

n1n2
[2W+ + 2W− − n−1 n

−
2 ].

The two sample U-statistics results assure that T , after standardization,

has N(0, 1) distribution. Under H0, we have

E(T ) = 0,

and

V ar(T ) =
n

n1n2
[
1

3
− α(1− α)].

Thus, for large sample sizes the test could be carried out by comparing the

standardized statistic

T ∗ =
T√

n
n1n2

( 1
3 − α(1− α))

with the standard normal critical points of the desired level.

7.8 Savage (or Exponential Scores) Test for Positive Valued

Random Variables

It is easily seen that the exponential distribution

f(x) =
1

θ
e−

x
θ , θ > 0, 0 < x <∞,

has only one parameter θ, which is its expectation as well as its standard

deviation (θ2 being its variance). Hence a change in θ will cause a change

in its location as well as dispersion. See Figure 7.6.

In the above example, and in many others, the two probability distri-

butions are ordered according to stochastic dominance. Hence the Mann-

Whitney test is suitable here. But [Savage (1956)] has recommended a test

based on exponential order statistics for power considerations.

Let X and Y be positive valued random variables with c.d.f’s F (x) and

G(x), respectively. Let

H0 : F (x) = G(x), 0 ≤ x <∞,
and

H0 : F (x) = G(θx), 0 ≤ x <∞, θ > 0, θ 6= 1. (7.8.1)

The expectation of the ith order statistic from the standard exponential

distribution (that is, F (x) = 1− e−x, x > 0), is

E(X(i)) =

n∑
j=n+1−i

1

j
(= a(i) (say)).
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Fig. 7.6 Densities with change in location and scale/dispersion

Now a standard linear rank statistic with these scores is

S =

n2∑
i=1

a(Rn1+i). (7.8.2)

Here Rn1+1, Rn1+2, . . . , Rn are the ranks corresponding to the observa-

tions of the Y sample in the combined ordering of the observations from

the two samples. The linear rank statistic theory tells us that under H0

E(S) = n2

and

V ar(S) =
n1n2

n− 1
(1− 1

n

n∑
i=1

1

i
). (7.8.3)

Thus the asymptotic null distribution of the standardized version

S∗ =
S − n2√

n1n2

n−1 (1− 1
n

∑n
i=1

1
i )

is standard normal. Critcal points with the desired level of significance

from the N(0, 1) distribution may be used for large sample sizes.
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7.9 Kolmogorov-Smirnov Test for the General Two Sample

Problem

We have discussed the Kolmogorov-Smirnov test for goodness of fit of a

random sample from a given cumulative distribution function. It is based

on the supremum of the absolute difference between the prescribed dis-

tributions function and the empirical distribution of the data. The same

principle is extended to the two sample case. Two empirical distributions

are formed for the two random samples and the supremum of the absolute

or (signed) difference between them is used as the test statistic.

As is the case in this chapter we have two independent random sam-

ples X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 from two probability distributions

specified by c.d.f’s F (x) and G(x), respectively. Consider the testing

problem

H0 : F (x) = G(x) ∀ x
against

H1 : F (x) 6= G(x),

over a set of non zero probability. This is the two-sided alternative and the

two one-sided alternatives are

H11 : F (x) ≥ G(x),

H12 : F (x) ≤ G(x),

with strict inequality over a set of non zero probability for H11 and H12.

By Glivenko-Cantelli theorem one expects the two empirical distribu-

tion functions to be close to their (unspecified) true distribution functions,

respectively. If the null hypothesis is true, that is, the two c.d.f.’s are the

same, then the two empirical distribution functions too are expected to be

close to each other. This is illustrated in Figure 7.7.

Consider the two empirical functions defined by

Fn1(x) =
1

n1
[ # of X observations ≤ x]

and

Gn2(x) =
1

n2
[ # of Y observations ≤ x].

The test statistic is based on the difference of these two empirical distribu-

tion functions and is defined as

Dn1,n2
= sup
−∞<x<∞

|Fn1
(x)−Gn2

(x)|. (7.9.1)
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Fig. 7.7 Two distribution functions with empirical distribution functions of respective

data sets

Under the null hypothesis the sampling distribution of the statistic Dn1,n2

does not depend upon the common c.d.f. F (x) as long as it is continuous.

Combinatorial formula used with counting of rank orders giving different

values of the statistic Dn1,n2
will provide its exact null distribution. For

increasing n1, n2 it soon becomes cumbersome and recourse is taken to the

asymptotic distribution provided by [Smirnov (1939)]. Let

D∗n1,n2
= (

n1n2

n1 + n2
)

1
2Dn1,n2 .

Then, as n1 →∞ and n2 →∞,

P [D∗n1,n2
≤ s]→ 1− 2

∞∑
r=1

(−1)r+1e−r
2s2 ,

provided the limit n1

n2
is neither 0 nor ∞. The 5% and 1% upper critical

points for D∗n1,n2
from the asymptotic distribution are 1.36 and 1.63, re-
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spectively. Exact critical points for small sample sizes are available in the

literature.

It should be noted that both Fn1
(x) and Gn2

(x) are jump functions,

remaining constant between order statistics. Hence the supremum to be

evaluated in (7.9.1) can be obtained as the maximum

Dn1,n2 = max
1≤i≤n1+n2

|Fn1(zi)−Gn2(zi)|,

where z1 ≤ z2 ≤ . . . ,≤ zn1+n2
are the combined order statistics of the two

random samples.

The one sided versions of the statistic

D+
n1,n2

= sup
−∞<x<∞

(Fn1
(x)−Gn2

(x))

and

D−n1,n2
= sup
−∞<x<∞

(Gn2
(x)− Fn1

(x))

are the appropriate statistics when the alternatives are suspected to be H11

and H12, respectively. The asymptotic null distribution of either of these

statistics is especially simple. Asymptotically, both

D∗+n1,n2
= (

n1n2

n1 + n2
)

1
2D+

n1,n2
and D∗−n1,n2

= (
n1n2

n1 + n2
)

1
2D−n1,n2

have the distribution function H(x) = 1 − e−2x2

, 0 < x < ∞. The exact

distribution is discrete and has been tabulated by [Siegel (1956)], [Gail and

Green (1976)] and others.

Comment:

The Kolmogorov-Smirnov (two-sided) test is consistent for the entire

alternative hypothesis F (x) 6= G(x), for some x. This is because the

Glivenko-Cantelli theorem ensures that the two empirical distribution func-

tions tend to the respective distribution function. If there is any non zero

difference between them, as the alternative hypothesis implies, it is blown

up by the normalizing factor and asymptotically it will be larger than any

finite critical point. However, this wide consistency comes at a cost. Stud-

ies have shown that the power of the test is often less than that of the

Wilcoxon-Mann-Whitney test or the normal scores tests for those alterna-

tives for which they are focused.
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7.10 Ranked Set Sampling (RSS) Version of the Wilcoxon-

Mann-Whitney Test

As discussed in earlier chapters, the RSS procedure consists of obtaining k

units from a population and setting aside the smallest order statistic from

these. Then, choose k more units and set aside the second order statistic

from these. Continue the process until we obtain k independent order

statistics X[1], X[2], . . . , X[k], one each of order 1, order 2, etc. If we repeat

this entire procedure n1 times, then we will have n1k observations which

are

X[1]j , X[2]j , . . . , X[k]j , j = 1, 2, . . . , n1.

These are also independent and have the respective order statistics dis-

tributions. We carry out a similar RSS procedures from the second popu-

lation with groups of q observations and repeat it n2 times to obtain n2q

observations

Y[1]j , Y[2]j , . . . , Y[q]j , j = 1, 2, . . . , n2,

as the RSS sample.

Let

φ(u) =

{
1 if u ≥ 0,

0 if u < 0.

The RSS version of the Wilcoxon-Mann-Whitney statistic is defined as

URSS =

q∑
s=1

n2∑
t=1

k∑
i=1

n1∑
j=1

φ(Y[s]t −X[i]j),

= number of pairs (X,Y ) in the ranked set sample which X is less

than or equal to Y ,

= n1n2kq

∫ ∞
−∞

F ∗n1k(t)dG∗n2q(t),

where F ∗n1k
and G∗n2q are the empirical distribution functions of the X and

Y RSS data, respectively.

The null hypothesis is H0 : F (x) = G(x), the equality of the two distri-

bution functions corresponding to the two populations and the alternative

hypotheses are

H11 : F (x) ≥ G(x),

H12 : F (x) ≤ G(x), (7.10.1)

with strict inequalities over sets of non zero probability.
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It is shown by [Bohn and Wolfe (1992)] and also by [Öztürk and Wolfe

(2000)], that under H0, E(URSS) = n1n2kq
2 . The entire sampling distribu-

tion of URSS , under H0, is free of F (x), the common c.d.f. However, since,

even under H0, the data does not consist of i.i.d. observations, but inde-

pendent order statistics of the specified orders, their rank orders are not

equally likely. For example,

P [Y (2) < Y (1) < X(2) < X(1)] =
17

2520
,

and

P [X(1) < X(2) < Y (1) < Y (2)] =
137

2520
.

These probabilities are all distribution free, but involve very tedious calcu-

lations.

Asymptotically, using the U-statistic structure, we have

[V (URSS)]−
1
2 [URSS − E(URSS)]

has N(0, 1) distribution. If k = q = 2, n1 = n2 = n, then the distribution

of
√

2n[
URSS
n2

− 2]
d→ N(0, 1) as n→∞

and critical points of the standard normal distribution may be used. The

exact and the asymptotic expressions for the variance are available in [Bohn

and Wolfe (1992)].

7.11 Hodges-Lehmann-Sen Estimator for Shift Between

Two Continuous Distributions

Let X1, X2, . . . , Xn1
be a random sample from the continuous distribution

function F (x) and Y1, Y2, . . . , Yn2
be an independent random sample from

the distribution G(x) = F (x − ∆), or g(x) = f(x − ∆), in terms of the

c.d.f.s or the pdfs. First we look at point estimators of ∆. See Figure 7.8.

7.11.1 Point Estimation of ∆

Note that

∆̂ = median 1≤i≤n
1≤j≤m

{Yj −Xi}, (7.11.1)

the median of the differences of the observations in the n1n2 pairs (Xi, Yj),

provides a point estimator of the shift parameter. In the case of observations
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Fig. 7.8 Distributions with location shift

from the normal distribution, Ȳ − X̄ would be an estimator. In case n1n2

is an even number, the average of the two middle most differences would

be the estimator of ∆, according to standard convention.

The computation is available in the software R. The motivation is that

if ∆̂ is subtracted from the Y observations (or added to X observations)

then the value of the Wilcoxon statistic based on these modified values will

be closest to its null expectation. This estimator is proposed in [Hodges Jr

and Lehmann (1963)] and in [Sen (1963)].

7.11.2 Confidence Intervals for ∆

Consider the ordered n1n2 differences (Yj − Xi), i = 1, 2, . . . , n1,

j = 1, 2, . . . , n2 as d(1), d(2), . . . , d(n1n2). Let −∞ = d(0) and ∞ =
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dn1n2+1. Then we can partition the real line in n1n2 + 1 intervals

(d(0), d(1)], (d(1), d(2)], . . . , (d(n1n2), d(n1n2+1)). The probability that the ith

interval (d(i−1), d(i)] covers the unknown value of the parameter ∆ is the

same as the Mann-Whitney statistic U (number of pairs in which Yj ex-

ceeds Xi) takes the value i−1. Hence putting together adequate number of

these consecutive intervals will provide the required interval (d`, du) where

` and u are chosen such that
∑u−1
i=` P (U = i) ' 1 − α. This provides a

confidence interval with approximate confidence coefficient 1 − α (due to

the discontinuities in the distribution of U).

It is convenient to choose ` and u in a symmetric manner, that is,

`+ u = n1n2 + 1, and

n1n2+1−`∑
i=`

P (U = i) ' 1− α.

If n1 and n2 are reasonably large (say greater than 10 each), then ` and u

are approximated by

` = [
n1n2

2
− zα

2

√
n1n2(n1 + n2 + 1)

12
− 0.5]

and

u = [
n1n2

2
+ zα

2

√
n1n2(n1 + n2 + 1)

12
− 0.5]

where zα
2

is the upper α
2 th quantile of standard normal distribution.

7.12 Exercises

1. Let X1, X2, . . . , Xn be i.i.d. random variables from a continuous distri-

bution F (x) and Y1, Y2, . . . , Ym from F (x− θ). Find the exact distribution

of

(i) the Wilcoxon Statistic when n = 3,m = 4,

(ii) the Mann-Whitney Statistic when n = 4,m = 3.

2. Show that under the null hypothesis both the Wilcoxon Statistic and

the Mann-Whitney Statistic are symmetric about their respective expected

values.

3. Show that the scores for the Van der Waerden test and Fisher-Yates-

Terry-Hoeffding test are asymptotically equivalent.

4. The following data are life times in years of wheel bearings from two

different vendors, with 20 bearings from each. Test whether the variability

in the life times is more for vendor II.
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Vendor I Vendor II

5.76 0.86 2.49 0.55 0.32 0.65 0.12 0.04 0.01 0.16

0.27 0.47 2.70 0.90 2.06 13.23 0.18 0.99 2.12 2.65

8.62 0.54 0.90 2.64 0.23 0.06 10.91 16.12 1.18 0.15

0.74 1.15 1.40 1.57 2.34 14.76 1.48 0.06 16.09 4.00
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Chapter 8

THE SEVERAL SAMPLE
PROBLEM

8.1 Introduction

In Chapter 7 we have considered the problem of testing the equality of

locations of two populations. Now we extend this study to comparing

locations of three or more populations. We may regard the procedures in

Chapter 7 as alternatives to the two sample t-test when normality of the

populations can not be assumed. In this chapter we seek nonparametric

alternatives to the F-test as applied to one way classified data from several

Normal populations.

Let F1(x), F2(x), . . . , Fk(x) be the distribution functions corresponding

to k populations and in general

Fi(x) = F (x− θi) i = 1, 2, . . . , k,

where Fi(x) is a continuous (unknown or at least not Normal) distribution

function and the differences among the k populations are through the val-

ues of the location parameter θ1, θ2, . . . , θk. If F (x) is normal, then one

would use the one-way analysis of variance technique here. In this section

we present rank based tests. Let Xi1, Xi2, . . . , Xini , i = 1, 2, . . . , k be in-

dependent and identically distributed random variables with common c.d.f.

Fi(x). And if all θ1 = θ2 = · · · = θk then all n =
∑k
i=1 ni observations

would be i.i.d. These k sets of observations will arise when we apply dif-

ferent treatments to the k sets. If all the treatments have the same effect

then the null hypothesis

H0 : θ1 = θ2 = · · · = θk

is true and a reasonable procedure should accept it with a predetermined

value α of the probability of Type I error. The alternative says that

H1 : θi 6= θj for at least one pair i 6= j.

137
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Since all the n observations have a common continuous distribution under

H0, the theory of rank order statistics, as developed in Chapter 6, applies

here also. In subsequent sections we propose tests for this problem which

are based on rank order statistics.

8.2 The Kruskal-Wallis Test

If we arrange all the n =
∑k
i=1 ni observations from the smallest to the

largest and assign rank Rij to Xij , the jth, j = 1, 2, . . . , ni observation

from the ith sample, then the Kruskal-Wallis statistic is defined as

H =
12

n(n+ 1)

k∑
i=1

ni(R̄i. −
n+ 1

2
)2. (8.2.1)

Here R̄i. = 1
ni

∑ni
j=1Rij , the average rank of the observations from the

ith, i = 1, 2, . . . , k sample. This can be seen to be the rank version of the

usual ANOVA defined as (Sum of squares due to the treatment)/(Total sum

of squares) except that the total sum of squares here is a non stochastic

quantity, being the sum of squares of difference of the numbers 1, 2, . . . , n

from their average (n + 1)/2. A slightly simpler equivalent expression for

H is

H =
12

n(n+ 1)

k∑
i=1

niR̄
2
i. − 3(n+ 1). (8.2.2)

Under H0 we expect that the average ranks of k samples will be close to

(n+1)/2, the overall average of ranks. On the other hand, if the locations of

the populations from which these random samples are obtained are different

then that should show up in the complete ranking. Then the average ranks

will be (atleast in some cases) away from the over all mean rank. This

would yield higher values of the statistic H under the alternative H1 than

under H0. Therefore, the suggested test is

Reject H0 if H > Hα,

where Hα is the upper α point of the null distribution of H. The null

distribution, being based on the null rank statistics distribution is known

and is tabulated for small sample sizes. Many leading software packages

include it. The asymptotic null distribution of H as min(n1, n2, . . . , nk)

tends to infinity, is chi-squared with k − 1 degrees of freedom. This

is so because of the linear constraint
∑k
i=1 niR̄i. = {n(n + 1)}/2 on the

basic random quantities R̄1., R̄2., . . . , R̄k. which are involved in the statistic.
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Hence the critical point χ2
k−1,α should be used for moderately large sample

sizes. As in the two sample case, we adjust the statistic H in case there are

tied observations in the data. We instead consider

H∗ =
H

1−
∑m
j=1(t3j−tj)
n3−n

, (8.2.3)

to take care of the reduced variation in the possible values of the statistic

H. Here ti is the number of observations tied in the ith group, there being

m such groups. Of course, the distribution of H∗ is to be interpreted as its

conditional distribution given the number of tied groups and the number

of observations in them, that is, t1, t2, . . . , tm.

Example 8.1:

Sample from 3 types of wheat were tested for protein percentage. The

data is given in Table 8.1.

Table 8.1

Type I 4.7 4.9 5.5 5.0 5.4 6.1

Type II 6.2 5.6 6.5 5.7

Type III 5.9 5.6 4.8 7.1 7.0

Here n1 = 6, n2 = 4, n3 = 5, n = 15. The rank totals of the 3 samples

are R1 = 30, R2 = 41.5, R3 = 48.5, giving the average rank 7.5 to the two

observations equal to 5.6.

H =
12

15× 16
[
(30)2

6
+

(41.5)2

4
+

(48.5)2

5
]− 3× 16

= 4.56.

H∗ = 4.569.

The 5% critical value of the χ2
2 distribution is 5.99. The observed value of

H is 4.56, which is smaller than the critical value. Hence we cannot reject

the null hypothesis that the protein contents in the three varieties of wheat

are the same.

In ‘R’, the function ‘kruskal.test’ from the package ‘stats’ implements

this test.
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8.3 The Bhapkar-Deshpande Test Based on k-plets of

Observations

The Mann-Whitney idea of comparing observations in pairs has been ex-

tended to k-plets for the k-sample problem by [Bhapkar and Deshpande

(1968)].

The null hypothesis is again

H0 : F1(x) = F2(x) = . . . = Fk(x) ∀ x,

and independent observations xi1, xi2, . . . , xini , i = 1, 2, . . . , k are avail-

able. We form k-plet of observations by selecting one observation from each

of the k samples. Obviously, the total number of k-plets is
∏k
i=1 ni. Define

Vij to be the number of k-plet in which the observation from the ith sample

is greater than exactly j − 1 observations and smaller than the remaining

k − j observations in the k-plet. Under the assumption of continuity of

random variables, no ties are expected. Consider

uij =
vij

(
∏k
i=1 ni)

.

This is the proportion of such k-plet, that lies in [0, 1], depending on the

relative magnitudes of the observations. It is proposed that test statistics

be constructed out of these u′ijs. We exhibit three such statistics here

(i)

V = n(2k − 1){
k∑
i=1

pi(ui1 −
1

k
)2 − [

k∑
i=1

pi(ui1 −
1

k
)]2}

where n =
∑k
i=1 ni and pi = ni

n .

(ii)

L =
n(2k − 1)(k − 1)2

(
2k−2
k−1

)
2k2[

(
2k−2
k−1

)
− 1]

[

k∑
i=1

pi`
2
i − [

k∑
i=1

pi`i]
2],

where `i = −ui1 + uik, i = 1, 2, . . . , k.

(iii)

D =
n(2k − 1)(k − 1)2

(
2k−2
k−1

)
[2(k2 + (k2 − 4k + 2)

(
2k−2
k−1

) [
k∑
i=1

pid
2
i − [

k∑
i=1

pidi]
2],

where di = ui1 + uik, i = 1, 2, . . . , k.

The functions di and D are meaningful if k is at least 3. For k = 2

the function di is always 1.
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Here, the following two alternatives to H0 are being considered.

A: Assuming identical functional forms for the distribution functions

and the location parameters are suspected to be different, and

B: Assuming the same functional forms for the distribution functions

and the scale parameters are suspected to be different.

The V and the L test would be efficient for the location alternative A

and the V and the D test would be able to detect the scale alternative B.

The V test was proposed by Bhapkar as the k-sample extension of the

[Mann and Whitney (1947)] W -test. It was seen to have good asymptotic

relative efficiency with respect to the Kruskal-Wallis test for skew distribu-

tions such as the exponential distribution. But then it was realized that

it has information only in the lower end of the k-plet. Later the L and D

statistics were proposed by [Deshpande (1965)] which use information in

both sides of the k-plet.

The tests consist in rejecting H0 at a significance level α if the statistic

exceeds the predetermined critical value. [Bhapkar (1961)] and [Deshpande

(1965)] have shown that these statistics, under H0, as each ni tends to ∞,

without ni/n tending to 0 or 1, have asymptotically χ2 distribution with

k − 1 degrees of freedom. Hence, for moderately large sample sizes, the

upper critical points of the χ2
k−1 distribution are used as the cut off points.

Example 8.2: The following table gives the breaking strength in

lbs/in2 of concrete cylinders. The three batches A, B and C differ only

in the proportion of coal that the sand used in the concrete contains.

Table 8.2

Batch Proportion of Coal Breaking Srength

A .00 1410 1670 1475 1505

B .05 1590 1725 1745 1460

C .10 1435 1530 1615 1525

Here k = 3, ni = 4, i = 1, 2, 3, n = 12, pi = 1/3, i = 1, 2, 3. We obtain

v11 = 18, v13 = 34,

v21 = 39, v23 = 11,

v21 = 7, v23 = 19,

giving us `1 = 16/64, `2 = −28/64, `3 = 12/64. Then

L = 16[

3∑
i=1

pi`
2
i − (

3∑
i=1

pi`i)
2] = 1.54.
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This is smaller than the upper 5% value of the chi-squared distribution

with 2 degrees of freedom, viz, 5.94. Hence there is not enough evidence to

reject H0.

Comments:

(i) [Bhapkar and Deshpande (1968)] showed that the statistic

W =
12n

k2
[

k∑
i=1

piw
2
i − [

k∑
i=1

piwi]
2],

where wi =
∑k
j=1(j − 1)uij , i = 1, 2, . . . , k, is exactly the same

as the Kruskal-Wallis H statistic in case of equal sample sizes, that

is, n1 = n2 = . . . = nk. Even if the sample sizes are unequal, W

and H are equally efficient in the sense of Pitman ARE . W (or) H

is recommended for use when distributions are light tailed and L is

recommended in case of heavy tailed distributions. The V test is gen-

erally more efficient for exponential type skew distributions and D test

is recommended for scale differences among symmetric distributions.

(ii) Later [Deshpande (1972)] defined a statistic based on linear functions∑k
j=1 ajuij and also derived the optimal coefficients aj which maxi-

mize the asymptotic relative efficiency for a given probability distri-

bution. These tests are not included in this presentation as unlike

other nonparametric tests they need a more detailed knowledge of the

alternative hypothesis that would be usually unavailable.

(iii) The vij as defined here are U-statistics with linear constraints∑k
i=1 vij =

∑k
j=1 vij = 1. The `i and di are their linear functions.

The general theory of U-statistics assures the asymptotic normal dis-

tribution of the v′ijs and hence asymptotic chi-squared distribution of

the V,L,D and W statistics, each with k − 1 degrees of freedom.

8.4 Tests to Detect Ordered Alternatives

In the previous two sections we have considered tests of the null hypothesis

of equality of k distributions. These are supposed to detect differences on

the locations or scale or both in distributions without any known order

among the alternatives. However, there are many situations where the

analyst has some idea of the possible order among the distributions under

the alternative hypothesis. It is possible that the verbal ability of young
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children is influenced upwards if the parents belong to unskilled worker

category, skilled workers or more literate categories such as teachers, etc.

Formally the testing problem may be stated as

H0 : F1(x) = F2(x) = · · · = Fk(x) ∀ x,

vs

H1 : F1(x) ≥ F2(x) ≥ · · · ≥ Fk(x),

with strict inequality for some x. The alternative hypothesis here describes

the situation where the random variables X1, X2, . . . , Xk are progressively

stochastically smaller, that is, the observation on them would tend to be

progressively smaller. By reversing the inequalities we get the other one

sided alternative wherein the random variables become progressively larger.

[Jonckheere (1954)] has proposed the following test procedure. Let

Xij , j = 1, 2, . . . , ni, i = 1, 2, . . . , k, be independent random samples

from the k populations. Calculate Uij the Mann-Whitney U-statistic for

the pair (i, j) random samples and let

J =

k−1∑
i=1

k∑
j=i+1

Uij , (8.4.4)

where

Uij =

n∑̀
`=1

nj∑
w=1

φ(Xi`, Xjw)

and

φ(Xi`, Xjw) =


1 if Xi` < Xjw,
1
2 if Xi` = Xjw,

0 otherwise.

Being a linear combination of U-statistics, J has asymptotically normal

distribution under both H0 and H1. The exact null mean and variance are

EH0
(J) =

n2 −
∑k
i=1 n

2
i

4
,

and

V arH0(J) =
n2(2n+ 3)−

∑k
i=1 n

2
i (2ni + 3)

72
.

Hence, under H0, the standardized statistic

J∗ =
J − EH0

(J)√
V arH0(J)

d→ N(0, 1) as n → ∞.
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Due to the one-sided nature of the alternative hypothesis J∗ will tend to

be large under H1 and H0 should be rejected if J∗ is larger than the upper

α critical point. Asymptotocally, the upper α point of the standard normal

distribution could be used, for example, for α = .05, the critical point is

1.645.

Example 8.3:

The following data gives the yields of sweet potato in 7 seasons across

three zones which are supposed to be more and more favourable to this

crop.

Table 8.3

Yields in tons/hectare

Zone I 4.17 2.30 7.93 4.18 4.18 6.16 5.69

Zone II 5.91 6.03 7.69 5.78 5.78 8.45 6.68

Zone III 6.35 7.52 6.30 8.79 8.78 8.08 11.00

Let µI , µII , µIII be the population means. Test the hypothesis

H0 : µI = µII = µIII against H1 : µI ≤ µII ≤ µIII .
We note that n1 = n2 = n3 = 7, n = 21. Hence

J = 126,

EH0
(J) =

(21)2 − 3(44)

4
=

441− 147

4
= 73.5,

V arH0
(J) =

(21)2(45)− 3(44)(17)

72
=

19845− 2499

72
= 24.1

J∗ =
126− 73.5√

24.1
=

52.5

4.91
= 10.61.

Comparing the observed value 10.61 with the standard normal distribution

we see that it is so much larger than the critical value even with a very low

α, that we reject H0 and accept H1 as the reasonable hypothesis.

The function ‘jonckheere.test’ test from the package ‘clinfun’ in ‘R’ per-

forms this test.

8.5 Multiple Comparisons

The purpose of the tests proposed in earlier sections is to see if the k

different random samples come from a common population or not. The
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rejection of the hypothesis only indicates that there is a significant differ-

ence (location or scale) in one or more pairs of the populations. It does

not say which, if any, of the populations or specific order between them are

different from each other. A body of methodology known as ‘multiple com-

parisons’ has been developed to address this question. In the parametric

set up with normal distributions techniques proposed by, [Scheffe (1953)],

[Dunnett (1955)], [Tukey (1991)] or those based on Bonferroni inequality

have been in use for a long time and seen to be quite effective. One can

also see [Miller (1981)] and [Benjamini and Hochberg (1995)].

The question of multiple comparisons is usually posed in one of two

ways

(i) many-one comparisons and

(ii) pairwise comparisons.

First we consider the many-one problem.

8.5.1 Many-one Comparisons

Let the k populations be distinguished by k different treatments. Let there

be an additional treatment designated as the ‘control’ treatment. Then

statistical procedures are developed to compare each of the k treatments

with the one control treatment. Hence the nomenclature “many-one”. This

is one of the common situations where the currently popular treatment

is designated as the control and the competing k treatments are to be

compared with it. The tests would be one-sided if the purpose is to identify

treatments which are better than the control.

Let µ0 be the location parameter of the control population from which

n0 observations X01, X02, . . . , X0n0 have been obtained. The k populations

which are to be compared with it have yielded Xi1, Xi2, . . . , Xini , i =

1, 2, . . . , k. These populations have location parameters µ1, µ2, . . . , µk, re-

spectively. [Fligner and Wolfe (1982)] have suggested that we should rank

all the n = n0 + n1 + · · · + nk observations together. Let Rij , j =

1, 2, . . . , ni, i = 0, 1, 2, . . . , k be the combined ranks of observations in

k+1 samples. Then add the ranks of the observations in the samples other

than the control. The statistic thus is

FW =

k∑
i=1

ni∑
j=1

Rij , (8.5.5)

the ranks of the control sample being excluded in the sum in (8.5.5).
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The null hypothesis is

H0 : µ0 = µi, i = 1, 2, . . . , k

against

H1 : µ0 ≤ µi, i = 1, 2, . . . , k

with at least one strict inequality.

Here the alternative hypothesis does not make any differentiation among

the k noncontrol treatment means. So it makes sense to add the ranks of

all the observations from the k noncontrol populations.

It is seen, using the rank order results, that

EH0(FW ) =
n∗(n+ 1)

2
,

where n∗ =
∑k
i=1 ni, the total number of observations in the noncontrol

samples, and

V arH0
(FW ) =

n0n
∗(n+ 1)

12
.

Then, under H0, the standardised version

FW ∗ =
FW − n∗(n+1)

2√
n0n∗(n+1)

12

,

tends to standard normal random variable in distribution as

min(n0, n1, n2, . . . , nk)→∞.
In case of there being g groups of tied observations with ti observations

in the ith group, then the conditional variance is

V arH0(FW |Ties) =
n0n

∗

12
[n+ 1−

∑g
i=1 ti(ti − 1)(ti + 1)

n(n− 1)
].

For small sample sizes the test should use the Wilcoxon test critical

points for n0 and n∗ observations. For large and even moderate sample

sizes the critical points from the standard normal distribution can be used.

Example 8.4: [Hundal (1969)] had carried out a study comparing

the productivity of workers with no information (control group) and two

groups of workers with some information (two treatment groups). We wish

to test whether the control group workers are less productive than the other

groups.
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Table 8.4
pieces processed

No information group : 40 35 38 43 44 41

Some information group I : 38 40 47 44 40 42

Some information group II : 48 40 45 43 46 44

The ranking giving average rank to tied observations is given in

Table 8.5.

Table 8.5
pieces processed

Control group : 5.5 1 2.5 10.5 13 8

Treatment group I : 2.5 5.5 17 13 5.5 9

Treatment group II : 18 5.5 15 10.5 16 13

The sum of ranks of two treatment groups is
∑2
i=1

∑6
j=1Rij = 130.5.

Then, EH0
(FW ) = 114, V arH0

(FW ) = 112.12.

(The values for the ties corrected expressions when the tied groups are

(38, 38), (40, 40, 40, 40), (43, 43, 43) with ranks (2, 3), (4, 5, 6, 7), (12, 13, 14)).

Thus using the asymptotic expression we get

FW ∗ =
130.5− 114√

112.12
= 1.56.

This is smaller than, though close to the 5% one sided value of 1.645. Hence

we can not reject H0 at 5%, but should be suspicious of it.

8.5.2 Multiple Pairwise Comparisons

Here we come to the problem as it was stated at the beginning of the section.

Let there be k populations, say with location parameters θ1, θ2, . . . , θk. The

null and the alternative hypothesis is best specified as

H0 : θi = θj , ∀ i, j

HA : θi 6= θj , for atleast one pair (i, j), i 6= j.

Let Xi1, Xi2, . . . , Xini , i = 1, 2, . . . , k be the k independent random

samples from the k populations, respectively. Since we wish to make deci-

sions regarding the equality of the location parameters we rank the obser-

vations in each pair of random samples.
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Let Ri1, Ri2, . . . , Rini be the ranks of the ith sample when the ith and

jth samples are ranked together and

Wij =

ni∑
`=1

Ri`

be their sum. Since this is just the two sample Wilcoxon rank sum based

on ith and jth sample observations, one can see that

EH0
(Wij) =

ni(ni + nj + 1)

2
,

and

V arH0
(Wij) =

ninj(ni + nj + 1)

12
,

Let,

W ∗ij =
√

2
Wij − EH0

(Wij)√
V arH0

(Wij)
.

There are k(k−1)
2 such pairwise statistics for 1 ≤ i < j ≤ k.

Multiple comparison procedures are used for declaring if θi 6= θj in some

pair (i, j), usually after the rejection of the null hypothesis

H0 : θ1 = θ2 = · · · = θk

against the general alternative of

H1 : θi 6= θj , for some i 6= j

by one of the standard k-sample test such as Kruskal-Wallis or the Bhapkar-

Deshpande procedure. Once this rejection has occurred further investiga-

tion is needed to find out where the differences lie. The rank procedure

pioneered by [Steel (1960)], [Steel (1961)] [Dwass (1960)] and [Critchlow

and Fligner (1991)] is as follows: (see [Spurrier (2006)]) Obtain a critical

point w∗α such that

PH0
[max
i<j
|W ∗ij | ≤ w∗α] = 1− α.

Then compare each W ∗ij with w∗α and declare θi 6= θj if |W ∗ij | > w∗α.

This procedure has the experiment wise error rate of α. That is to say,

the choice of w∗α ensures that none of the pair will be declared to have

different locations when they are not so with probability 1− α.

The critical point w∗α can be approximated by qα, the upper αth quantile

of the distribution of the range of k independent standard normal random
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variables, in case min(n1, n2, . . . , nk) is large. So the large sample procedure

would be

Declare θi 6= θj if |W ∗ij | > qα,

otherwise declare θi = θj .

It is possible (though rare) that even when the preliminary k-sample test

rejects H0 of equality of all θ’s, the subsequent multiple comparison test

does not find any significant difference in any pair at all. This is because to

preserve α as the experiment wise error rate we have used a more stringent

criterion for declaring that the difference exists in any given pair.

The asymptotic distribution in case of n1 = n2 = . . . = nk can be

outlined as below.

The asymptotic correlation matrix of
(
k
2

)
W ′ijs is the same as that of

the
(
k
2

)
differences Zi − Zj , i < j where the Z ′s are independent normal

(0, 1) variables. The factor
√

2 in W ∗ij adjusts for the fact that Zi − Zj

has variance 2. Then the maximum of
(
k
2

)
differences among the Z ′s is the

same as the range of the k independent standard normal random variables.

The asymptotic distribution in case of all n′is are not equal is the same,

but needs additional approximation results.

8.6 Comments

(i) In the entire chapter we have described only the techniques based

on ranks themselves rather than on functions of ranks such as normal

scores, van-der-Waerden or exponential scores, since we wanted to keep

the discussion and the working as simple as possible. However, as

explained in the chapter on two sample procedures, the ranks may be

replaced by more relevant scores which will increase the power of the

procedures for the concerned alternatives for specific distribution.

(ii) Using the empirical likelihood approach introduced by Owen (see

[Owen (1998)]), a test for equality of k medians in censored data is

proposed by [Naik-Nimbalkar and Rajarshi (1997)], which does not

need the assumption of equality of the underlying survival functions

under the null hypothesis.

(iii) A considerable amount of literature is devoted to the error rates: ex-

periment wise, statement wise, false discovery rate, et al. See, for

example, [Tukey (1991)], [Miller (1981)], [Hochberg and Tamhane

(2009)], [Benjamini and Hochberg (1995)] and further references.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 150

150 NONPARAMETRIC STATISTICS: THEORY AND METHODS

(iv) R and other popular softwares provide programmes to help calculations

and analysis through multiple comparisons, hence the computing ef-

fect is no more onerous.

8.7 Exercises

1. Let the verbal ability of three groups of children belonging to three

different socio-economic families be represented by the following scores.

See whether there is increasing trend in ability as the status improves.

Unskilled : 12.5 13.5 14.4 15.6 11.3 12.2 10.3 11.1

Skilled : 14.3 15.2 14.1 18.2 15.3 9.4 13.1

Teachers : 14.5 15.8 19.9 12.5 18.4

2. Use the data of the Example 8.4 from [Hundal (1969)] to carry out the

multiple comparison analysis in terms of the location parameters θ1, θ2, θ3

of the three categories of workers. Specify the pairs of θ′s, if any, in which

parameters are declared to be distinct.
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Chapter 9

TESTS FOR INDEPENDENCE

9.1 Introduction

In this chapter we consider the problem of testing for independence of a

pair of random variables (X,Y ). Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a

random sample from paired data (X,Y ) with a bivariate c.d.f. F (x, y) and

unknown correlation coefficient ρ. The sample correlation coefficient r is

defined as

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

. (9.1.1)

It is usually used as a sample measure of dependence between X and Y .

If (X,Y ) has bivariate normal distribution with means µ1, µ2, variances

σ2
1 , σ

2
2 and correlation ρ ( −∞ < µ1, µ2 < ∞, σ1.σ2 > 0, −1 < ρ < 1 ),

then it is well known that X and Y are independent if and only if ρ, the

correlation coefficient between X and Y is 0. Then the test statistic used

to test

H0 : X,Y are independent (9.1.2)

is given by

T1 =
r
√
n− 2√

1− r2
.

Under the null hypothesis of independence of X and Y the statistic T1

has t distribution with n− 2 degrees of freedom. For testing H0 against a

two-sided alternative of lack of independence one rejects for both large and

small values of the statistic T1.

However, if one wishes to test the hypothesis ρ = ρ0, then one uses the

test statistic T2 = 1
2 loge

1+r
1−r which, under the null hypothesis of indepen-

dence and for large n, has Normal distribution with mean 1
2 loge

1+ρ0
1−ρ0 and

151
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variance 1
n−3 . Here again both large and small values are significant for

testing against the two-sided alternative.

However, in the nonparametric context, ρ = 0, is neither necessary nor

sufficient for the independence of X and Y . Also the statistic T1 does not

have t distribution with n− 2 degrees of freedom when the data is from a

distribution other than the bivariate normal.

[Hoeffding (1940)] showed that if (X,Y ) is a bivariate random vector

with E(X2) <∞, E(Y 2) <∞, then

Cov(X,Y ) =

∫ ∞
−∞

H(x, y)dxdy, (9.1.3)

where

H(x, y) = P [X ≤ x, Y ≤ y]− P [X ≤ x]P [Y ≤ y]

= P [X > x, Y > y]− P [X > x]P [Y > y]. (9.1.4)

In the nonparametric set up there are many alternatives to dependence.

A particular alternative for positive dependence which is important and is

used in applications is ‘Positive Quadrant Dependence’ (PQD) [Lehmann

(1966)]. (X,Y ) is said to be PQD if

H(x, y) ≥ 0 ∀ x, y ∈ R; (9.1.5)

with strict inequality over set of nonzero probability. In case of indepen-

dence the inequality reduces to equality for all x and y.

From (9.1.3) it follows that if (X,Y ) is PQD then X and Y are positively

correlated. Hence PQD is a stronger measure of dependence than positive

correlation. Further if (X,Y ) is PQD and Cov(X,Y ) is 0, then X,Y are

independent.

In the subsequent sections we will study nonparametric procedures for

testing the null hypothesis for independence of a pair of random variables

given in (9.1.2) with two alternatives in mind -

H1 : X,Y are positively correlated,

and

H2 : X,Y are PQD.

9.2 Spearman’s ρ Statistic

Let us consider the nonparametric set up. The data consists of

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) - n i.i.d. pairs of observations from a bi-

variate distribution F (x, y). We wish to test the null hypothesis that X,Y
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are independent. As mentioned earlier, in general, correlation equal to zero

is not equivalent to independence of the pair of random variables.

Let R1, R2, . . . , Rn be the ranks of X1, X2, . . . , Xn among X ′s alone and

Q1, Q2, . . . , Qn be the ranks of Y1, Y2, . . . , Yn among Y ′s alone. Note that,

under the hypothesis of independence,

P [R = r,Q = q] = P [R = r]P [Q = q] =
1

(n!)2
.

In the expression for correlation (9.1.1) replace the pair of observations

(Xi, Yi) by the corresponding pair of ranks (Ri, Qi). Then X̄ and Ȳ is

replaced by n+1
2 , the average of ranks Ri(Qi). We end up with the Spear-

man’s rank correlation coefficient which is defined as

ρS =
12

n3 − n

n∑
i=1

(Ri −
n+ 1

2
)(Qi −

n+ 1

2
)

=
12

n3 − n

n∑
i=1

RiQi − 3
n+ 1

n− 1

= 1− 6

n3 − n

n∑
i=1

(Ri −Qi)2.

For testing H0 against H1, we reject H0 in favor of H1 for large values

of ρS . Under H0,

E(ρS) = 0

V ar(ρS) =
1

n− 1
.

Therefore, as n increases, one can reject H0 in favor of H1 for large

values of the standardized statistic

ρ∗S =
√

(n− 1)ρS .

Critical points from standard Normal distribution are used.

Comments:

(i) If both X ′s and Y ′s increase together or decrease together in a perfect

manner, that is, the largest Xi and Yi come from the same pair, the

second largest Xi and Yi again come from the same pair and so on,

then Ri = Qi, ∀ i = 1, 2, . . . , n and ρS = 1.

(ii) On the other hand, if the X ′s increase when the Y ′s decrease and

vice versa in a perfect manner, that is the largest Xi and the smallest

Yi come from the same pair, the second largest Xi and the second

smallest Yi again come from the same pair and so on, then Ri =

n−Qi + 1, ∀ i = 1, 2, . . . , n and ρS = −1.



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 154

154 NONPARAMETRIC STATISTICS: THEORY AND METHODS

(iii) In general, analogous to the bounds for the sample correlation coeffi-

cient r, we have −1 ≤ ρS ≤ 1.

(iv) If one needs to test H0 against the alternative that X and Y are

negatively correlated then one rejects for small values of ρS or ρ∗S .

(v) Suppose there are m1 ties among X ′s and m2 ties among Y ′s. Then,

instead of ρS use the following adjusted version

ρ∗S =
n3 − n−

∑n
i=1(Ri −Qi)2 − 6(t∗ + s∗)

(
√
n3 − n− 12t∗)(

√
n3 − n− 12s∗)

, (9.2.6)

where

ti = number of tied scores at a given rank of X observations,

sj = number of tied scores at a given rank of Y observations,

t∗ =

∑m1

i=1 ti(t
2
i − 1)

12
,

s∗ =

∑m2

j=1 sj(s
2
j − 1)

12
.

9.3 Kendall’s τ Statistic

Another popular nonparametric test statistic for testing independence

between a pair of random variables is the Kendall’s τ described below.

Suppose

Sign(u) =


1 if u > 0,

0 if u = 0,

−1 if u < 0.

For the same data as in Section 9.2, we consider two pairs of observations

(Xi, Yi) and (Xj , Yj). These pairs of random variables are called concordant

if sign(Xi−Xj)sign(Yi−Yj) > 0 and the pairs are discordant if sign(Xi−
Xj)sign(Yi−Yj) < 0 . Then we calculate the proportion of concordant pairs

and subtract from it the proportion of discordant pairs. The Kendall’s τK
test statistic is defined as follows:

τK =
1

n(n− 1)

∑
1≤i6=j≤n

Sign(Xi −Xj)Sign(Yi − Yj)

=
2

n(n− 1)

∑
1≤i<j≤n

Sign(Xi −Xj)Sign(Yi − Yj)

=
2

n(n− 1)

∑
1≤i<j≤n

Sign(Ri −Rj)Sign(Qi −Qj).
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Large values of τK are significant for rejecting H0 in favor of H1.

Let φij = Sign(Xi−Xj)Sign(Yi−Yj). Then, it is easy to see that under

H0, for j 6= `,

P (φij = 1 = φi`) = P (φij = −1 = φi`) =
5

18
,

P (φij = 1, φi` = −1) = P (φij = −1, φi` = 1) =
2

9
.

And number of pairs of type (i, j), (i, `) with j 6= ` is n(n−1)(n−2)(n−3)
4 . It

is easy to see that

V ar(φij) = 1.

Combining these facts we get, under H0,

E(τK) = 0,

V ar(τK) =
2(2n+ 5)

9n(n− 1)
.

Comments:

(i) Let A be the number of concordant pairs that is, the number of pairs

with ranks in natural order and B be the number of discordant pairs,

that is, the number of pairs with ranks in reverse order. The statistic

τK can also be expressed as

τK =
1(
n
2

) (A−B) =
2A(
n
2

) − 1.

Since A+B =
(
n
2

)
, it is easy to see that −1 ≤ τK ≤ 1.

(ii) The statistic τK can be seen to be a U-statistic estimator for the

functional

τ̃K = P [(Xi−Xj)(Yi− Yj) > 0]−P [(Xi−Xj)(Yi− Yj) < 0]. (9.3.7)

(iii) One can use the central limit theorem for U-statistics to prove that,

under H0,
√
nτK has a limiting normal distribution with mean zero

and variance 4/9 for large values of n.

(iv)

ρ̃S = 3(P [(Xi−Xj)(Yi−Y`) > 0]−P [(Xi−Xj)(Yi−Y`) < 0]), (9.3.8)

where (Xi, Yi), (Xj , Yj) and (X`, Y`) are three i.i.d. pairs of observa-

tions from F (x, y). Therefore, ρ̃S , the population version of Spear-

man’s rank correlation ρS can also be viewed as a measure of 3 times

the difference between the probability of concordance and the prob-

ability of discordance, but depending on three pairs of observations,

not 2.
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(v) Suppose there are m1 ties among X ′s and m2 ties among Y ′s. Then,

consider the modified statistic

τ∗K =
A−B

(n∗ − t∗∗)(n∗ − s∗∗)
, (9.3.9)

where,

t∗∗ =

m1∑
i=1

ti(ti − 1)

2
,

s∗∗ =

m2∑
j=1

sj(sj − 1)

2
,

n∗ =
n(n− 1)

2
.

Example 9.1: The following table gives the figures for ice cream sales

at various temperature. Is there any correlation between the two?

Table 9.1

Temperature Ice Cream Sales

14.2◦ 215

16.4◦ 325

11.9◦ 185

15.2◦ 332

18.5◦ 406

22.1◦ 522

19.4◦ 412

25.1◦ 614

23.4◦ 544

18.1◦ 421

22.6◦ 445

17.2◦ 408

For the above data
∑12
i=1RiQi = 643.

Therefore, ρS = 0.951, ρ∗S = 3.254.

τK = 0.424 and 3
√
nτK/2 = 2.109.

Hence, there is positive correlation between increase in temperature and

ice cream sales.
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9.4 Copulas

As a relatively recent development copulas have been used to describe de-

pendence between two random variables. Copulas are multivariate dis-

tribution functions whose marginals are uniform distribution over the in-

terval (0, 1). In what follows we restrict ourselves to bivariate copulas.

Let F (x), G(y) be the marginal distributions of X, Y and let F (x, y) be

the joint distribution of (X,Y ). Assume that F (x), G(y) are continuous

functions. Because of probability integral transformation F (X) = U and

G(Y ) = V have uniform distribution on (0, 1). Then, the copula C(u, v)

for the pair (X,Y ) is given as

C(u, v) = P [U ≤ u, V ≤ v]

= P [X ≤ F−1(u), Y ≤ G−1(v)].

Following Sklar’s theorem we have that there exists a copula C(u, v) such

that for all x, y in [−∞,∞]

F (x, y) = C(F (x), G(y)).

If F (x) and G(y) are continuous functions, then the copula C(u, v) is

uniquely defined. Conversely, the function F (x, y) defined above is a joint

distribution function whose marginals are given by F and G, respectively.

Note that for every u, v in [0, 1], we have

C(u, 0) = 0 = C(0, v),

C(u, 1) = u, C(1, v) = v.

And for all u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2, v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The theory of copulas is useful for generating random samples from multi-

variate distributions with a given copula.

Three basic copulas of interest are

W (u, v) = max(u+ v − 1, 0),

M(u, v) = min(u, v),

Π(u, v) = uv. (9.4.10)

Copulas W (u, v) and M(u, v) come up as bounds to an arbitrary copula

C(u, v). Analogous to Frechet bounds for the bivariate distribution function

F (x, y), the bounds for the copula function C(u, v) are given below:

W (u, v) ≤ C(u, v) ≤M(u, v). (9.4.11)



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 158

158 NONPARAMETRIC STATISTICS: THEORY AND METHODS

The product copula corresponds to independence of the random variables

X and Y .

Next we look at a measure of departure between two copulas.

Suppose (X1, Y1) and (X2, Y2) are pairs of independent vectors with

joint distribution functions F1(x, y) and F2(x, y) and copulas C1(u, v) and

C2(u, v), respectively. F (x) is the marginal distribution of X1, X2 and G(y)

the marginal distribution of Y1, Y2, respectively. Then difference between

the probability of concordance and probability of discordance is

τ̃(C1, C2) = P [(Xi −Xj)(Yi − Yj) > 0]− P [(Xi −Xj)(Yi − Yj) < 0]

= 4

∫ ∫
[0,1]X[0,1]

C2(u, v)dC1(u, v)− 1. (9.4.12)

Note that τ̃(C1, C2) is symmetric in its arguments.

When C1(u, v) = C2(u, v) = C(u, v), then τ̃(C1, C2) is given as

τ̃(C,C) = 4

∫ ∫
[0,1]X[0,1]

C(u, v)dC(u, v)− 1 = 4E(C(U, V ))− 1. (9.4.13)

Hence τ̃(C,C) is a linear function of the expectation of C(U, V ) where

U, V are dependent uniform (0, 1) random variables. Notice that the pop-

ulation version of Kendall’s τK is

τ̃(C,C) = τ̃K .

Similarly, the population version of Spearman’s ρS , that is , ρ̃S is given

as

ρ̃S = 12

∫ ∫
[0,1]X[0,1]

[C(u, v)− uv]dudv

= 12

∫ ∫
[0,1]X[0,1]

uvdC(u, v)− 3

= 3τ̃(C,Π),

where Π(u, v) is the independent copula given in (9.4.10).

9.4.1 Empirical Copulas

Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n) be the order statistics corre-

sponding to X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, respectively. Then, a non-

parametric estimator of the copula function is the empirical copula [De-

heuvels (1979)] defined as

Cn(
i

n
,
j

n
) =

Number of pairs (Xk, Yk) with Xi ≤ X(i), Yi ≤ Y(j)

n
.

(9.4.14)
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Let,

cn(
i

n
,
j

n
) =

{
1
n if (X(i), Y(j)) is an element of the sample,

0 otherwise.

The relationship between cn( in ,
j
n ) and Cn( in ,

j
n ) is given below:

cn(
i

n
,
j

n
) = Cn(

i

n
,
j

n
)− Cn(

i− 1

n
,
j

n
)− Cn(

i

n
,
j − 1

n
) + Cn(

i− 1

n
,
j − 1

n
),

and

Cn(
i

n
,
j

n
) =

i∑
`=1

j∑
`′=1

cn(
`

n
,
`′

n
).

9.4.2 Tests Based on Copulas

In this section we look at tests for independence against the alternative

H2 based on copulas studied by [Deheuvels (1979)]. In terms of copulas

independence is equivalent to

C(u, v) = uv, 0 ≤ u, v ≤ 1 (9.4.15)

and the pair (X,Y ) is said to be PQD if

C(u, v) ≥ uv, 0 ≤ u, v ≤ 1. (9.4.16)

Hence one measure of departure from independence is given by

γ =

∫ 1

0

∫ 1

0

[C(u, v)− uv]dudv. (9.4.17)

A test for testing H0 versus positive dependence can be based on γn,

an empirical estimate of γ. But 12γ = ρ̃S . Hence, a test based on γn is

equivalent to the test based on Spearman’s statistic ρS .

Tests of independence based on copulas have been studied by [Deheuvels

(1979)]. He proposed a Kolmogorov type supremum statistic for testing for

departure from independence. Consider

Tn(1) = max
1≤i,j≤n

|Cn(
i

n
,
j

n
)− ij

n2
|. (9.4.18)

Large values of the statistic are significant. The small sample exact null

distribution of n2Tn(1) was tabulated.

Another test was proposed by [Genest and Rémillard (2004)]. Consider

C̃n(u, v) = Cn(u, v)− Cn(u, 1)Cn(1, v).



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 160

160 NONPARAMETRIC STATISTICS: THEORY AND METHODS

Let

Bn =

∫ 1

0

∫ 1

0

[C̃n(u, v)]2dudv =
1

n

n∑
i=1

n∑
j=1

Dn(Ri, Rj)Dn(Qi, Qj), (9.4.19)

where

Dn(s, t) =
2n+ 1

6n
+

s(s− 1)

2n(n+ 1)
+

t(t− 1)

2n(n+ 1)
− max(s, t)

n+ 1
.

Large values of the statistic are significant. Tables for asymptotic critical

values are given in [Genest and Rémillard (2004)]. Asymptotic properties

of Bn are studied in [Genest et al. (2007)].

9.5 Positive Quadrant Dependence

In this section we consider two measures of quadrant dependence and their

relationship with ρ̃S and τ̃K .

The first measure of quadrant dependence where the average is taken

with respect to F and G, the marginal distribution functions of X and Y

is ∫ ∞
−∞

∫ ∞
−∞

H(x, y)dF (x)dG(y) (9.5.20)

=

∫ ∫
[0,1]X[0,1]

[C(u, v)− uv]dudv

=

∫ ∫
[0,1]X[0,1]

uvdC(u, v)− 3

=
1

12
ρ̃S . (9.5.21)

Another measure of quadrant dependence where the average is taken with

respect to F (x, y), the joint distribution functions of X and Y is∫ ∞
−∞

∫ ∞
−∞

H(x, y)dF (x, y) (9.5.22)∫ ∞
−∞

∫ ∞
−∞

[F (x, y)− F (x)G(y)]dF (x, y)

=

∫ ∫
[0,1]X[0,1]

[C(u, v)− uv]dC(u, v)

=
1

12
[3τ̃K − ρ̃S ]. (9.5.23)
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[Nelsen (1992)], [Tchen (1980)] and [Lehmann (1966)] showed that if

(X,Y ) are PQD, then,

ρ̃S ≥ 0,

τ̃K ≥ 0,

3τ̃K − ρ̃S ≥ 0. (9.5.24)

Hence the tests based on Spearman’s ρS and τK used for testing H0

versus H1 can also be used for testing H0 against the PQD alternative H2.

In particular we have

3τ̃K ≥ ρ̃S .
Comments:

(i) [Kochar and Deshpande (1988)] proposed tests based on U-statistics

for testing H0 vesrus H2.

(ii) In some cases one observes a pair of random variables (X,Y ), where

X is a continuous random variable and Y is discrete. Here X could be

the failure time of an individual and Y the cause of failure or X is the

number of years of marriage and Y and indicator variable denoting

1 in case of death and 0 if there is a divorce. [Dewan et al. (2004)]

proposed tests based on U-statistic for testing H0 vs H1 and H2 for

such data.

(iii) Suppose F1(x, y) and F2(x, y) are two bivariate distribution functions

with marginal distribution functions F and G. [Lai and Xie (2000)]

defined the concept of more PQD for comparing F1(x, y) and F2(x, y).

F2(x, y) is more concordant than F1(x, y) if

F1(x, y) ≤ F2(x, y), ∀x, y ∈ R.
Consider the following copula given by [Lai and Xie (2000)].

Cρ(u, v) = uv + ρubvb(1− u)a(1− v)a, a, b ≥ 1, 0 < ρ < 1.

Then for ρ1 < ρ2 we have Cρ2 is more concordant than Cρ1 .

(iv) It is easy to see that

τ̃(M,M) = 1,

τ̃(M,π) = 1/3,

τ̃(M,W ) = 0,

τ̃(W,π) = −1/3,

τ̃(W,W ) = −1,

τ̃(π, π) = 0.
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9.6 Exercises

1. Prove the following:

(a) −1 ≤ ρS ≤ 1,

(b) −1 ≤ τK ≤ 1.

2(a). The statistic τK can be seen to be a U-statistic estimator for the

functional

τ̃K = P [(Xi −Xj)(Yi − Yj) > 0]− P [(Xi −Xj)(Yi − Yj) < 0]. (9.6.25)

(b). Find the asymptotic distribution under the hypothesis of indepen-

dence of
√
nτK as n→∞ using the fact that τK is a U-statistic.
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Chapter 10

NONPARAMETRIC DENSITY
ESTIMATION

10.1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed random vari-

ables with density function f(x). If the density function f(x) were of a

known parametric form, for example, Normal (θ, σ2) with

f(x) =
1√
2πσ

exp

{
− 1

2

(x− θ)2

σ2

}
, −∞ < x, θ <∞, σ > 0,

then one could estimate the unknown mean θ and variance σ2 using stan-

dard procedures for parametric estimation. Then, one can plug these

estimators in the expression for the unknown density function to get its

estimator.

In this chapter we will look at nonparametric estimators of the density

function f(x) for a fixed value of x. At the outset it should be noted

that one can not obtain a non-negative unbiased estimator of the density

function.

Suppose there exists a non-negative unbiased estimator Sn(x) of f(x)

such that

E(Sn(x)) = f(x), ∀ x.

By Fubini’s Theorem, we have

E[

∫ b

a

Sn(x)dx] =

∫ b

a

E[Sn(x)]dx

=

∫ b

a

f(x)dx

= F (b)− F (a).

Also, we have,

E[Fn(b)− Fn(a)] = F (b)− F (a),

163
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where Fn(x) is the empirical distribution function discussed in Chapter

4. Since the order statistics (X(1), X(2), . . . , X(n)) constitute a complete

sufficient statistics and Fn(b) − Fn(a) is a function of the order statistics,

it follows that

Fn(b)− Fn(a) =

∫ b

a

Sn(x)dx a.e.

But this is not possible as Fn(x) is not an absolutely continuous distribution

function. Hence, f(x) can not have a pointwise non-negative unbiased

estimator.

10.2 The Histogram

The earliest and the simplest estimator of the density function is the his-

togram. Let x0 be the origin and consider the intervals [x0 + kh, x0 + (k+

1)h], k = . . . ,−2,−1, 0, 1, 2, . . . . Then, the histogram is defined as

f̂(x) =
1

nh
(Number of X ′is in the same bin as x). (10.2.1)

The intervals constitute the bins of the histogram. Figures 10.1-10.4, 10.5-

10.8, 10.9-10.13 give the plots for standard Normal density function and

the histogram for various choices of the sample size, the origin and the

bandwidth. The standard normal density function is in green in each of

the figures.

Comments:

(i) Figures 10.1-10.4 show the histogram and the density function of a

standard Normal distribution with origin 0 and the bin width 0.5.

The various choices of sample size are n = 50, 100, 500, 1000. From the

figures it is clear that for small sample sizes the histogram estimator is

not close to the unknown density function, but improves with increase

in sample size.

(ii) Figures 10.5-10.8 show the histograms for a random sample of size

2000 from standard Normal distribution with bandwidth 0.5 and origin

varying from −1.0,−0.5, 0.5, 1.0.

(iii) Figures 10.9-10.13 show the histograms for a random sample of size

2000 from standard Normal distribution with origin 0.0 and varying

bandwidth 0.1, (0.2), . . . , 0.9.
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Fig. 10.1 (Histogram - n = 50)
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n=100, dist=N(0,1), origin=0, bin−width=0.5
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Fig. 10.2 (Histogram - n = 100)

Clearly, the histogram estimator f̂(x) depends on the origin x0 and the

choice of the bandwidth which controls the smoothing. This makes the

estimator f̂(x) very subjective. Besides f̂(x) is discontinuous and is not

appropriate for estimation of derivative of the density function f(x).
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Fig. 10.3 (Histogram - n = 500)

  True and Estimated Density

n=1000, dist=N(0,1), origin=0, bin−width=0.5
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Fig. 10.4 (Histogram - n = 1000)

10.3 The Naive Estimator

The density function f(x) is the derivative of the distribution function F (x).

Therefore, we can write f(x) as

f(x) = lim
h→0

1

2h
P [x− h < X ≤ x+ h]

= lim
h→0

F (x+ h)− F (x)

2h
.

Hence the naive estimator of f(x) is given by,

f̃(x) =
(Number of X ′is in (x− h, x+ h])

2nh

=
Fn(x+ h)− Fn(x− h)

2nh
.

One can rewrite f̃(x) as

f̃(x) =
1

n

n∑
i=1

1

h
w(
x−Xi

h
), (10.3.2)

where

w(x) =

{
1
2 if x ∈ [−1, 1),

0 otherwise.
(10.3.3)
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Fig. 10.5 (Histogram - Origin −1.0)
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Fig. 10.6 (Histogram - Origin −.5)

Naive estimator, in some sense, is the generalization of the histogram esti-

mator where every observed value is the centre of the interval/bin. Thus, it

takes care of the subjectivity in choosing an origin in the case of histogram

estimators. The smoothness of the estimator is determined by the choice of

the bin width. The larger the bin width, the smoother the estimator. But

too large bin widths can lead to flat estimators.

It is easy to see that

E[f̃(x)] =
F (x+ h)− F (x− h)

2h
, (10.3.4)

V ar[f̃(x)] =
1

nh2
V ar[K(

x−X1

h
)]

=
1

4nh2
[F (x+ h)− F (x− h)− (F (x+ h)− F (x− h))2],

(10.3.5)
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Fig. 10.7 (Histogram - Origin .5)
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Fig. 10.8 (Histogram - Origin 1.0)

Cov[f̃(x), f̃(y)] =
1

4h2
Cov(Fn(x+ h)− Fn(x− h), Fn(y + h)− Fn(y − h))

=
1

4h2
[(F ((x+ h) ∧ (y + h))− F (x+ h)F (y + h))

−(F ((x+ h) ∧ (y − h))− F (x+ h)F (y − h))

−(F ((x− h) ∧ (y + h))− F (x− h)F (y + h))

+(F ((x− h) ∧ (y − h))− F (x− h)F (y − h))]. (10.3.6)

The mean squre error (MSE) of the naive estimator f̃(x) is given by

E[f̃(x)− f(x)]2 = V ar[f̃(x)] + [E(f̃(x))− f(x)]2

=
1

4nh2
[F (x+ h)− F (x− h)− [F (x+ h)− F (x− h)]2]

+[
1

2h
[F (x+ h)− F (x− h)]− f(x)]2. (10.3.7)

Assuming that the first three derivatives of f(x) exist and the second deriva-

tive f (2)(x) 6= 0, consider the Taylor Series expansion of F (x + h) and

F (x− h), we get,

F (x+ h)− F (x− h) = 2hf(x) +
1

3
f (2)(x)h3 +O(h4). (10.3.8)
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Fig. 10.9 (Histogram - Bandwidth 0.1)
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Fig. 10.10 (Histogram - Bandwidth 0.3)

Using (10.3.8), the bias of the naive estimator f̃(x) is given by,

E[f̃(x)− f(x)] = f(x) +
1

6
f (2)(x)h2 +O(h3)

≈ h2f (2)(x)

6
, as h→ 0. (10.3.9)

V ar[f̃(x)] =
1

4nh2
[(2hf(x) +

1

3
f (2)(x)h3 +O(h4))

−(2hf(x) +
1

3
f (2)(x)h3 +O(h4))2]

≈ f(x)

2nh
, as h→ 0. (10.3.10)

Substituting (10.3.9) and (10.3.10) in (10.3.7), we get the MSE of f̃(x)

is

E[f̃(x)− f(x)]2 ≈ f(x)

2nh
+
h4

36
(f (2)(x))2 +O(h4 +

1

nh
).

(10.3.11)

Observe that the bias tends to zero but the variance tends to infinity as

h→ 0. Hence choose h such that

h4 ≈ 1

nh
. (10.3.12)
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Fig. 10.11 (Histogram - Bandwidth 0.5)

Let

h = kn−α, α > 0.

Then, from (10.3.12), it follows that

h = n−
1
5 ,

and MSE of f̃(x) is

f(x)

2k
n−

4
5 + k4n−

4
5

(f (2)(x))2

36
. (10.3.13)
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Minimizing (10.3.13) with respect to k, the optimal choice of k is

k = [
9
2
f(x)

|f (2)(x)|2
]
1
5 . (10.3.14)

Substituting in (10.3.13), the optimal MSE of f̃(x) is given by

E[f̃(x)− f(x)]2 ≈ 5

4
9−

1
5 2−

4
5 (f(x))

4
5 |f (2)(x)| 25n− 4

5 . (10.3.15)

10.4 Kernel Estimators

The naive estimator leads us to a class of estimators of the form

fn(x) =
1

nhn

n∑
i=1

K(
x−Xi

hn
), (10.4.16)

where the bandwidth hn → 0 as n→∞. fn(x) is the kernel estimator of

the unknown density function f(x). The kernel K(.) is a symmetric density

function defined on the real line satisfying the following conditions:

A1 : sup
−∞<x<∞

K(x) ≤M,

A2 : |x|K(x)→ 0 as |x| → ∞,

A3 :

∫ ∞
−∞

x2K(x)dx <∞. (10.4.17)



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 172

172 NONPARAMETRIC STATISTICS: THEORY AND METHODS

Examples of kernels satisfying the conditions given above are:

(i) Triangular Kernel:

K(x) =

{
1− |x| if |x| < 1,

0 otherwise.

(ii) Gaussian Kernel:

K(x) =
1√
2π
exp− (

1

2
x2), −∞ < x <∞.

(iii) Biweight Kernel:

K(x) =

{
15
16 (1− x2)2 if |x| < 1,

0 otherwise.

(iv) Rectangular Kernel:

K(x) =

{
1
2 if |x| < 1,

0 otherwise.

Note that the naive estimator f̃(x) is a special case of the kernel type

estimator with rectangular kernel.

E[fn(x)] =

∫ ∞
−∞

1

hn
K(

x− y
hn

)f(y)dy

→ f(x)

∫ ∞
−∞

K(y)dy

= f(x), (10.4.18)

for a continuous function f(x).

V ar[fn(x)] =
1

n
V ar[

1

hn
K(

x−X1

hn
)]

≤ 1

n
E[

1

hn
K(

x−X1

hn
)]2

=
1

nhn

∫ ∞
−∞

1

hn
K2(

x− y
hn

)f(y)dy

→ 1

nhn
f(x)

∫ ∞
−∞

K2(y)dy as n→∞. (10.4.19)

Comments:

(i) From (10.4.18) it follows that the kernel type estimator fn(x) is asymp-

totically unbiased estimator of the unknown density function f(x).
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(ii) Further, since (10.4.19) holds, fn(x) is a pointwise consistent estimator

for f(x).

(iii) If K(.) is a function of bounded variation and the series∑∞
n=1 exp(−γnh2

n) converges for every γ > 0, then

Vn = sup
−∞<x<∞

|fn(x)− f(x)| → 0 with probability 1 as n→∞,

iff density f(x) is uniformly continuous.

This result gives a necessary and sufficient condition for uniform con-

sistency with probability 1.

Next we look at the central limit theorem for fn(x) for a fixed x. Note

that fn(x) can be expressed as

fn(x) =
1

n

n∑
i=1

Zni(x), (10.4.20)

where

Zni(x) =
1

hn
K(

x−Xi

hn
).

Thus, fn(x), for a fixed x, is the average of an array of random variables

{Zni, 1 ≤ i ≤ n}. Then, if f(x) is a continuous density function and K(x)

is a symmetric kernel satisfying the assumptions (A1) - (A3), we have,

fn(x)− E(fn(x))√
V ar(fn(x))

D→ N(0, 1), as n→∞, (10.4.21)

(where hn → 0 and nhn →∞ as n→∞.)
A sufficient condition for (10.4.21) to hold is that for some δ > 0,

E|Zn1(x)− E(Zn1(x)|2+δ)

n
δ
2 (V ar(Zn1(x))1+ δ

2

→ 0 as n→∞. (10.4.22)

One can see that

E|Zn1(x)|2+δ =

∫ ∞
−∞
| 1

hn
K(

x− y
hn

)|2+δf(y)dy

' 1

h1+δ
n

f(x)

∫ ∞
−∞
|K(y)|2+δdy. (10.4.23)
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V ar(Zn1(x)) = V ar(
1

hn
K(

x−Xi

hn
))

=
1

nh2
n

∫ ∞
−∞

K2(
x− y
hn

)f(y)dy − 1

nh2
n

[

∫ ∞
−∞

K(
x− y
hn

)f(y)dy]2

=
1

nh2
n

∫ ∞
−∞

K2(
x− y
hn

)f(y)dy − 1

n
[f(x) +Bias]2

' 1

nhn
f(x)

∫ ∞
−∞

K2(t)dt+O(
1

n
)

' 1

nhn
f(x)

∫ ∞
−∞

K2(t)dt. (10.4.24)

Using Cr inequality, (10.4.23) and (10.4.24) we see that (10.4.22) holds.

Hence, for a fixed x a properly standardized version of fn(x), has a

limiting standard normal distribution.

10.4.1 Optimal Bandwidth

Kernel type density estimators define a class of density functions. Let us

look at the optimal bandwidth and the optimal kernels in this class of

kernels satisfying the following conditions:

(i) K(.) is a bounded density function,

(ii) K(x) = K(−x) ∀x,
(iii)

∫∞
−∞ x2K(x)dx = c0,

(iv) the density function f(x) is bounded and twice continuously differen-

tiable with f, f (2) ∈ L2(R), the class of square integrable real valued

functions.

Using Taylor’s series expansion and above conditions E[fn(x)] can be

written as follows

E[fn(x)] = E[
1

hn
K(

x−Xi

hn
)]

=

∫ ∞
−∞

f(x− zhn)K(z)dz

'
∫ ∞
−∞

K(z)[f(x)− zhnf (1)(x) +
z2h2

n

2
f (2)(x)]dz

= f(x) +
h2
n

2
f (2)(x). (10.4.25)
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Thus, the bias and the variance of fn(x) can be approximated by

E[fn(x)]− f(x) ' h2
n

2
f (2)(x), (10.4.26)

V ar[fn(x)] ' 1

nhn
f(x)

∫ ∞
−∞

K2(y)dy. (10.4.27)

Therefore, the Mean Square Error of fn(x) is

E[fn(x)− f(x)]2 = V ar[fn(x)] + [E[fn(x)]− f(x)]2

' 1

nhn
f(x)

∫ ∞
−∞

K2(y)dy +
1

4
c20[f (2)(x)h2

n]2.

(10.4.28)

The Mean Integrated Square Error (MISE) of fn(x) is∫ ∞
−∞

E[fn(x)− f(x)]2dx =

∫ ∞
−∞

V ar[fn(x)]dx+

∫ ∞
−∞

[E[fn(x)]− f(x)]2dx

' 1

nhn

∫ ∞
−∞

K2(y)dy +
1

4
h4
nc

2
0

∫ ∞
−∞

f (2)(x)dx.

(10.4.29)

Then, the optimal value of the bandwidth hn which minimizes the MISE

in (10.4.29) is given by

hn(opt) = [c0]−
2
5 [

∫ ∞
−∞

K2(y)dy]
1
5 [

∫ ∞
−∞

f (2)(x)dx]−
1
5n−

1
5 . (10.4.30)

Comments:

(i) The optimal value of the bandwidth hn given in (10.4.30) depends on

the unknown second derivative f (2)(x).

(ii)
∫∞
−∞ f (2)(x)dx measures the fluctuations in the unknown density func-

tion. If the variations in the density function are large, then one should

choose smaller values of hn.

(iii) Clearly, the optimal choice of hn converges to 0 as the sample size

increases. But the rate of convergence is very slow.

The obvious question then is how does one make an appropriate choice

of hn. One way out is to choose hn with respect to a standard family of

distributions. If f(x) is taken as the the N(0, σ2) density function, then∫ ∞
−∞

f (2)(x)dx ' 0.212σ−5,

hn(opt) ' 1.06σn−
1
5 . (10.4.31)
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The unknown variance can be estimated from the data. This procedure

is subjective, it works well only if the unknown distribution is close to the

normal density. In other cases it could oversmooth or undersmooth the

density function.

The other way out is the cross-validation procedure for finding the band-

width which is totally dependent on the observed value of the random vari-

ables. The Integrated Square Error of fn(x) is given by∫ ∞
−∞

[fn(x)−f(x)]2dx =

∫ ∞
−∞

f2
n(x)dx−2

∫ ∞
−∞

fn(x)f(x)dx+

∫ ∞
−∞

f2(x)dx.

(10.4.32)

Since f(x) is independent of the data, minimizing (10.4.32) with respect to

hn is equivalent to minimizing

A(fn) =

∫ ∞
−∞

f2
n(x)dx− 2

∫ ∞
−∞

fn(x)f(x)dx.

Let

f−in (x) =
1

hn(n− 1)

∑
1≤j 6=i≤n

K(
x−Xj

hn
). (10.4.33)

Thus, f−in (x) is an estimator of the density function f(x) based on all

n observations X1, X2, . . . , Xn except Xi.

Then, an estimator of A(fn) is given by

1

n2hn

n∑
i=1

n∑
j=1

K̃(
Xi −Xj

hn
)− 1

(n− 1)hn
K(0), (10.4.34)

where

K̃ = K(2)(t)− 2K(t), (10.4.35)

and K(2)(t) is the convolution of the kernel density K(x) with itself.

10.4.2 Optimal Kernels

The approximate value of MISE given in (10.4.29) with optimal choice of

hn (10.4.30) is given by

5

4
B(K)[

∫ ∞
−∞

(f (2)(x))2dx]
1
5n−

4
5 , (10.4.36)

B(K) = c
2
5
0 [

∫ ∞
−∞

K2(t)dt]
4
5 ,
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where B(K) is the part of the optimal MISE which depends on the kernel

density function and

c0 =

∫ ∞
−∞

t2K(t)dt

is the second moment of the density function.

Given the correct bandwidth, a smaller value of B(K) gives a smaller

value of MISE. That is, one has to minimize B(K) subject to the fact that

K(t) is a density function and the second moment c0 = 1. The optimal

Kernel subject to these constraints is the Epanechnikov kernel given by

KEPC(x) =

{ 3
4
√

5
(1− 1

5x
2) if −

√
5 ≤ x ≤

√
5,

0 otherwise.

Two different kernels can be compared by looking at their relative MISE.

This essentially means comparing corresponding values of B(K) functions.

Hence, the efficiency of any symmetric kernel K(x) relative to the optimal

kernel KEPC(x) is defined as follows

eff(K) = [
B(KEPC)

B(K)
]
5
4

=
3

5
√

5
[

∫ ∞
−∞

t2K(t)dt]−
1
2 [

∫ ∞
−∞

K2(t)dt]−1. (10.4.37)

Thus, efficiency of the kernels mentioned earlier with respect to

Epanechnikov kernel are given as below

Biweight Triangular Gaussian Rectangular

0.994 0.986 0.951 0.925

The efficiencies of all the kernels above with respect to the optimal

kernel (Epanechnikov) are close to 1. This shows that the choice of the

kernel is not that important in the constructions of the estimator fn(x).
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Fig. 10.14 Exact and estimated standard exponential density function with bandwidth

0.3
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Fig. 10.15 Exact and estimated standard exponential density function with bandwidth
0.5
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Fig. 10.16 Exact and estimated standard exponential density function with bandwidth

1.0
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Fig. 10.17 Exact and estimated standard exponential density function with bandwidth

0.3
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Fig. 10.18 Exact and estimated standard exponential density function with bandwidth
0.5
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Fig. 10.19 Exact and estimated standard exponential density function with bandwidth

1.0
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Comments:

Figures 10.14-10.16 give the actual density function and the kernel type

estimators for the standard exponential density function. The density es-

timator is based on n = 500 observations and three choices of bandwidth

considered are hn = 03, 0.5, 1.0. Four different kernels used are - rectangu-

lar, triangular, Gaussian and Epanechnikov.

Figures 10.17-10.19 give analogous representations for the standard nor-

mal density function.

Clearly the choice of kernel is not important. But the kernel type density

estimator becomes smoother with the increase in the bandwidth.

(i) The kernel type estimator fn(x) can be suitably modified when the

observations X1, X2, . . . , Xn are subject to random censoring.

(ii) Kernel type estimators of derivatives of the density function (assuming

that they exist), can also be found.

(iii) The kernel K is a symmetric density function. If the observations are

i.i.d random variables with the density function having support only

on the positive half of the real line (as in reliability where one deals

with lifetimes), the density estimator fn(x) would also have support

for x < 0.

(iv) The failure rate of a positive valued random variable is defined as

r(x) =
f(x)

1− F (x)
, x > 0.

Kernel type estimators of r(x) that involve fn(x) have been studied

both when observations are uncensored and censored.

(v) One can find kernel type estimators for multivariate density functions

also.

10.5 Goodness-of-fit Tests Based on Hellinger Distance

Goodness-of-fit tests based on distance between two distribution functions

has been discussed in Chapter 4. Such tests may be based on distances or

disparities between the probability density functions (p.d.f.). The squared

Hellinger distance HD(f, g) between two p.d.f.s f and g is defined as

HD(f, g) =

∫
(f1/2(x)− g1/2(x))2dx.

(In this section the integration is over the entire range of the variable.)
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[Beran (1977)] has suggested a density based approach for testing good-

ness of fit, which involves estimating the completely unknown p.d.f. of the

probability distribution from which the data has been collected using the

techniques suggested earlier in the chapter and also simultaneously estimat-

ing the parameters of the family of distributions with which the goodness

of fit is being tested. This is achieved by deriving a statistic which is the

minimum of the Hellinger distance between the estimated density in gen-

eral and the density estimated under the null hypothesis. The calculation

of the statistic is not easy and requires computer intensive approach.

Let X1, X2, · · · , Xn be a random sample from the p.d.f. g and let F =

{fθ, θ ∈ Θ} be a specified parametric family of p.d.f.s. The aim is to test

the hypothesis

H0 : g ∈ F versus g /∈ F .

A minimum Hellinger distance estimator (MHDE) θ̂n of θ is the value

that minimizes HD(fθ, ĝn), where ĝn is some nonparametric density esti-

mator of g. That is

θ̂n = minimiser HD(fθ, ĝn) = T (ĝn).

The minimized distance HD(fθ̂n , ĝn) then provides a natural goodness-

of-fit statistic.

Asymptotic properties of θ̂n and HD(fθ̂n , ĝn) are obtained by [Beran

(1977)] for continuous models when ĝn is a kernel density estimator and

under many regularity conditions on the kernel and the densities admitted

in the parametric family and when the parameter space Θ is a compact

subset a p−dimensional Euclidean space Rp. These conditions are given in

the Appendix.

Let

ĝn(x) =
1

hn

n∑
i=1

K

(
x−Xi

hn

)
and let the bandwidth hn = CnSn is, where {Cn} is a sequence of positive

constants, Sn = Sn(X1, X2, · · · , Xn) is a robust scale estimator and the

kernel K(·) is a density function.

Let

Rn = max
1≤i≤n

Xi − min
1≤i≤n

Xi,

µn =
1

4
Rn

∫
K2(x)dx
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and

σ2
n =

1

8
CnRn

∫
(K ∗K)2(x)dx

where

K ∗K(x) =

∫
K(x− t)K(t)dt.

Then under the regularity conditions,

Hn = σ−1
n [nCnHD(fθ̂n , ĝn)− µn]

converges in distribution to a standard normal variable N(0, 1) under fθ as

n→∞.

Thus the α-level test is to reject H0 if |Hn| > z1−α, where z1−α is the

upper α% value of the standard normal distribution.

Also, the limiting distribution of
√
n(θ̂n− θ) is normal with mean 0 and

variance 1
4 [
∫
ḣθ(x)ḣTθ (x)dx]−1 under fθ, where

ḣθ(x) = (ḣ
(1)
θ (x), · · · , ḣ(p)

θ (x))T with T denoting the transpose.

Comment:

The result holds for parametric families {fθ, θ ∈ Θ} where Θ is not

compact but can be embedded within a compact set. This, for example, is

possible for a location scale family {σ−1f(σ−1(x − µ));σ > 0, −∞ < µ <

∞} where f is continuous by the transformation µ = tan θ1, σ = tan θ2

θ = (θ1, θ2) ∈ (−π/2, π/2)X(0, π/2) = Θ′

fθ(x) = (tan θ2)−1[f((tan θ2)−1(x− tan θ1))],

θ ∈ Θ′ and f
1/2
θ − g

1/2
t can be extended to a continuous function on

Θ = [−π/2, π/2]× [0, π2] which is compact.

As mentioned earlier the calculation of the statistic requires numerical

procedures. The package ‘mhde’ in the software ‘R’ computes the statistic

for testing for normality. We use this package for the example given below.

Example 10.1: A random sample of size 50 was drawn from a standard
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normal distribution. The 50 realized sample values were:

xi :

−1.78591244 −1.84806439 0.43908867 1.89931392 0.11460372

−0.99975553 1.98227882 1.27408448 −0.65982870 −0.17998088

−0.96214672 −2.77070720 1.03211597 0.63404868 −0.01136362

0.17044201 0.25887653 0.40709031 −1.25989876 0.01786809

−0.99163883 0.68777496 −2.25124910 −0.92807826 0.51053525

−0.06455210 −0.67074125 1.01480298 −0.67973552 −0.80499295

0.75452452 −1.17989824 −0.50269120 0.50929114 −0.03872944

0.42513314 −0.31860478 0.15257267 −1.97994943 0.94175868

0.40813190 1.49367941 0.16790680 0.19326649 1.86317466

−0.75527608 −1.81606802 −1.84208663 0.52984966 0.24812656

.

The aim is to test H0 : fθ belongs to the family {N(µ, σ2),−∞ < µ <

∞, 0 < σ2 < ∞}. The package obtains the MHDEs of µ and σ2 by an

iterative algorithm with the initial estimates as µ̂(0) = median {xi} and

σ̂(0) = (0.6745)−1 median {|xi − µ̂(0)|},
where 0.6745 is the 0.75 quantile of the standard normal distribution. Note

that σ̂(0) is a consistent estimator of the standard deviation of a normal

population.

The package uses the density estimator ĝn(x) based on the Epanech-

nikov kernel:
K(x) = .75(1− x2) for |x| ≤ 1.

For this kernel
∫ 1

−1
K(x)2dx = 3/5 and

∫ 1

−1
(K ∗K(x))2dx = 167

355 . The scale

statisic Sn = σ̂(0). The value of Cn for sample size n = 50 is taken to be

0.7372644.

For the data in the example, µ̂(0) = 0.0662359 and σ̂(0) = 1.08455. The

output of the package gives the final estimates of µ and σ, the Hellinger

distance and the p-value. For the above data, these values are: location

estimate = 0.1501589; Scale estimate = 1.119368; Hellinger Distance =

0.08626999; p-value = 0.5434091. Since the p-value is > 0.1, there is no

evidence against the normal distribution.

Comments:

(i) For the discrete models, goodness-of-fit tests based on power diver-

gence statistics have been introduced by [Cressie and Read (1984)]

and [Read and Cressie (2012)]. The power divergence Iλ between den-

sities f and g is defined by

Iλ(g, f) =
1

λ(λ+ 1)

∫
g(x)

[(
g(x)

f(x)

)λ
− 1

]
dx.
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The power divergence statistics of [Cressie and Read (1984)] is of the

form

Iλn =
2

2nλ(λ+ 1)

k∑
i=1

Oi

{(
Oi
npi

)λ
− 1

}
, λ ∈ R

where Oi are the observed frequencies and npi the expected frequen-

cies. The Pearson’s χ2(λ = 1), log likelihood ratio statistic (λ → 0),

Freeman-Tukey statistic (λ = − 1
z ) are all special cases of the above.

The statistic for λ = 2/3 is shown to be a good alternative to the χ2

test.

(ii) For the discrete models, goodness-of-fit tests based on the blended

weight Hellinger distance methods have been introduced and their

comparisons given in [Basu and Sarkar (1994)] and [Shin et al. (1995)].
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Chapter 11

REGRESSION ANALYSIS

11.1 Introduction

Traditionally regression has been the statistical technique which enables

one to predict the values of a random variable Y when in practice another

variable is actually observed. This is useful in situations where it is rela-

tively difficult, expensive or time consuming to observe Y than observing

X. It is assumed that a training data set in the form of a bivariate random

sample (Y1, X1), (Y2, X2), . . . , (Yn, Xn) is available. It is used to devise the

prediction rule to be used to predict a new Y value when the corresponding

X value is available. Again, assuming a bivariate p.d.f. f(x, y) for X and Y

which has moments up to order 2, it is well known that g(x) = E(Y |X = x),

the conditional expectation of Y given X = x, minimizes the mean squared

error E(Y − g(X))2 among all functions. Hence an estimator of E(Y |x) is

often used as the predictor of Y . In case (X,Y ) have the bivariate normal

distribution BV N(µx, µy, σ
2
x, σ

2
y, ρ), then E(Y |x) is given as

E(Y |x) = µY + ρ
σY
σX

(x− µx)

= (µY − ρ
σY
σX

µx) + ρ
σY
σX

x

= β0 + β1x,

where

β1 = ρ
σY
σX

, β0 = µY − β1µX .

Hence, in this case E(Y |x) is a linear function of x and the problem of

estimating the conditional expectation reduces to estimating the constants

β0 and β1. The estimators are given by

β̂1 = ρ̂
σ̂Y
σ̂X

, β̂0 = ȳ − β̂1x̄,

189
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where

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi,

σ̂2
X =

1

n

n∑
i=1

(xi − x̄)2, σ̂2
Y =

1

n

n∑
i=1

(yi − ȳ)2,

ρ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

.

In the nonparametric set up we do not assume any functional form for

the joint p.d.f. f(x, y). Given two random variables Y and X such that it

is suspected that values of X affect the values of Y , the relation may be

modelled as

Y = g(X) + ε, (11.1.1)

where the function g(x) is called the regression of Y on X and ε is the

random error. The problem is to estimate the regression function g(x).

The only assumptions made are that ε is a random variable such that

E(ε) = 0,

V ar(ε) = σ2 <∞,
E(Y |x) = g(x). (11.1.2)

So often, the conditional expectation is called the regression of Y on x.

11.2 Least Squares Estimators

In this section we use the least squares estimators to get univariate and the

multivariate linear regression models.

11.2.1 Univariate Regression

Suppose Y and X are linearly related, where X is the predictor variable

and Y is the response variable. The model

Y = β0 + β1x+ ε (11.2.1)

involves a single variable X and is called a simple linear regression

model.
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Because of (11.1.2), we have

E(Y |x) = β0 + β1x,

V ar[Y |x] = σ2. (11.2.2)

The regression line is

g(x) = β0 + β1x. (11.2.3)

The slope β1 represents the change in mean E(Y |x) for a unit change

in x.

We use the method of least squares to estimate β0 and β1 on the basis

of sample observations (y1, x1), (y2, x2), . . . , (yn, xn).

Sum of squares of errors is

S(ε) =

n∑
i=1

(yi − β0 − β1xi)
2. (11.2.4)

Minimizing (11.2.4) w.r.t. β0 and β1 gives the least squares estimators of

the intercept β0 and the slope β1 as

β̂0 = ȳ − β̂1x̄,

β̂1 =

∑n
i=1 yixi − x̄ȳ∑n
i=1 x

2
i − nx̄2

. (11.2.5)

Then, the least squares fitted regression line is given by

ŷ = β̂0 + β̂1x. (11.2.6)

Then the ith residual is given by

ei = yi − ŷi
= yi − (β̂0 + β̂1xi), i = 1, 2, . . . , n. (11.2.7)

The ith residual represents the difference between the observed value yi
and the fitted value ŷi. Note that

β̂1 =

n∑
i=1

ciyi,

where ci = xi−x̄
Sxx

, Sxx =
∑n
i=1(xi − x̄)2.

Thus, β̂0 and β̂1 can be expressed as linear combinations of observed

values y1, y2, . . . , yn. It is easy to see that

E(β̂0) = β0, E(β̂1) = β1.
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Hence both β̂0 and β̂1 are unbiased estimators of β0 and β1, respectively.

Since Y1, Y2, . . . , Yn are independent and Cov(Ȳ , β̂1) = 0, we have

V ar(β̂1) =
σ2

Sxx
, V ar(β̂0) = σ2(

1

n
+

x̄2

Sxx
).

From the Gauss-Markov Theorem, it follows that the least squares es-

timators β̂0 and β̂1 have minimum variance in the class of all unbiased

estimators of β0 and β1 that are linear combinations of yi. Hence the

estimators are known to be the Best Linear Unbiased estimators (BLUE).

Comments:

(i)
∑n
i=1 ei =

∑n
i=1(yi − ŷi) = 0. That is, the sum of residuals in a linear

regression model is zero. Equivalently,
∑n
i=1 yi =

∑n
i=1 ŷi. That is,

the sum of observed yi
′s is the same as the sum of expected yi

′s.

(ii) The regression line (11.2.6) passes through (ȳ, x̄).

(iii) The sum of squares of residuals is given by
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2

=

n∑
i=1

(yi − ȳ)2 − β̂1Sxy,

where Sxy =
∑n
i=1 yi(xi − x̄).

Therefore, an unbiased estimator of σ2 is given by

σ̂2 =

∑n
i=1 e

2
i

n− 2
.

11.2.2 Multiple Linear Regression

Suppose the response variable Y depends on p regressor variables

X1, X2, . . . , Xp. Again assuming a linear regression model, one can write

Y = βX + ε, (11.2.8)

where Y is the n-vector of observations on Y , X is the n × p matrix of n

observations on the p-variate predictor variable and the elements of ε, are

the random and uncorrelated errors with mean 0 and common variance σ2.

The least squares estimator of the p-vector β of coefficients is given by

β̂ = (X′X)−1X′Y = HY, (11.2.9)

which are linear functions of elements of Y. The matrix H = (X′X)−1X′

is based on elements of X alone and is called the hat matrix.
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11.3 Shrinkage Estimators

Sometimes there is a belief that the standard estimators of regression pa-

rameters should be modified so that they tilt towards a known value of the

parameter (without loss of generality, say θ). This can be achieved through

the regression techniques - Ridge and Least Absolute Selection and Shrink-

age Operator estimators described in this section. These estimators are

not unbiased but seen to possess a smaller M.S.E. compared to the best

unbiased estimators.

11.3.1 Ridge Estimators

Consider the multiple linear regression problem. Suppose that β∗ is a

biased estimator of β. Then the M.S.E. of β∗ is seen to be

E[β∗ − β]2 = V ar[β∗] + [E(β∗) − β]2. (11.3.1)

Thus, the M.S.E. of β∗ is the sum of the variance of the biased estimator

and the square of the bias of the estimator.

The least squares estimator β̂ is the BLUE. Hence the bias is zero.

However, it is possible that the variance of the estimator is large and one

could use a biased estimator of β whose variance is smaller than that of

the unbiased estimator β̂ and even its M.S.E. is smaller than that of the

unbiased estimator.

Besides it is possible that some components β̂j , 1 ≤ j ≤ p of the vector

β̂ take very small values. The corresponding variables Xj may not be

contributing significantly to the regression model.

In the multiple linear regression set up one could look at another class of

estimators, the ridge estimators which are biased, whose variance is smaller

than that of the unbiased estimator β̂ and the β̂′js that are too small are

shrinking towards zero.

Ridge estimator β̂R can be found by minimizing
n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2
j , (11.3.2)

over λ ≥ 0.

The second term
∑p
j=1 β

2
j in (11.3.2) is called the penalty term. The

parameter β0 has been left out of the penalty term as we want the solution

to be independent of the origin. Since β̂0 = ȳ we shift xij to xij − x̄ and

minimize (11.3.2) as if there was no intercept.
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The parameter λ above is called the tuning parameter. Note that when

λ = 0, we get the usual linear regression. When λ =∞, the ridge estimator

β̂R = 0. The tuning parameter λ is chosen so as to reduce the prediction

error given in (11.3.2). In practice, we calculate the M.S.E.(λ) for some

values of λ, 0 < λ < ∞ and choose the one which seems to reduce the

M.S.E.(λ) as much as possible.

The residual sum of squares are given by

RSS = (Y −Xβ)′(Y −Xβ) + λβ′β. (11.3.3)

Differentiation w.r.t β, we get β̂R is a solution of the equation

(X′X + λI)β̂R = X′Y. (11.3.4)

Hence, the ridge estimator β̂R is given by

β̂R = [(X′X + λI)]−1X′Y. (11.3.5)

Note that (X′X + λI) will be non-singular even if X′X is singular. Using

(11.2.9), we get

β̂R = [(X′X + λI)]−1X′Xβ̂

= Cλβ̂, (11.3.6)

where Cλ = (X′X+λI)]−1X′X. Hence, β̂R is a linear function of elements

of β̂.

Since β̂ is an unbiased estimator of β, we have

E(β̂R) = Cλβ. (11.3.7)

Hence β̂R is a biased estimator of β. Variance-covariance matrix of β̂R
is given by

V ar[β̂R] = σ2[(X′X + λI)]−1X′X[(X′X + λI)]−1. (11.3.8)

The M.S.E. of the ridge estimator β̂R is

M.S.E.(β̂R) = V ar[β̂R] + (Bias[β̂R])2

= σ2[(X′X + λI)]−1X′X[(X′X + λI)]−1 + λ2β′[(X′X + λI)]−2β

= σ2tr[[(X′X + λI)]−1X′X[(X′X + λI)]−1] + λ2β′[(X′X + λI)]−2β

= σ2

p∑
j=1

ci
(ci + λ)2

+ λ2β′[(X′X + λI)]−2β, (11.3.9)

where c′is are eigen values of X′X.

Note that as λ increases, the bias increases and the variance decreases.

We choose λ such that the reduction in variance is greater than increase in

squared bias.
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Further the residual sum of squares of β̂R can be expressed as follows

(Y −Xβ̂R)′(Y −Xβ̂R)

= (Y −Xβ̂)′(Y −Xβ̂) + (β̂R − β̂)′X′X(β̂R − β̂).

(11.3.10)

Hence the residual sum of squares for β̂R is the residual sum of squares of

β̂ plus a term giving the square of scaled bias.

[Hoerl et al. (1975)] suggested that we chose λ as

λ =
kσ̂2

β̂′β̂
,

where β̂ and σ̂2 are the least squares estimators of β and σ2.

In practice, as mentioned earlier, M.S.E.(λ) is found for several choices

of λ. And the λ which minimizes the M.S.E. is used as the tuning parameter

for finding β̂R.

Comments:

(i) The problem of finding ridge estimators is equivalent to minimizing∑n
i=1(yi − β0 −

∑p
j=1 βjxij)

2 subject to the constraint
∑p
j=1 β

2
j ≤ t.

In this case t is the tuning parameter. Hence, the ridge estimator β̂R
is the set of β′js which minimize the penalized sum of squares subject

to constraints.

(ii) Predictor variables need to have the same scale. Else the penalty term∑p
j=1 β

2
j will not give equal importance to all variables. And the final

conclusions could be misleading.

(iii) If all β′js are moderately large, then the advantage of ridge estimators

is much smaller than in the case when some β′js are small. In the

former case the choice of values of λ which reduce the variance of

ridge estimators is usually small.

(iv) Ridge regression is not useful in variable selection directly but can help

in deciding which of the regressor variables do not contribute much to

the response and may then be considered as candidates for elimination

from the study.

11.3.2 Least Absolute Selection and Shrinkage Operator

Estimators

The ridge estimators can not ‘shrink’ any of the βj co-efficients to zero.

As an alternative one could use the Least Absolute Selection and Shrink-

age Operator (LASSO) estimators introduced in [Tibshirani (1996)]. The
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LASSO estimator β̂L is found by minimizing
n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj |, (11.3.11)

over λ ≥ 0.

The motivation for the LASSO estimator is the same as that for the ridge

estimator - to have a linear regression for Y on X. Comparing (11.3.2) and

(11.3.11) one sees that the only difference between the LASSO estimator

and the ridge estimator is that the former uses the penalty
∑p
j=1 |βj | and

the latter uses the penalty
∑p
j=1 β

2
j . Analogous to the ridge estimator β̂R,

the LASSO estimator β̂L is same as the least squares estimator β̂ for λ = 0

and β̂L = 0, if λ =∞.

Comments:

(i) The problem of finding LASSO estimators is equivalent to minimizing∑n
i=1(yi−β0−

∑p
j=1 βjxij)

2 subject to the constraint
∑p
j=1 |βj | ≤ t. In

this case t is the tuning parameter. Hence, the LASSO estimator β̂L
is the set of β′js which minimize the penalized sum of squares subject

to constraints
∑p
j=1 |βj | ≤ t.

(ii) We can not find a closed form expression for the LASSO estimator β̂L.

(iii) Value of some coefficients βj can be equal to 0. Hence the LASSO

estimator β̂L is useful in variable selection. The variables correspond-

ing to βj = 0 can be dropped from the regression model. Note that,

the Ridge and the LASSO regression techniques minimize the residual

sum of squares under constraints on the parameters, viz ||β||2 ≤ t

and ||β||1 ≤ t for some t. The minimizing solution in the || . ||2 cannot

have any components equal to 0, whereas the one which minimizes the

|| . ||1 may have some 0 components.

(iv) Consider a linear regression model

yi = µ+ εi, i = 1, 2, . . . , n,

where

E(εi) = 0, V ar(εi) = σ2, Cov(εi, εj) = 0, i 6= j.

Degrees of freedom of the estimate ŷ are given by

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi, yi).

Suppose X is a n× p matrix.
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(a) If β̂ is a least squares estimator, then

df(ŷ) = p.

(b) If β̂R is the ridge estimator, then

df(ŷ) = tr(X[X′X + λI]−1X′).

(c) If β̂L is the ridge estimator, then

df(ŷ) = E[number of nonzero coefficients in β̂L].

(v) Like all multiple regression methods both Ridge and LASSO estima-

tion is heavily computer intensive. The multiple linear regression and

ridge regression involves calculation of inverses of matrices which could

be of large order. The minimization for LASSO needs to be done nu-

merically. Least Angular Regression (LARS) [Efron et al. (2004)] and

other time saving algorithms have been developed for this purpose.

Most of the popular techniques are included in proprietary softwares

such as SPSS, SAS or in open source softwares such as R and are

recommended for use in actual practice.

It is obvious that without further distribution assumptions (like normal-

ity) one can not get exact variances, confidence intervals or other inference

procedures. But asymptotic distributions which exist in far more general-

ity can be used to obtain approximate properties of these procedures. Use

of CLT based approximations or those based on bootstrap and simulation

techniques and also the so called cross validation techniques may also be

used.

Lita da Silva (2013) [Silva (2014)] proved the strong consistency of the

ridge estimators using the results for strong consistency of the least squares

estimators in multiple regression models under the assumption

E(|ε|r) <∞ for some r ∈ (0, 2),

E(ε) = 0, r > 1.

[Silva et al. (2015)] proved similar results under the assumption that E(ε) 6=
0, E(|ε|r) <∞ for some r ∈ (0, 1].

[Knight and Fu (2000)] considered the asymptotic distribution of the

regression estimators when the penalty term is
∑p
j=1 |βj |γ when γ > 0.

For γ = 1 this would be the LASSO estimator and for γ = 2 it would

be the ridge estimator. [Chatterjee and Lahiri (2011)] showed that if the

error terms have finite mean the LASSO estimator is strongly consistent if

λ = λn = o(n). However, the consistency fails if λn
n → a as n → ∞ a ∈

(0,∞). They obtained the rate of convergence to the true parameter if the

error variables have a finite moment of order α, 1 < α < 2.
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11.4 Linear Basis Expansion

The regression function g(X) = E(Y |X) may not be a linear function of

X. The linear function holds for the bivariate normal model. It is also easy

to understand and interpret and can be visualized as the first order Taylor

seies approximation of any function g(X).

This idea can be generalized as follows. Consider the model

g(X) =

M∑
m=1

βmhm(X), (11.4.1)

where hm : Rp → R is the mth ‘basis function’, m = 1, 2, . . . ,M.

The basis functions hm(X) are prespecified transformations of

X. The model (11.4.1) is linear in the transformed variables

h1(X), h2(X), . . . , hM (X). Hence, the least squares theory can be used

to estimate the parameters β1, β2, . . . , βM and fit the model (11.4.1).

Examples of transformed variables hm(X) commonly used are

(i) hm(X) = Xm.

This gives us the standard version of the linear model (11.2.8).

(ii) hm(X) = X2
m or hm(X) = XiXj .

This transformation introduces the second order terms, the cross prod-

ucts being interpreted as interactions.

(iii) hm(X) = logXm or hm(X) =
√
Xm or hm(X) = ||X||.

These are the nonlinear transformations used if data suggests such

relationships between Y and X.

(iv) hm(X) = I(Lm ≤ Xi ≤ Um).

Here hm(X)′s are indicator functions of a given region.

Choice of polynomial functions could have its disadvantages - as each

observation affects the entire curve. This usually results in biased estima-

tors and increase in variance of the estimators at the end of the support

of x. So instead of global transformations one could look at local basis

functions, so that a given observation affects only the fit close to it and has

no effect in fitting the model in other parts of the real line.
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11.4.1 Piecewise Polynomials and Splines

Let us partition the range of x into 3 disjoint intervals by choosing end

points ξ1, ξ2. These ξ1, ξ2 are called knots. Suppose

h1(x) = I(x ≤ ξ1),

h2(x) = I(ξ1 < x ≤ ξ2),

h3(x) = I(x > ξ2). (11.4.2)

In this case the regression function g(x) is given by

g(x) =

3∑
m=1

βmhm(x),

= β1 if x ≤ ξ1,
β2 if ξ1 < x ≤ ξ2,
β3 if x > ξ2. (11.4.3)

One can find estimators β̂1, β̂2, β̂3 using least squares theory.

Or one could fit a piecewise linear model in each of the sub-regions.

That is,

g(x) = β1 + β2x if x ≤ ξ1,
β3 + β4x if ξ1 < x ≤ ξ2,
β5 + β6x if x > ξ2. (11.4.4)

However, this procedure gives us a regression function g(x) which is

discontinuous at ξ1 and ξ2. In order to get a continuous regression function

g(x), we must have

β1 + β2ξ1 = β3 + β4ξ1

β3 + β4ξ2 = β5 + β6ξ2. (11.4.5)

This means we have to find least squares estimators of 6 parameters

subject to 2 conditions given in (11.4.5) so as to get a regression function

which is continuous at ξ1, ξ2. This leads us to the following choice of basis

functions

h1(x) = 1,

h2(x) = x,

h3(x) = (x− ξ1)+,

h4(x) = (x− ξ2)+, (11.4.6)
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where

h+(x) =

{
h(x) if h(x) ≥ 0,

0 if h(x) < 0.
(11.4.7)

The choice of the basis functions gives us a continuous function g(x)

which is linear everywhere except at the end points ξ1 and ξ2. The slope of

the function in the three regions is different. Note that there are 2 param-

eters to be estimated in each of the three regions subject to 2 constraints.

Hence, there are 3 × 2 − 2 = 4 degrees of freedom. Hence we need 4 basis

functions to estimate 4 parameters.

In general, one could partition the range of x into K + 1 intervals by

choosing K knots ξ1, ξ2, . . . , ξK .

Above is an example of spline. One could generalize it to a piecewise

m− 1 degree polynomial that is continuous upto m− 2 derivatives.

If the number of knots is small and the degree of the polynomial in

the region is small, then the basis of the fitted model would be of high

dimension. On the other hand increasing the number of knots and degree

of the polynomial could result in over fitting and hence result in higher

variance.

11.4.2 Cubic Splines

Here we consider fitting a cubic spline. Suppose ξ1, ξ2, . . . , ξK are K knots

partitioning the range of x into K + 1 intervals. The data in each interval

is to be fitted by a cubic function. Hence there are (3 + 1)(K + 1) param-

eters. The continuity of the function g(x) at each of the knots imposes 3K

constraints. Hence the degrees of freedom are 4(K + 1) − 3K = K + 4.

Hence there are K + 4 parameters that have to be estimated. Consider

g(x) =

3∑
j=0

βjx
j +

K∑
`=1

β3+`(x− ξ`)3
+. (11.4.8)

The least squares theory is used to estimate (β0, β1, . . . , βK).

Cubic splines are the most popular type of splines used in practice.

Users claim that splines of degree 3 is the lowest order that is needed to

ensure continuity at the knots.

11.4.3 Choosing the Knots

Here we have described the fitting of cubic splines. Number of knots can

be chosen depending on the shape of the data. These are suitable when

there are 1, 2 or 3 turns in the shape of the data in the given intervals.
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Small number of knots will lead to large bias and small variance, whereas

large number of knots leads to overfitting: less bias but large variance.

The choice of the knots is in the hand of the user. A natural choice

would be to use the quantiles as knots. This would give us intervals with

the same number of observations in each one of them. The other possibility

is to have knots which are equidistant, that is, we have intervals with the

same width.

Smoothing splines use observations as knots. Step-wise regression gives

an automatic way of selecting the knots.

11.4.4 Choosing the Basis Functions

The choice of the basis functions depends on the properties we are looking

for in the regression function. For example, if we use a basis of functions

which have continuous first order derivatives, then the regression function

will also have continuous first order derivatives. The functions [(x−ξj)+]2 =

(x − ξj)2
+ have continuous first order derivatives. Hence, the basis for a

quadratic spline function is

{1, x, x2, (x− ξ1)2
+, (x− ξ2)2

+, . . . , (x− ξK)2
+}. (11.4.9)

This basis helps in identifying the concavity and convexity seen in a scatter

plot.

The basis for a power function of order p is

{1, x, x2, . . . , xp, (x− ξ1)p+, (x− ξ2)p+ . . . , (x− ξK)p+}. (11.4.10)

Consider the function g(x) given by

g(x) =

p∑
j=0

βjx
j +

K∑
`=1

βp+`(x− ξ`)p+. (11.4.11)

Then the function g(x) would have continuous derivatives of order p−1.

Comments:

(i) Once the knots are fixed the standard least squares theory is used for

estimation of the parameters of the model.

(ii) Suppose the fitted model is

ŷ = Xβ̂,

where β̂ minimizes ||ŷ −Xβ̂||2,
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β̂ = (β0, β1, . . . , βK+3)′.

X =

 1 x1 x
2
1 x

3
1 (x1 − ξ1)+ · · · (x1 − ξk)+

...
...

...
...

... · · ·
...

1 xn x
2
n x

3
n (xn − ξ1)+ · · · (xn − ξk)+


One could estimate (β4, β5, . . . , βK+3)′ subject to the constraint∑K
`=1 β

2
3+` < C for a suitable choice of C.

(penalized splines)

11.5 An Example

We illustrate the methods proposed in earlier sections on “Concrete compre-

hensive strength data set” available in the link ‘https://archive.ics.uci.edu/

ml/datasets/Concrete+Slump+Test’. The data set consists of 103 obser-

vations on 7 input variables - Cement, Blast furnace slag (BFS), Fly ash

(FA), Water, Superplasticiser (SP), Coarse aggregate (CA) and Fine aggre-

gate. There are 3 output variables - Slump, Flow and 28-day Compressive

strength. We use the ‘glmnet’ function of the glmnet package from ‘R’ to

perform the LASSO and the Ridge regression (for details see [James et al.

(2013)]).

First we look at LASSO Regression of ‘Flow’ on the first 6 input

variables.

Figure 11.1 gives the Mean Square Error of the LASSO regression plot-

ted against the log(λ). The optimal value of λ in this case is 0.896. The

coefficients of the six parameters corresponding to the optimal value of the

tuning parameter are given by

Table 11.1 - Regression Parameters under LASSO

Constant Cement BFS FA Water SP CA

-42.893 0 -0.075 0 0.499 0 0

Figure 11.2 shows the Mean Square Error of the Ridge regression plotted

against the log(λ). The optimal value of λ in this case is 1.2. The coefficients

of the six parameters corresponding to the optimal value of the tuning

parameter are given in Table 11.2.

Clearly LASSO regression helps us in variable selection. Clearly Blast

furnace Slag and Water seem to effect the flow of cement.
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Fig. 11.1 LASSO Regression

Table 11.2 - Regression Parameters under Ridge

Constant Cement BFS FA Water SP CA

-14.915 -0.013 -0.097 -0.009 0.466 -0.071 -0.016

Finally we look at the splines with Compressive strength as the output

variable and Cement as the input variable. We use the ‘lm’ function of the

splines package in R to fit the cubic spline function.

Figure 11.3 gives the scatter diagram for the two variables and cubic

splines spline with knots as 180, 240 and 300.
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Chapter 12

NONPARAMETRIC BAYESIAN
METHODS

We introduced Bayesian methods for the parametric setting in Section 1.9,

which incorporate the preferences of the statistician/scientist about the

parameter through a probability distribution on the parameter space. The

parameter space in the nonparametric setting is a set of functions such as

the set of all distribution functions or the set of all density functions and is

thus infinite dimensional. The Bayesian approach, therefore, involves spec-

ifying priors, that is define probability measures, on an infinite dimensional

space.

12.1 Estimation of the Distribution Function

Suppose we want to obtain an estimator of the c.d.f. F . Let P denote

the corresponding probability measure. One may have some prior belief

about the c.d.f. based on past data or expert opinion. For example, one

can have some idea about the distribution of marks for a certain course

or the distribution of the life lengths of certain systems. A c.d.f. attaches

probabilities to sub-intervals of R. Suppose from the past data we have

some estimates of the probabilities of a fairly large number of sub-intervals

of R. These probabilities could be the average probabilities of the intervals

estimated from different data sets from the same population. We thus also

have an estimate of the variance of these probabilities. Let P0(A) denote

the average probability of an interval A. Then our prior estimate of P (A)

is P0(A). Suppose now we obtain a random sample X1, · · · , Xn from P and

wish to update our prior estimator. Without prior knowledge, the e.d.f. Fn,

defined in Chapter 3 is taken as a reasonable estimator of F . Having a prior

estimator and a data based estimator, a simple estimator combining both

is an average of the two. The current estimator is based on a sample of

207
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size n, whereas the prior could be based on different sized data sets. Let α

correspond to the average sample size on which the prior estimate is based.

We may take the new estimator to be:

F̂n(t) =
α

α+ n
P0((−∞, t]) +

n

n+ α
Fn(t). (12.1.1)

The above estimator is precisely the Bayes estimator obtained by using

the Dirichlet prior introduced by [Ferguson (1973)] on the space of prob-

ability measures on R. We define this prior below. First let us consider

some measure theoretic preliminaries.

12.1.1 Measure Theoretic Preliminaries

Let M(R) denote the space of all probability measures on B, the Borel σ-

algebra of subsets of R. To define a probability measure on M(R) we need

to consider a σ-algebra B of subsets of M(R). The σ-algebra B on M(R)

is taken to be the smallest σ−algebra with respect to which the functions

{P → P (B)|B ∈ B} from M(R) to R are measurable.

Let (Ω,F ,P) be a probability space. A function P defined on (Ω,F ,P)

and taking values in M(R) is called a random probability measure . That

is, for each ω ∈ Ω, P = P (ω, ·) is a probability measure on (R,B). We

note that the σ-algebra B has been chosen so that for a random probability

measure P (w, .), P (., B) is a random variable from (Ω,F) to (R,B) for

each Borel subset B of R. A prior then can be considered as the probability

law of a random probability measure or a stochastic process indexed by

the sets in the Borel σ−algebra B. Therefore to define a prior we need to

specify a probability distribution ΠB1,··· ,Bk of (P (B1), · · · , P (Bk)) for each

finite partition (B1, · · · , Bk) of R, by Borel sets so that the Kolmogorov

consistency ([Billingsley (1995)], p. 486) conditions hold. That is,

(i) ΠB1,··· ,Bk is a probability measure on Sk = {(x1, · · · , xk), 0 ≤ xi ≤
1,
∑i=k
i=1 xi ≤ 1}, the k dimensional simplex.

(ii) If (A1, · · · , Am) is another collection of disjoint Borel subsets, whose

elements are unions of sets from (B1, · · · , Bk), then ΠA1,··· ,Am is the

distribution of

(
∑

Bi⊂A1

P (Bi), · · · ,
∑

Bi⊂Am

P (Bi)),

(iii) if Bn ↓ ∅ then
∏
Bn

converges weakly to a distribution degenerate at

‘zero’, and
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(iv) P (R) = 1, a.s..

For a rigorous treatment, we refer to ([Ghosh and Ramamoorthi (2003)],

Chapter 2).

Next we define what is meant by a random sample from P for a random

probability measure P [Ferguson (1973)].

Definition 12.1.1. Suppose P is a random probability measure on (R,B).

We say that conditional on P , the random variables X1, · · · , Xn, defined

on the probability space (Ω,F ,P), form a random sample of size n from P

if for each integer m ≥ 1, and for all Borel sets A1, · · · , Am, B1, · · · , Bn,
P(X1 ∈ B1, · · · , Xn ∈ Bn|P (A1), · · · , P (Am), P (B1), · · · , P (Bn))

=

n∏
i=1

P (Bi), a.s. P.

12.2 The Dirichlet Prior

We first define the Dirichlet distribution.

Definition 12.2.1. The random vector (X1, · · · , Xk−1, Xk), where Xk =

1−
∑k−1
i=1 Xi, is said to have the Dirichlet distribution of order k ≥ 2 with

parameters (α1, · · · , αk) if the density (with respect to the k−1 dimensional

Lebesgue measure) of the distribution of (X1, · · · , Xk−1) is

f(x1, · · · , xk−1) =
Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)
(

k−1∏
i=1

xαi−1
i )(1−

k−1∑
i=1

xi)
αk−1,

on the k − 1 dimensional simplex S(k−1) and is zero elsewhere and where

αi > 0, xi > 0, i = 1, · · · , k. We denote the Dirichlet distribution of order

k with parameter (α1, · · · , αk) by D(α1, · · · , αk).

Note that the distribution of (X1, · · · , Xk−1, Xk) is singular with re-

spect to the Lebesgue measure on the k-dimensional space since Xk =

1−
∑i=k−1
i=1 Xi. For k = 2, D(α1, α2) corresponds to the Beta distribution

with support (0, 1) and parameters (α1, α2). The Dirichlet distribution with

parameters (α1, · · · , αk), with αi ≥ 0, and αj = 0 for j ∈ J ⊂ {1, 2, · · · , k},
is the distribution of the vector (X1, · · · , Xk−1, Xk) such the Xj = 0 for

j ∈ J and such that (Xi; i /∈ J) has a lower dimensional Dirichlet distribu-

tion with density as given in the above definition.

Two properties of interest of the Dirichlet distribution are:
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(1) If the distribution of (X1, · · · , Xk) is D(α1, · · · , αk) and s =∑k
i=1 αi then the marginal distribution of Xj is Beta(αj , s − αj).

Thus E(Xi) = αi/s, V ar(Xi) = αi(α − αi)/(s
2(s + 1)), and

cov(Xi, Xj) = αiαj/(s
2(s+ 1)), i 6= j.

(2) Let the distribution of (X1, · · · , Xk) be D(α1, · · · , αk). If

n1, · · · , nm are integers such that 0 < n1 < · · · < nm = k

then the distribution of (
∑n1

i=1Xi,
∑n2

i=n1+1Xi, · · · ,
∑nm
i=nm−1+1Xi) is

D(
∑n1

i=1 αi,
∑n2

i=n1+1 αi, · · · ,
∑nm
i=nm−1+1 αi).

Definition 12.2.2. Let P0 be a probability measure on (R,B) and α a

non-negative real number. A random probability measure P on (R,B) is

said to be distributed as a Dirichlet process with parameter (α, P0) if for

every finite partition B1, · · · , Bm of R by Borel sets, the joint distribution

of (P (B1), · · · , P (Bm)) is Dirichlet D(αP0(B1), · · · , αP0(Bm)).

The existence of the Dirichlet Process follows from the Theorem 3.2.1

([Ghosh and Ramamoorthi (2003)], p. 96). We will denote a Dirichlet

process with parameter (α, P0) by Dα,P0
.

Comments:

(i) For a Borel subset B of R, by considering the partition B,Bc, we see

that the P (B) has the Beta(αP0(B), α− αP0(B)) distribution. Therefore,

the expectation of P (B), that is, E(P (B)) = P0(B). Thus the parameter

P0, called the base measure, does have the connotation as the average prob-

ability. It is the mean of the process Dα,P0
.

(ii) Also note that V ar(P (B)) = P0(B)(1 − P0(B))/(α + 1), which shows

that the variance of the prior distribution decreases as α increases, therefore

α is referred to as the concentration parameter. Since as α → ∞, P (B)

approaches, in probability, to its mean P0(B), α may also be considered to

represent the ‘sample size’ of the prior with reference to ‘the law of large

numbers’.

(iii) Let P be a random probability measure on (R,B) and F (t) =

P ((−∞, t]) the corresponding random c.d.f. Then F is a Dirichlet process

with parameter (α, F0) iff P is a Dirichlet process with parameter (α, P0),

where F0(t) = P0((−∞, t]).
An equivalent definition of the Dirichlet process given by [Sethuraman

(1994)] shows that the Dirichlet process gives mass 1 to the set of discrete

measures. This definition, also called the stick-breaking algorithm, is help-

ful for simulating a Dirichlet process. We give the definition below. Let
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δa denote the (Dirac) measure which gives mass 1 to the point a, that is,

δa(B) = 1 if a ∈ B and δa(B) = 0 if a /∈ B.

Definition 12.2.3. Let θ1, θ2, · · · be i.i.d. Beta(1, α) and Y1, Y2, · · · be

i.i.d. from P0. Let p1 = θ1 and pn = θn
∏n−1
i=1 (1 − θi), for n = 2, 3, · · · .

Then P =
∑∞
i=1 piδYi is Dirichlet with parameter (α, P0).

12.2.1 Posterior Distribution

The Dirichlet process prior is a conjugate prior. We give below a heuristic

argument to show why the posterior must again be a Dirichlet process.

Suppose conditional on P, X1, · · · , Xn is a random sample of size

n from P, and P is Dα,P0 . To obtain the conditional distribution of

P given X1, · · · , Xn, let us consider a partition of R by Borel sets

(B1, · · · , Bm). Let Nk = #{i, Xi ∈ Bk}, the number of observed val-

ues in Bk. Now given P , P (X ∈ Bk) = P (Bk) (= pk say). Since

the X ′is are independent, (N1, · · · , Nm) given (p1, · · · pm) has a multino-

mial distribution. We note that the prior distribution of (p1, · · · , pm) is

D(α0P0(B1), · · · , α0P0(Bm)). Now the product of the conditional proba-

bility mass function of (N1, · · · , Nm) given (P (B1), · · · , P (Bm)) and the

probability density of (P (B1), · · · , P (Bm)) is proportional to:

pN1
1 pN2

2 . . . pNmm p
αP0(B1)−1
1 · · · pαP0(Bm)−1

m ,

which shows that the conditional distribution of (P (B1), · · · , P (Bm))

given (N1, · · · , Nm) is again Dirichlet with the parameters updated to

(αP0(B1)+N1, · · · , αP0(Bm)+Nm). Further, the conditional distribution of

(P (B1), · · · , P (Bm)) given the vector (N1, · · · , Nm) of cell counts, is same

as the conditional distribution of (P (B1), · · · , P (Bm)) given (X1, · · · , Xn)

(see Exercise 5). Thus the conditional distribution of (P (B1), · · · , P (Bm))

given X1, · · · , Xn is again Dirichlet with the parameters updated to

(αP0(B1) + N1, · · · , αP0(Bm) + Nm). Since this holds for any finite par-

tition of R by Borel sets, we can conclude that the conditional dis-

tribution of P given X1, · · · , Xn is a Dirichlet process with parameter

(α+ n, (αP0 +
∑n
i=1 δXi)/(α+ n)).

Comment: Though the posterior is mathematically tractable, the conclu-

sions ignore the actual values of the observations to a great extent as is

common in all count or rank based distribution free procedures. That is,

the estimate of F (t) depends only on the number of observations less than

equal to t and not on how close the observations are to t.
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12.2.2 Predictive Distribution

Consider the predictive distribution P[Xn+1 ∈ B|X1, · · · , Xn]. Given P ,

X1, · · · , Xn+1 are independent, the conditional distribution of Xn+1 given

P,X1, · · · , Xn is P . Now for any Borel set B,

P(Xn+1 ∈ B|X1, · · · , Xn) = E(I[Xn+1 ∈ B]|X1, · · · , Xn)

= E(E(I[Xn+1 ∈ B]|P,X1, · · · , Xn)|X1, · · · , Xn)

= E(P (B)|X1, · · · , Xn) =
αP0(B) +

∑n
i=1 δXi(B)

α+ n
, (12.2.2)

where I[A] denotes the indicator function of the set A.

Comment: In the applications, it is easier to find a Bayes rule for the

no-sample problem (the case n = 0) with Dα,P0 and then a Bayes rule

based on the observations x1, · · · , xn can be obtained by replacing (α, P0)

by (α+ n, (αP0 +
∑n
i=1 δxi)/(α+ n)).

1. Estimate of the distribution function: Let us consider the problem of

estimating the distribution function. In the classical set up a common

estimator of the c.d.f. is the empirical distribution function (e.d.f.) Fn dis-

cussed in Chapter 3. The parameter space is the set of all distribution

functions on R, equivalently the set M(R) of all probability measures on

(R,B). Let F denote a c.d.f. and P the associated probability measure.

Then F (t) = P ((−∞, t]). Consider a Dirichlet prior with parameter (α, P0)

on M(R). Let X1, · · · , Xn be a random sample from F . We consider the

squared error loss function and the Bayes risk. From the Bayes procedure,

the estimator F̂n is obtained by minimizing the risk,

EL(F, F̂n) =

∫
E(F (t)− F̂n(t))2dµ(t),

where µ is a given finite measure on R. The Bayes risk is minimized by

choosing for each t, F̂ (t) to minimize E(F (t)− F̂n(t))2. For the no-sample

problem, this is achieved by taking F̂n(t) equal to the mean EF (t). Now

EF (t) = αP0(−∞, t]/α = P0(−∞, t]. Therefore as remarked earlier, given

a random sample X1, · · · , Xn of size n from F , the Bayes estimator is

F̂n(t) =
αP0((−∞, t]) +

∑n
i=1 δXi((−∞, t])

α+ n
. (12.2.3)

We note that the Bayes estimator of the distribution F is same as the

predictive distribution. Let an = α/(α+ n). We note that

F̂n(t) = anP0((−∞, t]) + (1− an)Fn(t),
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which is the estimator in (12.1.1); a convex combination of the e.d.f. (a

frequentist estimator) and the expected value of F (t) under the prior.

Example 12.1: Suppose x(1) < · · · < x(n) are the ordered observed values.

Let P0 denote the standard normal distribution on R and let α = 1. Then

F̂n(t) =



1
1+n

1√
2π

∫ t
−∞ e−

1
2u

2

du if t ≤ x(1)

1
1+n

1√
2π

∫ t
−∞ e−

1
2u

2

du+ n
1+n

i
n , if x(i) ≤ t < x(i+1),

i = 1, · · · , n− 1

1
1+n

1√
2π

∫ t
−∞ e−

1
2u

2

du+ n
1+n if t ≥ x(n).

Comment: Note that the e.d.f. Fn(t) ≡ 1 for t ≥ x(n) whereas F̂n(t) does

not reach 1 at x(n) but→ 1 as n→∞. Also the e.d.f. Fn(t) ≡ 0 for t ≤ x(1)

whereas F̂n(t) is not. Thus if the prior is close to the true c.d.f., then F̂n(t)

will give a better approximation in the extreme.

Example 12.2: Lifetimes (in weeks) of 25 units are given below: 22.3,

26.8, 30.3, 31.9,33.3, 33.7, 34.7, 36.1, 36.4, 36.6, 37.1, 37.6, 38.5, 38.7,38.9,

39.1, 41.1, 42.4, 43.6, 43.8,44.0, 45.3, 45.8, 50.4, 51.4.

Figures 12.1 to 12.4 show the graphs of the e.d.f. and the Bayes estimate

of the c.d.f. obtained using a Dirichlet prior. The prior for Figure 12.1

has the base distribution P0 as standard log-normal and the concentration

parameter α = 1. For Figure 12.2, the base distribution is log-normal with

log of the mean =4, log of the standard deviation = 2 and the concentration

parameter α = 1. These values 4 and 2 were chosen to match the sample

mean and standard deviation, respectively. Figures 12.3 and 12.4 have

the same base distribution as Figures 12.1 and 12.2, respectively but with

α = 6. The dashed line in each figure is the graph of the base distribution

of the prior. We see that the Bayes estimate is close to the e.d.f. in Figures

12.1 and 12.2, that is when α = 1. It is not so in Figures 12.3 and 12.4,

that is for α = 6, i.e., when a lot more faith has been put in the prior

distribution.

In the table below, we provide the values of Fn(t) and F̂n(t) with the

baseline distribution P0 as standard log-normal and α = 1.
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Fig. 12.1 Empirical and Bayes cdf

Sr.No. Lifetimes e.d.f. F̂n(t) Sr.No. Lifetimes e.d.f. F̂n(t)

(weeks)

1 22.3 0.04 0.051 13 38.5 0.52 0.517

2 26.8 0.08 0.091 14 38.7 0.56 0.555

3 30.3 0.12 0.130 15 38.9 0.60 0.594

4 31.9 0.16 0.169 16 39.1 0.64 0.632

5 33.3 0.20 0.208 17 41.1 0.68 0.671

6 33.7 0.24 0.246 18 42.4 0.72 0.710

7 34.7 0.28 0.285 19 43.6 0.76 0.748

8 36.1 0.32 0.324 20 43.8 0.80 0.787

9 36.4 0.36 0.362 21 44.0 0.84 0.825

10 36.6 0.40 0.401 22 45.3 0.88 0.864

11 37.1 0.44 0.439 23 45.8 0.92 0.902

12 37.6 0.48 0.478 24 50.4 0.96 0.942

25 51.4 1.00 0.980
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Fig. 12.2 Empirical and Bayes cdf

2. Estimate of the median ([Ferguson (1973)]): Suppose the problem is to

estimate the median m of an unknown probability measure P on (R,B). We

consider the Dirichlet prior with parameter (α, P0) on M(R). The median m

of a random probability distribution F is random. The Bayes estimate of m

under the squared error loss and the no-sample problem is the expectation

of m, which is difficult to compute. For the no-sample problem, the Bayes

estimate of m under the absolute error loss function is the median of the

distribution of m, which is the same as the median of E(P ) = P0. To see

this, we first note that a number m0 is a median of the distribution of m if

and only if

P[m < m0] ≤ 1/2 ≤ P[m ≤ m0]. (12.2.4)

To show that m0 is a median of E(P ), we need to show that

E(P (−∞,m0)) ≤ 1/2 ≤ E(P (−∞,m0]),
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Fig. 12.3 Empirical and Bayes cdf

that is,

P0((−∞,m0)) ≤ 1/2 ≤ P0((−∞,m0]). (12.2.5)

Now since m is the median of F, P[m < m0] = P[F (m0) > 1/2]

and P[m ≤ m0] ≤ P[F (m0) ≥ 1/2]. But the distribution of F (m0) is

Beta(αP0((−∞,m0]), αP0((m0,∞))). Thus (12.2.4) holds if and only if the

median of this Beta distribution is 1/2, which holds if and only if the two

parameters of the Beta distribution are equal and which holds if and only

if (12.2.5) holds. This establishes that the median of the distribution of m,

is the same as the median of P0.

As mentioned earlier, to obtain the posterior estimator given a sample

of size n, we replace (α, P0) by (α+ n,
αP0+

∑n
i=1 δxi

α+n ). Thus the Bayes esti-

mator with respect to the absolute error loss function is the median of F̂n
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Fig. 12.4 Empirical and Bayes cdf

defined in (12.2.3).

The Dirichlet process involves the choice of the probability measure P0

called the base measure and a positive real number α called the concentra-

tion parameter. The base probability measure or the corresponding c.d.f.

can be considered as the prior guess about P or the corresponding c.d.f.

F , respectively. The concentration parameter controls the variation of the

prior belief around P0, also acts like a prior ‘sample’ size. If one has only

prior belief about the mean and variance of the c.d.f., P0 may be taken as

the normal probability measure with known mean and variance and α may

be taken as 1. If we are estimating the c.d.f. of a non-negative r.v. and

we have some reasons to believe that the distribution is skewed, then we

may take P0 to be the standard log-normal distribution. As seen from the
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Figures 12.3 and 12.4, a small value of α is preferable if one is not sure

whether the base distribution of the prior is close to the true distribution.

12.3 Density Estimation

In Chapter 10 we considered methods of density estimation when

X1, · · · , Xn is a random sample from an unknown density f with c.d.f. F .

The Bayesian approach to density estimation defines priors on the space of

densities. The Dirichlet prior is not suitable as a prior on the densities as

realizations from a Dirichlet process are discrete with probability one.

To define a prior, the density function is defined as a random function

known as the random density. To be more precise, let (Ω,F ,P), be a prob-

ability space and let {F} be a family of absolutely continuous distributions

with respect to the Lebesgue measure λ with support I ⊂ R. The random

density f of F is assumed to be strictly positive on I and is modeled as

a stochastic process from (Ω × I) to R+, the positive reals such that the

sample paths integrate to 1.

12.3.1 Priors Based on Mixture Models

Let G be a distribution function on Θ, a subspace of some Euclidean space

and with the Borel σ-algebra. Given G; let θ1, · · · , θn be i.i.d. random

variables (latent variables) from G. Let k : R × Θ 7−→ R+ be a jointly

measurable function such that
∫
R
k(x, θ)λ(dx) = 1 for some measure λ on

(R,B). Thus for fixed θ, k(·, θ) is a density function on R with respect to

λ. Given G, θ1, · · · , θn; suppose the X1, · · · , Xn are independent with Xi

having p.d.f. k(·, θi), i = 1, · · · , n.
A prior is assumed for G and the random density is defined as

f(x|G) =

∫
Θ

k(x, θ)dG(θ). (12.3.1)

Note that since G is a random distribution, f is a random density and

X1, · · · , Xn are i.i.d. with density f, the mixture density integral. The

c.d.f. F for f is given by

F (x|G) =

∫
Θ

K(x, θ)dG(θ),

where K(x, θ) is the c.d.f. corresponding to k(., θ). The function k(x, θ) is

called the kernel of the mixture model.
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Let Π(·|X1, · · · , Xn) denote the posterior distribution of G

given X1, · · ·Xn and H(·|X1, · · ·Xn) denote the posterior distribu-

tion of θ1, · · · , θn given X1, · · ·Xn. Let θ = (θ1, · · · , θn), and

Π(·|θ1, · · · , θn;X1, · · · , Xn) the conditional distribution of G given

θ1, · · · , θn;X1, · · · , Xn. Then

Π(·|X1, · · · , Xn) =

∫
Π(·|θ1, · · · , θn;X1, · · · , Xn)H(dθ)|X1, · · · , Xn).

Further, we assume that G and X1, · · · , Xn are conditionally indepen-

dent given θ1, · · · , θn. Therefore,

Π(·|θ1, · · · , θn;X1, · · · , Xn) = Π(·|θ1, · · · , θn),

the conditional distribution of G given θ1, · · · , θn.

12.3.2 Mixture of Dirichlet Processes

If the random distribution G in (12.3.1) is Dirichlet Dα,G0
, then the prior

model is referred to as a mixture of Dirichlet processes (MDP) model.

Let us now obtain an expression for E [f(x|G)|X1, · · · , Xn], the Bayes

estimator of the density with respect to the squared error loss function,

based on the sample X1, · · · , Xn.

Recall that if G is Dirichlet(α,G0), and given G, the θ1, · · · , θn are

i.i.d. G, then Π(·|θ1, · · · , θn) is Dirichlet with parameter (α + n, (αG0 +∑n
i=1 δθi)/(α+ n)). Thus

E [G|θ1, · · · , θn] = (αG0 +

n∑
i=1

δθi)/(α+ n),

and from (12.3.1)

E [f(x|G)|θ1, · · · , θn] = {α
∫

Θ

k(x, θ)dG0(θ) +

n∑
j=1

k(x, θj)}/{α+ n}.

Using the smallest σ-algebra wins property of the conditional expec-

tations (that is, if D1 and D2 are two σ-algebras with D1 ⊆ D2, then

E [E [X|D2]|D1] = E [X|D1]), and the assumption that given θ1, · · · , θn, G
and X1, · · · , Xn are conditionally independent, we obtain

E [f(x|G)|X1, · · · , Xn]

= E [E [f(x|G)|θ1, · · · , θn;X1, · · · , Xn]|X1, · · · , Xn]

= E [E [f(x|G)|θ1, · · · , θn]|X1, · · · , Xn]

= {α
∫

Θ

k(x, θ)dG0(θ) + E [

n∑
j=1

k(x, θj)|X1, · · ·Xn]}/{α+ n}. (12.3.2)
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[Lo et al. (1984)] have obtained an analytical expression for the pos-

terior expectation of f(x|G) but it is computationally intensive. The

kernel k(x, θ) and the base c.d.f. G0 may be chosen so that the first

term in (12.3.2) is easily computable. The expression for the poste-

rior density Π(θ1, · · · , θn|X1, · · · , Xn) is quite complex and in practice,

Markov chain Monte Carlo methods (MCMC) are used to generate ob-

servations from the posterior distribution of θ. We have to simulate

many samples of (θ1i, · · · , θni), i = 1, · · · ,M(say) from the posterior

distribution. Then the second term in (12.3.2) can be approximated by

(1/M)
∑M
i [
∑n
j=1 k(x, θji)]/{α+n}. We describe below the Gibbs sampling

approach of [Escobar (1994)] and [Escobar and West (1995)]. A Gibbs sam-

pling is implemented by iterative sampling from the full conditionals.

Let Xn = (X1, · · · , Xn) denote the data and θ = (θ1, · · · , θn). Since G

and X1, · · · , Xn are conditionally independent given θ, the joint posterior

can be expressed as

Π(G, θ|Xn) = Π(G|θ)Π(θ|Xn).

Now as seen above, G given θ is a Dirichlet process with parameters (α +

n, (αG0 +
∑n
i=1 δθi)/(α+n)). (We are using G0 to denote the c.d.f. as well

as the corresponding probability measure.)

Let

θ−i = (θ1, · · · , θi−1, θi+1, · · · , θn)

and

X−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn)

that is, the variables with the i-th variable left out. Due to the exchange-

ability of the θi’s and from the expression for the predictive distribution

given earlier in (12.2.2), we see that the conditional distribution of θi given

θ−i is given by

Π(t|θ−i) =
α

α+ n− 1
G0((−∞, t]) +

1

α+ n− 1

n∑
j=1,j 6=i

δθj ((−∞, t]).

By the assumptions, (Xi, θi) and X−i are conditionally independent given

θ−i, therefore the conditional distribution of θi given θ−i and Xn is same

as the conditional distribution of θi given θ−i and Xi. Since Xi given θi
has conditional density k(xi, θi), the conditional distribution of θi given θ−i
and Xi, using the Bayes formula is
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Π(t|θ−i, Xi) =

∫ t
−∞ k(Xi, θ)d(αG0 +

∑n
j=1,j 6=i δθj )(θ)∫

k(Xi, θ)d(αG0 +
∑n
j=1,j 6=i δθj )(θ)

.

Let q0,i =
∫
k(Xi, θ)dG0(θ), and qi,j = k(Xi, θj). Then the denominator

of the above expression is α q0,i +
∑n
j=1,j 6=i qi,j . Let g0 denote the density

corresponding to the base c.d.f. G0 and h(θi|Xi) denote the density of θi
given Xi. Then h(θi|Xi) = k(Xi, θi)g0(θi)/q0,i, and

Π(t|θ−i, Xi) =
α q0,i

∫ t
−∞ h(θ|Xi)dθ +

∑n
j=1,j 6=i qi,jI[θj ,∞)(t)

α q0,i +
∑n
j=1,j 6=i qi,j

. (12.3.3)

Algorithm for the Gibbs sampler

Step 1: Choose initial values of the elements of θ, these could be samples

from the posterior distribution H(θi|Xi) or could be generated from the

marginal distribution G0. Let us denote these values by θ(0).

Step 2: Sample elements of θ sequentially by drawing θ
(1)
1 from the

distribution of (θ1|θ(0)
−1, X1), then θ

(1)
2 from the distribution of (θ2|θ(1)

1 ,

θ
(0)
j , {j = 3, · · · , n}, X2), θ

(1)
3 from the distribution of (θ3|θ(1)

1 , θ
(1)
2 , θ

(0)
j ,

{j = 4, · · · , n}, X3) and so on up to θ
(1)
n from the distribution of (θn|θ(1)

j ,

{j = 1, · · · , n− 1}, Xn).

Step 3: Return to Step 2 and proceed iteratively until convergence.

The above sampling process results in approximate samples from the

posterior of θ given the data. Since G is discrete, multiple θi’s can have the

same value, which induces a clustering of the θi’s. Thus the mixture will

reduce to less than n components. Let n∗ denote the number of distinct

elements of the vector θ and θ∗j , j = 1, · · · , n∗, the distinct θi’s. We can

say that θ∗j represents the cluster j. Let w = (w1, · · · , wn), where the wi’s

indicate the cluster, that is, wi = j if and only if θi = θ∗j , i = 1, · · · , n.
Then for each i = 1, · · · , n the conditional distribution of θi given θ−i and

the data is

α q0,i

∫ t
−∞ h(θ|Xi)dθ +

∑n∗−i
j=1,j 6=i n

−
i,jq
∗
i,jI[θ∗j ,∞)(t)

α q0,i +
∑n∗−
j=1,j 6=i q

∗
i,j

,

where n∗−i denotes the number of clusters in θ−i, n
−
i,j the number of ele-

ments in the j-th cluster of θ−i and q∗i,j = k(Xi, θ
∗
j ).

Suppose the kernel k involves a hyper-parameter φ, the concentration

parameter α is random and the base measure G0 has a hyper-parameter ψ.

We, then, have to assume priors for φ, α, and ψ. The joint posterior is

Π(G, θ, φ, α, ψ|xn) = Π(G|θ, α, ψ)Π(θ, φ, α, ψ|xn).
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The posterior computations for the MDP models with normal kernels

and their extensions are implemented in the R package DPpackage (Jara

et al. 2011) using the Gibbs sampling approach.

12.3.3 Mixture of Normal Kernels

In the above formulation of the MDP, it is assumed that k(·, θi) is the

density of a normal r.v. with mean µi and variance Vi; with θi = (µi, Vi).

The θi come from a prior distribution G on Θ = R×R+. The G is modeled

as a Dirichlet(α,G0) process where α is a positive scalar and G0(·) is a

specified bivariate distribution function over Θ.

The function DPdensity in the R package DPpackage generates a pos-

terior density sample for a MDP normal model.

The baseline distribution G0 is taken to be the normal-inverted-Wishart

distribution, which is conjugate prior of a multivariate normal distribution

with unknown mean and covariance matrix. That is,

G0 = N(µ|m1, (1/k0)V )IW (V |ν1, ψ1).

The package has the choice of considering independent hyperpriors. The

concentration parameter α given a0, b0 has the Gamma(a0, b0) distribution,

m1 given m2, s2 is N(m2, s2), k0 given τ1, τ2 is Gamma(τ1/2, τ2/2) and ψ1

given ν2, ψ2 is IW (ν2, ψ2). The inverted-Wishart prior is parametrized such

that if A follows IWq(ν, ψ) then E(A) = ψ−1/(ν− q−1). If the parameters

of G0 are fixed, the corresponding hyperparameters should be set to NULL

in the hyper-parameter specification of the model.

Choice of the parameters of the prior

The following discussion is based on [Ferguson (1983)] and [Escobar and

West (1995)] and is just an aid for choosing the prior parameters. We

consider the kernel k(·, θi) to be the density of a normal r.v. with mean

µi and variance Vi; with θi = (µi, Vi). For the base distribution G0, we

assume that the conditional distribution of µi given Vi is N(m1, Vi/k0)

for some mean m1 and scale fator 1/k0, and the distribution of Vi is one-

dimensional inverse-Wishart(ν1, ψ1), that is inverse-gamma(ν1/2, 1/(2ψ1)).

We note that the inverse-Wishart distribution mentioned in the DPpack-

age is a multivarite generalization of the inverse-gamma distribution. We

either have to choose values for the parameters m1, k0, ν1, ψ1 and the

concentration parameter α or choose priors for these. Since f0(x), the
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‘no sample’ guess of f(x) is the expectation of f(x) under the prior distri-

bution, we have

f0(x) = E(f(x)) =

∫
Θ

k(x, θ)dG0(θ)

=
Γ(ν1/2 + 1/2)

Γ(ν1/2)Γ(1/2)

√
ψ1

(1 + k0)
(1 +

ψ1

(1 + k0)
(x−m1)2)−(ν1/2+1/2).

The mean of f0(.) is m1 and the variance is (1+k0)
ψ1(ν1+2) . Thus choose m1 to

be either the value of the belief about the centre of mass or the sample

mean. The mean of µi is m1 and V ar(µi) = E(Vi)/k0. If the uncertainty

in the value of µi is greater than (equal to, less than) the average variance,

then k0 should be chosen less than (equal to, greater than) 1. Now E(Vi) =

1/(ψ1(ν1−2)). Thus the values for the parameters may be chosen to match

the choice of k0 and the prior belief about the variance of the observations.

From (12.3.2) we see that, the influence of the data comes in only

through the second term and the first term contains only the influence

of the prior. Therefore a small value for α should be chosen, if one is not

too sure about the prior. Further, from (12.3.3), we see that θi will be a

new distinct value with probability αq0i/(αq0i +
∑
j 6=i qij) and is otherwise

one of the existing (n − 1) values. Therefore, a small value of α causes

larger number of θi’s to be identical, which will result in a small number of

mixture components or clusters.

For given n∗ distinct values among the elements of θ, a small value of

k0 implies a larger dispersion among the n∗ group means µ∗j , which for

a fixed V ∗j leads to a greater chance of multimodality in the predictive

distribution. That is, we should choose a small value for k0, if we feel that

the density to be estimated is multimodal. The value of k0 is related to the

smoothing like the bin-width is in the kernel density estimation discussed in

Chapter 10.

Example 12.3: Figure 12.5 shows the plot of the (posterior) density esti-

mator for the data given in the Example 12.2. We assume a normal MDP

prior and use the DPdensity function of the DPpackage. We chose the con-

centration/precision parameter α = 1, the mean m1 = 38, the mean of the

data. The average value of the parameter k0 was taken to be 5. We chose

τ1 = 500 and τ2 = 100, so that k0 has a small variance. Since the variance

of f0 is (k0 +1)/(ψ1(ν1 +2)), we equated this expression to 46, the variance

of the data. We took ν1 = 4 and thus 1/ψ1 = 46. The histogram of the

data and the plot of the kernel density estimator (dashed line) with the
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‘Epanechnikov’ kernel (see Chapter 10) and bandwidth=1 are also shown

on the same graph.
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Fig. 12.5 Density estimates

Example 12.4: We generated 25 observations from the Gamma(2,2) den-

sity. Figure 12.6 shows the plots of: the true density, its estimate based on

the MDP prior, its kernel density estimate and the histogram of the data.

Figure 12.7 shows the plots for sample size 100. The parameters of the

priors were chosen as in the Example 12.3.

In the above package, a function called DPcdensity is also included,

which generates a posterior density sample for a Bayesian density regression

model with continuous predictors(co-variates) using a MDP normal model.

For lifetime data analysis, [Kottas (2006)] gives a computational ap-

proach to obtain the posterior distribution of a MDP using a Weibull kernel.

[Cheng and Yuan (2013)] develop an algorithm that implements the Gibbs
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Fig. 12.6 Density estimates

sampling to fit the MDP with a log-normal kernel for a rightly censored

failure time data. The choice the kernel k(x, θ) depends on the underlying

sample space. If the underlying density function is defined on the entire real

line, a location-scale kernel is appropriate. If the density is known to have

support on the unit interval, k(x, θ) may be taken to be a Beta density.

For lifetime data analysis, k(x, θ) may be taken to be gamma, Weibull or

lognormal densities. [Petrone and Veronese (2002)] have discussed a way

of viewing the choice of a kernel through the notion of a Feller sampling

scheme.
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12.4 Other Priors

Some other priors considered are the Pólya Tree Priors and the Neutral

to the Right priors. The Pólya tree priors were formulated by [Ferguson

(1974)] and later discussed by [Mauldin et al. (1992)] and [Lavine (1992)],

[Lavine (1994)].

Pólya tree priors are specified through a nested tree of measurable

partitions of R. Let {Γk; k ≥ 1} be such a nested tree. That is, Γk+1

is a refinement Γk (each set in Γk+1 is a union of sets in Γk.) Further⋃
k≥1 Γk generates the Borel σ−algebra. We start with Γ1 = {B0, B1},

Γ2 = {B00, B01, B10, B11}, where B0 = B00 ∪ B01, B1 = B10 ∪ B11. Thus

Γm = {Bε, ε = ε1 · · · εm}, where ε ∈ {0, 1}m. For ε ∈ {0, 1}m, the sets Bε0
and Bε1 are in Γm+1 and Bε = Bε0 ∪ Bε1. Let E∗ =

⋃
m≥1{0, 1}m be the
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set of all sequences of zeros and ones and let A = {αε, ε ∈ E∗} be a set of

non-negative real numbers.

Definition 12.4.1 (Lavine 1992): A random probability measure P is

a Pólya tree process with respect to Γ = {Γm,m ≥ 1} and A (denoted by

PT (A,Γ)), if there exist random variables Y = {Yε, ε ∈ E∗} such that

(i) All random variables in Y are mutually independent.

(ii) For every ε ∈ E∗, Yε has a Beta(αε0, αε1) distribution.

(iii) For every ε = ε1 · · · εm ∈ {0, 1}m,
P (Bε1···εm) =

∏m
j=1(Yε1···εj−1

)1−εj (1 − Yε1···εj−1
)εj , where ε0 = Y has the

Beta(α0, α1) distribution.

With a suitable choice of the parameters, a Pólya Tree prior can be

ensured to sit on the space of densities. Both, the Dirichlet prior and the

Pólya tree priors are what are known as tail-free processes. A random prob-

ability measure P is a tail-free process with respect to a nested partition

{Γk; k ≥ 1}, if the sets of random variables {P (B|A), A ∈ Γk, B ∈ Γk+1}
for k = 1, 2, · · · are independent.

Neutral to the right priors are another generalization of Dirichlet

Process.

Definition 12.4.2. A random probability measure P ∈M(R) or the cor-

responding random distribution F is said to be neutral to the right (NTR)

if for each k > 1 and all t1 < · · · < tk, there exist independent [0, 1] valued

random variables V1, V2, . . . , Vk such that (F (t1); . . . ;F (tk)) has the same

distribution as (V1; 1−(1−V1)(1−V2); . . . ; 1−
∏k

1(1−Vi)). The correspond-

ing prior is said to be NTR. In other words, V1 = F (1), Vi = 1−F (ti)
1−F (ti−1) =

Pr(X > ti|X > ti−1) are independent.

Neutral to the right priors were introduced by [Doksum (1974)] and

further developed by [Hjort (1990)]. They are conjugate in the presence

of right censored data, i.e. if we start with a NTR prior then the pos-

terior distribution given data, some of which are right censored is again

NTR. These priors too are supported by the set of discrete distributions.

The mathematical tractability of NTR priors comes from their intimate

relation with independent increment processes. Doksum, after introducing

NTR priors, showed a connection between NTR priors and independent

increment processes. He considered the cumulative hazard function defined

by D(F )(t) = − log(1 − F (t)), and showed that, a random distribution

function F is neutral to the right if and only if {D(F )(t) : t ≥ 0} is an
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independent increment process. Hjort in ([Hjort (1990)]), considered the

following formula for the cumulative hazard function, which is defined even

when F has no density. He considered, with TF = inf{t|F (t) = 1},

H(F )(t) = HF (t) =

{∫
(0,t]

dF (s)
F [s,∞) for t ≤ TF

HF (TF ) for t > TF

and showed that in this case too, a prior is NTR iff the cumulative hazard

function is distributed as an independent increment process.

As mentioned earlier, the mathematical tractability of NTR priors arise

from their connection with independent increment process. Independent in-

crement processes are determined by their so called Levy measure. Starting

with a Levy measure, Hjort gives explicit expression for the Levy measure

of the posterior. In addition in [Hjort (1990)], he considers a class of priors

called Beta Process which correspond to a certain form of Levy measures.

The finite dimensional distribution of these process arise as a limit of Beta

distributions. For further details we refer to [Hjort (1990)], [Ghosh and

Ramamoorthi (2003)], [Dey et al. (2003)].

12.5 Regression and Classification

Let Y denote the response (output) variable and X the vector of input

variables (covariates, explanatory variables, predictors). The estimation of

the regression function g(x) = E[Y |X = x] based on the data (yi, xi), i =

1, · · · , n is considered in Chapter 11. We first consider the approach of

[Müller et al. (1996)], which is the multivariate analogue of the normal

mixtures described above. The joint distribution of (Yi, Xi) is specified to

be N(µi,Σi), i = 1, · · · , n. The θi = (µi,Σi) follow a multivariate prior

distribution G. The G is modeled as a Dirichlet(α, P0) process where α is

a positive scalar and P0 is a specified probability measure over Θ.

The regression model is

Yi = f(Xi) + εi,

where the εi, i = 1, . . . , n are independent r.v.s and are independent of the

X ′is, E[εi] = 0 and V ar(εi) = σ2 <∞, i = 1, · · ·n.

12.5.1 Basis Representation

Consider a basis representation of the regression function f ;

f(·) =
∑
k

βkφk(·),
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where φk(·), k = 1, 2, · · · denote the known basis functions, such as polyno-

mials, splines, orthonormal series, wavelets, neural networks, and regression

trees.

A prior probability model is defined on the sequences {βk, k = 1, · · · }.
For example assume that βk has pdf pk(·), k = 0, · · · ,M or assume a

joint distribution of (β1, · · · , βM ) for some fixed M and P(βk = 0) = 1

for k > M. The optimal estimator under the squared error loss is f̂(t) =∑∞
k=1E(βk|X)φk(t). We observe that this procedure is more like Bayesian

parametric estimation, since only finite dimensional parameters are esti-

mated using finite dimensional prior distributions.

12.6 Posterior Consistency

Let Π stand for the prior distribution and Π(·|data) stand for (a version

of) the posterior distribution.

Definition 12.6.1. The posterior distribution is said to be consistent at

a given θ0, or (θ0,Π) is a consistent pair, if for any neighborhood V of

θ0,Π(θ /∈ V |data)→ 0 (in probability or a.s.) as the size of the data tends

to infinity when θ0 is the true value of the parameter.

In finite dimensional parametric models, consistency holds in general.

The situation is somewhat complex in the nonparametric case. For one,

there is a variety of neighborhoods U of P that can be considered. For

instance, U can be neighborhoods arising from convergence in distribution

or it can be neighborhoods arising from the total variation norm. When

the neighborhood under consideration corresponds to convergence in dis-

tribution, consistency is usually referred to as weak consistency.

It is known that tail free priors are weakly consistent. A similar result

does not hold for NTR priors. [Kim and Lee (2001)] gave an example of a

NTR prior which fails to be consistent. Sufficient conditions for consistency

of NTR priors is given in [Ghosh and Ramamoorthi (2003)] and in [Dey

et al. (2003)]. In more general models, like mixture models, conditions for

consistency often involve the prior and other smoothness properties of the

model. We refer to [Ghosh and Ramamoorthi (2003)] for an introduction

to consistency in the nonparametric case.

12.7 Exercises

(1) Suppose X is a r.v. with the Beta(α, β) distribution. Show that the

distribution of (X, 1−X) is singular with respect to the two dimensional
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Lebesgue measure on R2.

(2) Consider the problem of estimating the mean µ of an unknown prob-

ability measure P on (R,B). Show that with a Dirichlet(α, F0) prior

on M(R), based on a random sample X1, · · · , Xn, the Bayes estimator

µ̂n, of µ under the squared error loss function is

µ̂n =
α

α+ n

∫
xdF0(x) +

n

α+ n

n∑
i=1

Xi/n.

(3) Generate a sample of size 25 from a known distribution.

(i) Assuming a Dirichlet process prior, obtain a Bayes estimate of the

c.d.f. and plot this estimate against the true c.d.f.

(ii) Repeat the simulation 100 times and summarize the results.

(iii) Comment on the performance of the Bayes estimator.

(4) Generate data (sample size 100) from a mixture of known densities.

(i) Estimate the density using the frequentist methods of Chapter 10.

(ii) Estimate the density using the Bayesian methods.

(iii) Plot the density estimates against the true density.

(iv) Compare the estimates.

(5) Suppose conditional on P, X1, · · · , Xn is a random sample of size

n from P, and P is Dα,P0
. Let (B1, · · · , Bm) be a partition of R

by Borel sets and let Nk = #{i, Xi ∈ Bk}. Let (A1, · · · , Ak)

be another partition such that each Ai is a union of some Bj ’s,

(i.e., (B1, · · · , Bm) is a finer partition). Show that the poste-

rior distribution of (P (A1), ..., P (Ak)) given N1, · · · , Nm is same as

the posterior distribution of (P (A1), ..., P (Ak)) given the counts in

(A1, · · · , Ak). (Thus we can conclude that the conditional distribution

of (P (B1), · · · , P (Bm)) given the vector (N1, · · · , Nm) of cell counts,

is same as the conditional distribution of (P (B1), · · · , P (Bm)) given

(X1, · · · , Xn).)
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A.1 Introduction

If the data is a sample from a known probability distribution then the sam-

pling distribution of a statistic can be found, at least in principle, through

the usual methods of transformation, etc. But when we lack the knowl-

edge of the precise distribution under the nonparametric models which we

have here, the sampling distributions are usually not available. Also some

statistics, such as those based on ranks, may have known exact probability

distributions for the finite sample sizes. But these become extremely cum-

bersome to derive as the sample size increases even moderately. In these

circumstances we may try to get hold of asymptotic distributions of these

statistics as the sample size tends to infinity. These asymptotic distribu-

tions then may be used as approximations in place of exact distributions

which may not be available or may be tedious to obtain.

Also, many properties like consistency, strong consistency, asymptotic

relative efficiency, etc. are defined in the limiting case as the sample size

tends to infinity. Hence to discuss these asymptotic properties we need

to study the asymptotic distributions of these statistics. In this appendix

we shall concentrate on a few limiting theorems and properties which are

useful in studying nonparametric inference.

A.2 Laws of Large Numbers

This section states the laws of large numbers that are most often used. The

proofs may be found in the books on Probability Theory.

Theorem A.2.1 (Bernoulli’s (weak) law of large numbers): Let n

independent trials of an experiment be performed each having probability p

231
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for an event A. Let n(A) be the number of outcomes resulting in the event

A. Then
n(A)

n
→ p in probability as n→∞.

Theorem A.2.2 (Poisson’s (weak) law of large numbers): Let

Xk, k = 1, 2, ... be a sequence of independent random variables with the

same mean µ and same variance σ2. Let Sn = X1 +X2 + · · ·+Xn. Then

X̄n =
Sn
n
→ µ in probability as n→∞.

Theorem A.2.3 (Borel’s (strong) law of large numbers): Let n

independent trials be performed each having probability p (0 < p < 1) for

an event A. Let n(A) be the number of outcomes resulting in the event A.

Then
n(A)

n
→ p with probability 1 as n→∞.

Theorem A.2.4 (Kolmogorov’s (strong) law of large numbers):

Let Xk, k = 1, 2, ... be a sequence of independent and identically distributed

random variables. Then

X̄n → µ with probability 1 as n→∞
if and only if µ is the common expectation of Xk.

A.3 Convergence in Distribution

We state below some results from probability theory useful in obtaining

asymptotic distributions.

Theorem A.3.1. Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of

random variables such that as

Xn − Yn
p→ 0 and Xn

d→ X as n→∞.
Then

Yn
d→ X as n→∞.

Theorem A.3.2 (Slutsky’s theorem): Let X1, X2, · · · be an arbitrary

sequence of random variables converging in distribution to a random vari-

able X. Let Y1, Y2, · · · be another sequence of random variables converging

in probability to a constant c. Then,
Xn

Yn
converges in distribution to

X

c
as n→∞ if c 6= 0.
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A.4 Central Limit Theorems

This section states the most important Central Limit Theorems (C.L.T.)

for sequences of independent random variables. Throughout the section

N(0, 1) denotes a standard normal variable and Φ(t) its c.d.f. The symbols

o(1) (op(1)) mean that the sequence of random variables converges to zero

a.s. (in probability) as n → ∞ and the symbols O(1) (Op(1)) mean that

the sequence is bounded (bounded in probability).

Theorem A.4.1 (The Lindberg-Lévy theorem): Let Xk, k = 1, 2, ...

be a sequence of independent and identically distributed random variables

with common mean µ and variance σ2 (σ2 <∞). Then

Zn =
√
n

(
X̄n − µ
σ

)
d→ N(0, 1) as n→∞.

Theorem A.4.2 (The Lindeberg Theorem): Let Xk, k = 1, 2, ... be a

sequence of independent random variables with means zero, variances {σ2
k}

and c.d.f.s {Fk}. Let Sn =
∑n
i=1Xi and s2

n =
∑n
i=1 σ

2
i . Suppose

lim
n→∞

s−2
n

n∑
i=1

∫
[|x|>εsn]

x2dFi = 0, for all ε > 0,

(i.e. the Lindeberg condition holds.) Then as n→∞,
Sn
sn

d→ N(0, 1) as n→∞.

The following C.L.T. involves a moment condition.

Theorem A.4.3 (The Liapounov Theorem): Let Xk, k = 1, 2, ... be a

sequence of independent random variables with means zero, variances {σ2
k}

and c.d.f.s {Fk}. Let Sn =
∑n
i=1Xi and s2

n =
∑n
i=1 σ

2
i . Suppose

lim
n→∞

∑n
i=1E|Xi|2+δ

s2+δ
n

= 0, for some δ > 0,

then
Sn
sn

d→ N(0, 1) as n→∞.

Proof and details of the above theorems can be found in books on prob-

ability theory, for example [Billingsley (1995)], [Chow and Teicher (1997)].

Theorem A.4.4 (The Hájek and Šidák Theorem): Let Xk, k =

1, 2, ... be a sequence of independent and identically distributed random vari-

ables with common mean µ and variance σ2 (σ2 < ∞). Also, let a1, a2, ...
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be a sequence of real numbers such that

lim
n→∞

max
1≤i≤n

a2
i∑n

i=1 a
2
i

= 0.

Let Sa,n =
∑n
i=1 aiXi, µa,n = µ

∑n
i=1 ai and σ2

a,n = σ2
∑n
i=1 a

2
i . Then

Zn =
Sa,n − µa,n

σa,n

d→ N(0, 1) as n→∞.

Proof: The Lindeberg condition holds due to the assumptions on the se-

quence {ak}.

Theorem A.4.5 (Berry-Esseen): Let X1, X2, · · · be a sequence of inde-

pendent random variables with EXn = 0, EX2
n = σ2

n, s2
n =

∑n
i=1 σ

2
i > 0,

Γ2+δ
n =

∑n
i=1E|Xi|2+δ <∞, for some 0 < δ ≤ 1 and Sn =

∑n
i=1Xi. Then

there exists a universal constant Cδ such that

sup
−∞<t<∞

∣∣∣∣P [Snsn ≤ t
]
− Φ(t)

∣∣∣∣ ≤ Cδ (Γn
sn

)2+δ

.

Remark: The above is a modification of the original theorems of [Berry

(1941)] and [Esseen (1945)]. For a proof see [Chow and Teicher (1997)].

A.5 U-statistics

Results for one sample and two sample U-statistics are discussed here.

A.5.1 One Sample U-statistics

Let Xk, k = 1, 2, ... be a sequence of independent and identically

distributed random variables with common distribution function F.

Let θ(F ) be a functional (parameter) of the distribution F and let

φ(X1, X2, · · · , Xk), k ≤ n be a statistic based on k random variables such

that

E[φ(X1, X2, · · · , Xk)] = θ(F )

and for any l < k there does not exist any function g(x1, x2, · · · , xl) with

the property that E[g(X1, · · · , Xl)] = θ(F ).

Then θ(F ) is called an estimable functional of degree k and φ is called

the kernel for θ(F ).

Let φs(X1, · · · , Xk) = 1
k

∑
p φ(Xi1 , Xi2 , · · · , Xik)
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where
∑
p is the sum over all k! permutations {i1, · · · , ik} of {1, 2, ..., k}.

Then φs is the symmetrized version of the kernel φ. Then the U -statistics

corresponding to the functional θ(F ) based on the kernel φ(X1, · · · , Xk) of

degree k is

Un = U(X1, X2, ..., Xn) =
1(
n

k

)∑
c

φs(Xi1 , · · · , Xik)

where
∑
c is the summation over all possible

(
n

k

)
combinations

{i1, i2, · · · , ik} selected from {1, 2, · · · , n}.
The following terms are defined in order to obtain an expression for the

V ar(Un). Let for 1 ≤ b ≤ k,

φ∗b(x1, · · · , xb) = E(φs(x1, · · · , xb, Xb+1, · · · , Xk)),

and

ζb(F ) = E[(φ∗b(X1, · · · , Xb))
2]− [θ(F )]2.

Since the X ′is are i.i.d., it follows that

φ∗b(X1, · · · , Xb) = E[φs(X1, · · · , Xk)|X1, · · · , Xb]

and

ζb(F )=E[φs(X1, · · · , Xb, Xb+1, · · · , Xk)φs(X1, · · · , Xb, Xk+1, · · · , X2k−b)]

−(θ(F ))2

=Cov(φs(X1, · · · , Xb, Xb+1, · · · , Xk), φs(X1, · · · , Xb, Xk+1, · · · , X2k−b)).

Let ζ0(F ) = 0. Then,

V ar(Un)

=
1(
n

k

)2

∑
c

∑
c′
E[φs(Xi1 , · · · , Xik)φs(Xj1 , · · · , Xjk)]− (θ(F ))2.

(A.5.1)
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The summand E[φs(Xi1 , · · · , Xik)φs(Xj1 , · · · , Xjk)] − (θ(F ))2 in (A.5.1)

equals 0 if the sets {i1, · · · , ik} and {j1, · · · , jk} have no elements in com-

mon, and equals ζb(F ) if the two sets have exactly “b” elements in common,

b = 1, 2, ..., k. The number of terms resulting in ζb(F ) is(
n

k

)(
k

b

)(
n− k
k − b

)
.

This can be argued in the following way: From {1, 2, · · · , n} choose a subset

{i1, · · · , ik} of k integers, for each such choice choose a further subset of b

integers, which can be done in

(
k

b

)
ways, for each such choice, choose the

remaining k− b integers for the other subset from the remaining n−k, this

can be done in

(
n− k
k − b

)
ways.

Thus

V ar(Un) =
1(
n

k

) k∑
b=1

(
k

b

)(
n− k
k − b

)
ζb(F ). (A.5.2)

Lemma A.5.1. If ζk(F ) <∞, then limn→∞ nV ar(Un) = k2ζ1(F ).

Proof: First note that an application of the Cauchy-Schwarz inequality

gives

ζb(F ) ≤ ζk(F ) for all b = 1, 2, ...k,

which implies that all the ζ ′bs are finite. From (A.5.2), it can be seen that

the coefficient (including the denominator (
n
k

)) of ζb(F ) in the expression

nV ar(Un) contains k − b factors of the form (n − i) (with −k ≤ i ≤ k) in

the numerator and k−1 factors of the same type in the denominator. Thus

as n → ∞, the coefficient converges to zero for each b 6= 1 and to k2 for

b = 1. This completes the proof.

Theorem A.5.1 (The Hoeffding C.L.T): If ζk(F ) <∞ and ζ1(F ) > 0,

then √
n(Un − θ(F ))

k
√
ζ1(F )

d→ N(0, 1) as n→∞.

Proof: We will first prove the following result.

(i) |
√
n(Un − θ(F ))− k√

n

n∑
i=1

(φ∗1(Xi)− θ(F ))| = op(1).
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Note that {φ∗1(Xi)} is a sequence of i.i.d. random variables with mean θ(F )

and variance ζ1(F ). Hence

E[|
√
n(Un − θ(F ))− k√

n

n∑
i=1

(φ∗1(Xi)− θ(F ))|2]

= nV ar(Un) + k2ζ1(F )− 2kE[

n∑
i=1

(Un − θ(F ))(φ∗1(Xi)− θ(F ))].

But for each i, we have

E[(Un − θ(F ))(φ∗1(Xi)− θ(F ))] =

(
n− 1

k − 1

)
/

(
n

k

)
ζ1(F ).

Using Lemma (A.5.1) we obtain (i).

The Lindeberg Lévy central limit theorem can be used to obtain

1√
n

n∑
i=1

(φ∗1(Xi)− θ(F ))
d→ N(0, ζ1(F )) as n→∞.

The result then follows from the condition (i) above and Theorem (A.3.1).

A.5.2 Two Sample U-statistics

In nonparametric applications the more common situations where the U-

statistic construction and asymptotic distribution is used occur in two sam-

ple situations.

Let X1, · · · , Xn1 and Y1, · · · , Yn2 be two random samples from c.d.f.’s

F (x) and G(x), respectively. The null hypothesis of interest is

H0 : F (x) = G(x) ∀ x

and the one sided alternative is

H1 : F (x) ≤ G(x),

with strict inequality over a set of positive probability. This problem has

been discussed in Chapter 7.

Then the Mann-Whitney statistic is

Un1n2 =
1

n1n2

n1∑
i=1

n2∑
j=1

φ(Xi ≥ Yj),

where φ is the indicator function of the enclosed event. This is a useful

statistic because

E[φ(Xi ≥ Yj)] = P [X ≥ Y ] =

∫ ∞
−∞

G(x)dF (x) = θ(F,G), (say),
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which is a functional of (F,G), with the property that

E[φ(Xi ≥ Yj)] = θ(F,G), under H0 : θ(F,G) = 1/2

and under H1 : θ(F,G) > 1/2.

One can generalize the ideas of one sample kernel to a two sample kernel

h(X1, · · · , Xm1
;Y1, · · · , Ym2

)

of m1(≤ n1) and m2(≤ n2) observations from the two random samples

respectively. We call it a kernel of degree (m1,m2). Define the two sample

U-statistics as

Un1n2
(h) =

1(
n1

m1

)(
n2

m2

)∑h(Xi1 , · · · , Xim1
, Yj1 , · · · , Yjm2

)

where {i1, · · · , im1} and {j1, · · · , jm2} are chosen such that 1 ≤ i1 <

i2 · · · < im1
≤ n1 and 1 ≤ j1 < i2 · · · < jm2

≤ n2. The sum
∑

is over

all such choices which are

(
n1

m1

)(
n2

m2

)
in number. We then take the

average of the kernels over all these choices.

It is easily seen that

E[Un1n2
] = E[h(X1, · · · , Xm1

, Y1, · · · , Ym2
)] = θ(F,G).

The (Wilcoxon) Mann-Whitney statistic is obviously a two sample U-

statistic with degree (1,1) for the parameteric function θ(F,G) = P [X ≥
Y ]. Any testing problem which has θ(F,G) = 0 under H0 and θ(F,G) 6= 0

under H1 can then be treated with the help of the U-statistic based on a

kernel which is a simple unbiased estimator of θ(F,G).

In order to carry out such tests with a specific probability of Type I error,

one needs the exact and asymptotic distributions of the corresponding U-

statistics. Many of these statistics are distribution free, say, based on the

two sample rank statistics. If H0 specifies that F (x) = G(x) then both the

random samples are from a common distribution. The two sample rank

order probabilities are based on the equal probabilities for all the (n1 +n2)!

rank sets, hence are known and these will lead to distribution free tests.

However it is well known that to calculate the distribution free exact null

distribution of these statistics for increasing sample sizes soon becomes un-

wieldy even on fast computers. Hence results proved by [Lehmann (1951)],

generalizing original one sample results of [Hoeffding (1948)] are very use-

ful. We quote the relevant two sample limit theorem here.
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Let

Vij = h(X1, · · · , Xi, Xi+1, · · · , Xm1
, Y1, · · · , Yj , Yj+1, · · · , Ym2

)

and

V
′

ij = h(X1, · · · , Xi, X
′

i+1, · · · , X
′

m1
, Y1, · · · , Yj , Y

′

j+1, · · · , Y
′

m2
),

where the first i X ′s and j Y ′s are common arguments in Vij and V
′

ij and

the remaining are distinct. The X ′s and Y ′s are independently distributed

with distributions F and G respectively.

Define

ρij = Cov(Vij , V
′

ij).

By grouping the terms with the same number of common terms in the

double summation, we get the variance of Un1n2
(F,G) as

V ar(Un1n2
(F,G)) =

m1∑
i=1

m2∑
j=1

(
m1

i

)(
n1−m1

m1−i
)(

n1

m1

) (
m2

j

)(
n2−m2

m2−j
)(

n2

m2

) ρij .

Let N = n1 + n2. The central limit theorem states that, if σ2
m1m2

is

finite, n1/(n1 + n2)→ p, 0 < p < 1, as n1 + n2 = N →∞ , then
√
N(Un1n2

(F,G)− θ(F,G))
d→ N(0, ζ2),

where

ζ2 =
m2

1

p
ρ10 +

m2
2

1− p
ρ01.

The leading terms ρ10 and ρ01 are usually easy to compute.

Reverting back to the two sample Mann-Whitney statistic, we see that,

under H0

ρ10 = P [Y < X, Y
′
< X]− P [Y < X]2 =

1

3
− 1

4
=

1

12
,

and

ρ01 = 1/12.

Therefore,

ζ2 =
1

p

1

12
+

1

1− p
1

12
=

1

12p(1− p)
,

and
√
N(U − 1

2
)
d→ N(0,

1

12p(1− p)
) as N →∞.
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A.6 The Chernoff Savage Theorem

Let X1, · · · , Xm and Y1, · · · , Yn be two independent random samples from

continuous c.d.f.’s F (x) and G(x), respectively. Let N = m + n, λN =

m/N and limN→∞ λN = λ such that 0 < λ0 ≤ λ ≤ 1 − λ0 < 1 for some

λ0 ≤ 1/2. Let Fm(x) and Gn(x) be the empirical distribution functions

corresponding to the two random samples. Then HN (x) = λNFm(x)+(1−
λN )Gn(x) is the combined empirical distribution function based on the two

random samples taken together. Let JN (u), 0 < u < 1 be a sequence of

functions such that JN (i/(N + 1)), i = 1, 2, ..., N provide certain scores.

Define a statistic

TN =

∫ ∞
−∞

JN (
N

N + 1
HN (x))dFm(x).

This integral actually is the sum of scores JN (Ri/(N + 1)) correspond-

ing to R1, R2, · · · , Rm, the ranks of the observations from the X sample in

the combined order. Many of the sample statistics, such as the Wilcoxon

statistic, the normal scores statistic, etc., are in this form. The asymptotic

normality of such statistics under certain conditions was first obtained by

[Chernoff and Savage (1958)]. We first state the required conditions and

introduce some notation.

The Conditions

(i) JN (u)→ J(u), 0 < u < 1 where J(u) is not a constant.

(ii)
∫∞
−∞

[
JN ( N

N+1HN (x))− J( N
N+1HN (x))

]
dFm(x) = op(N

−1/2).

(iii)
∣∣∣diJ(u)
dui

∣∣∣ ≤ K(u(1− u))−i−1/2+δ for some δ > 0 and i = 0, 1 with K a

constant.

Let

H(x) = λNF (x) + (1− λN )G(x).

Note that H depends on N . Further let

µN =

∫ ∞
−∞

J(H(x))dF (x)

and

σ2
N = 2(1− λN ){

∫ ∫
−∞<x<y<∞

G(x)(1−G(y))J ′(H(x))J ′(H(y))dF (x)dF (y)

+
1− λN

λN

∫ ∫
−∞<x<y<∞

F (x)(1− F (y))J ′(H(x))J ′(H(y))dG(x)dG(y)},
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where J ′(x) denotes the first derivative of J(x) w.r.t. x.

Choose a x0 so that H(x0) = 1/2 and define

B(x) =

∫ x

xo

J ′(H)dG, B∗(x) =

∫ x

xo

J ′(H)dF.

From condition (iii) above and the fact that dF ≤ KdH, where K is

a constant, one obtains |µN | ≤ K
∫∞
∞ (H(1−H))δ−1/2dH, for some δ > 0.

This proves that µN is finite.

Theorem A.6.1 (Chernoff-Savage): Under the conditions (i) to (iii)

and if σN 6= 0,

lim
N→∞

P

(√
n(TN − µN )

σN
≤ t
)

= Φ(t).

Under the additional condition that B(X1) and B∗(Y1) have variances

bounded away from zero with respect to (F,G, λN ), the above convergence

to the standard normal distribution is uniform in F,G, and λN .

Remark A.6.1. [Chernoff and Savage (1958)] had assumed a second

derivative condition on J but this condition was subsequently removed by

[Govindarajulu et al. (1967)] and [Pyke and Shorack (1968)] using proofs

based on properties of the empirical process. A proof is also given by [Puri

et al. (1971)] and [Akritas (1984)].

Below we give a sketch of the proof.

Proof of the Chernoff-Savage theorem: Let

T ∗N =

∫ ∞
−∞

J(
N

N + 1
HN (x))dFm(x).

From condition (ii) above it follows that

TN − T ∗N = op(N
−1/2).

Thus by Theorem (A.3.1) it is enough to obtain the asymptotic distribution

of the statistic
√
N(T∗N−µN )

σN
.

We can write

J(
N

N + 1
HN ) = J(H) + (HN −H)J ′(H)− HN

N + 1
J ′(H)

+{J(
N

N + 1
HN )− J(H)(

N

N + 1
HN −H)J ′(H)}.
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Thus
√
N(T ∗N − µN )

=
√
N

∫
J(H)d(Fm − F ) +

√
N

∫
(HN −H)J ′(H)dF

−
√
N

N + 1

∫
HNJ

′(H)dFm +
√
N

∫
(HN −H)J ′(H)d(Fm − F )

+
√
N

∫
{J(

N

N + 1
HN )− J(H)− (

N

N + 1
HN −H)J ′(H)}dFm

= B1N +B2N + C1N + C2N + C3N , say.

Below we proceed to show that (B1N +B2N )/σN converges in distribu-

tion to a standard normal variable.

Note that, using integration by parts,

B2N =
√
N

∫
(HN −H)J ′(H)dF

=
√
N

∫
(HN −H)dB∗

= −
√
N

∫
B∗d(Hn −H). (A.6.3)

Using this,

λNB
∗(x) + (1− λN )B(x) = J(H(x))− J(H(x0))

and the fact that
∫
d(Fm − F ) = 0, we obtain

B1N +B2N =
√
N(1− λN ){

∫
Bd(Fm − F )−

∫
B∗d(Gn −G)}

=
√
N(1− λN ){ 1

m

m∑
i=1

(B(Xi)− E[B(X1)])

− 1

n

n∑
i=1

(B∗(Yi)− E[B(Y1)])}. (A.6.4)

The equation (A.6.4) is a sum of independent random variables with

mean zero and the sum of the variances

s2
N = N(1− λN )2{ 1

m
V ar(B(X1)) +

1

n
V ar(B∗(Y1))}. (A.6.5)

In our notation F1(x) = I[X1 ≤ x] and thus

B(X1) =

∫
B(x)dF1.
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Using integration by parts, we can write

B(X1)− E[B(X1)] = −
∫

(F1 − F )J ′(H)dG.

Now condition (iii), and the fact that dG ≤ KdH implies that

E|B(X1)− E[B(X1)]|2+δ′ ≤ K
∫

(H(1−H)(−1/2+δ)(2+δ′)dH, (A.6.6)

where K is a generic constant. The bound above is finite for a δ′ > 0

satisfying (−12 + δ)(2 + δ′) > −1. Further

V ar(B(X1))

= E[

∫
(F1(x)− F (x))J ′(H(x))dG(x)

∫
(F1(y)− F (y))J ′(H(y))dG(y)]

+ 2

∫ ∫
−∞<x<y<∞

F (x)(1− F (y))J ′(H(x))J ′(H(y))dG(x)dG(y),

using the Fubini theorem and the symmetry of the integral in x and y

E[(F1(x)− F (x))(F1(y)− F (y))] = F (min{x, y})− F (x)F (y).

Similar arguments lead to the finiteness of E|B∗(Y1) − E[B∗(Y1)]|2+δ′

and to

V ar(B∗(Y1))

= 2

∫ ∫
−∞<x<y<∞

G(x)(1−G(y))J ′(H(x))J ′(H(y))dF (x)dF (y).

Now consider the N independent random variables
√
N(1− λN )(B(Xi)− E[B(X1)])/m,

√
N(1− λN )(B∗(Yj)− E[B(Y1)])/n;

i = 1, · · · ,m; j = 1, · · · , n. The sum of their (2+δ′)-th absolute moments is

bounded above by KN (2+δ′)/2(1−λn)2+δ′(1/m1+δ′+1/n1+δ′), which tends

to zero as N →∞ since m/N → λ, n/N → (1− λ) and m and n tend to

∞. Also, H = λNF (x) + (1 − λN )G(x) → λF + (1 − λ)G. Further, from

condition (iii) and the dominated convergence theorem, s2
N converges to

a finite quantity as N → ∞. Thus by the Liapounov Theorem, we obtain

that

B1N +B2N

sN

d→ N(0, 1).

But from (A.6.3), (A.6.5) and the expressions for V ar(B(X1)) and

V ar(B∗(Y1)) we see that sN = σN .
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The remaining terms C1N , C2N and C3N above are op(1) uniformly in

(F,G, λN ). For a proof of this we refer to [Chernoff and Savage (1958)] and

[Puri et al. (1971)].

To see that the convergence to the standard normal is uniform in

(F,G, λN ), we further note that the properties of the empirical distribu-

tion used, depend only on the properties of a empirical distribution func-

tion corresponding to a random sample from a distribution that is Uniform

over (0, 1). Hence without loss of generality H can be assumed to be a

U(0, 1) distribution. To see the uniform convergence of B1N + B2N to

the standard normal, we note that the bound in the Berry-Esseen theorem

(Theorem A.4.5) depends only on the variances and the (2+δ′)-th moments

of B(X1) and B∗(Y1). From (A.6.6), it can be seen that the (2 + δ)-th mo-

ments are bounded by
∫ 1

0
(u(1 − u))2+δ′du and thus are independent of

(F,G, λN ). Since the variances are given to be bounded away from zero,

the bound does not depend on (F,G, λN ).

A.7 Linear Functions of Order Statistics

For tests of exponentiality and some other applications we need the asymp-

totic distribution of linear functions of order statistics. The following the-

orem provides the asymptotic normality under certain conditions.

Theorem A.7.1. [Moore et al. (1968)]: Let X(1) < X(2) < · · · < X(n) be

the order statistics corresponding to a random sample from c.d.f. F (x). Let

Tn =
1

n

n∑
i=1

L(
i

n
)Xi,

where L(u) is a function on [0,1]. Suppose L(u) and F (x) satisfy the fol-

lowing conditions.

(F1): The c.d.f. F (x) is continuous.

(F2): E[|X|] <∞.
(W): The derivative L′(u) of L(u) is continuous and of bounded variation

on [0,1].

Further let

µ =

∫ ∞
−∞

xL(F (x))dF (x)
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and

σ2 = 2

∫ ∫
−∞<s<t<∞

L(F (s))L(F (t))F (s)(1− F (t))dsdt.

Then

P

[√
n(Tn − µ)

σ
≤ t
]
→ Φ(t) as n→∞

provided 0 < σ2 <∞.

Proof: Since F (x) is continuous, F (X1) is a uniform random variable over

[0, 1]. Let Un denote the empirical distribution function of the U(0, 1)

random variables F (X1), · · · , F (Xn) and define the inverse F−1 of F as

F−1(t) = inf{x : t ≤ F (x)}.
By the above relations, and the change of variable and the integration by

parts formulae,

Tn − µn =

∫ ∞
−∞

xL(Fn(x))dFn(x)−
∫ ∞
−∞

xL(F (x))dF (x)

=

∫ 1

0

F−1
n (u)L(u)du−

∫ 1

0

F−1(u)L(u)du

=

∫ 1

0

F−1(U−1
n (u))L(u)du−

∫ 1

0

F−1(u)L(u)du

=

∫ 1

0

F−1(u)L(Un(u))dUn(u)−
∫ 1

0

F−1(u)L(u)du.

Let Wn(u) =
√
n(Un(u)− u). From the mean value theorem

L(Un(u))− L(u) = L′(Vn(u))(Un(u)− u),

where |Vn(u)− u| < |Un(u)− u|.
Therefore we may write

√
n(Tn − µn) = B1n +R1n +R2n,

where

B1n =

∫ 1

0

F−1(u)L′(u)Wn(u)du+

∫ 1

0

F−1(u)L(u)dWndu,

R1n =

∫ 1

0

F−1(u){L′(Vn(u))− L′(u)}Wn(u)dUn(u),

R2n = n−1/2

∫ 1

0

F−1(u)L′(u)Wn(u)dWn(u).
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Since the assumption (F2) implies that

lim
u→0+

uF−1(u) = lim
u→1−

(1− u)F−1(u) = 0,

we can integrate by parts to obtain

B1n =

∫ 1

0

L(u)Wn(u)dF−1(u).

Now the integral is
√
n times the average of n i.i.d. random variables

{
∫ 1

0

(I[F (Xi) ≤ u]− u)L(u)dF−1(u), i = 1, ..., n}

with common mean 0. Since σ2 is finite, the common variance can be ob-

tained using the Fubini Theorem as follows:

V ar(

∫ 1

0

(I[F (Xi) ≤ u]− u)L(u)dF−1(u))

= E

∫ 1

0

∫ 1

0

(I[F (X1) ≤ u]− u)L(u)(I[F (X1) ≤ v]− v)L(v)dF−1(v)dF−1(u)]

=

∫ 1

0

∫ 1

0

(min(u, v)− uv)dF−1(u)dF−1(v)

which by the change of variable formula and the symmetry of the integrals

in u and v reduces to σ2. From the Lindberg-Lévy theorem, it follows that

B1n
d→ N(0, 1) as n→∞.

We, next show that the remaining two terms R1n and R2n are op(1). Note

that

|R1n| ≤ ‖L′(Vn)− L′‖‖Wn‖
∫ 1

0

|F−1(u)|dUn(u),

where ‖.‖ denotes the supremum norm. By the Glivenko-Cantelli theo-

rem and the uniform continuity of L′(u), the first factor of the bound

above converges to zero a.s. A theorem due to Kolmogorov (see [Billings-

ley (1995)], p. 104) asserts that the second factor converges in distribution

to a proper random variable. The SLLN asserts that the third factor con-

verges to
∫ 1

0
|G(u)|du which is finite due to assumption (F2). This gives

|R1n| = op(1).

The term R2n can be expressed as a sum of integrals over the continuity

set of Wn and its complement as follows:
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R2n =
1

2
n−1/2

∫ 1

0

F−1(u)L′(u)d[Wn(u)]2

+1/2n−3/2
n∑
i=1

F−1(F (Xi))L
′(F (Xi)), a.s.

The second term on the right converges to 0 by the SLLN due to the

assumptions on F (x) and L(u). After integration by parts the first term

equals

1

2
n−1/2

∫ 1

0

[Wn(u)]2d[F−1(u)L′(u)].

For a and b in [0, 1] (a < b), with F−1(a) and F−1(b) finite, the term

n−1/2

∫ b

a

[Wn(u)]2d[F−1(u)L′(u)],

converges to zero in probability because ‖Wn‖ is Op(1) and the integral

involved is finite. Thus we need to show that the integrals over [0, a] and

[b, 1] converge to zero in probability. We can assume b to be a continuity

point of F−1(u) and need only consider the case F−1(1) = ∞. Let V (u)

denote the total variation of F−1L′(u) on [b, 1], then

E|n−1/2

∫ 1

b

[Wn(u)]2d[F−1(u)L′(u)]|

≤ E[n−1/2

∫ 1

b

[Wn(u)]2dV (u)]

= n−1/2

∫ 1

b

u(1− u)dV (u).

Thus it is enough to show that∫ 1

b

u(1− u)dV (u) <∞.

Let V ts (f) denote the total variation of f on [s, t]. Then

V (u) ≤ sup
[b,u]

|F−1(t)|V ub (L′) + sup
[b,u]

|L′(t)|V ub (F−1)

= F−1(u)V ub (L′) + sup
[b,u]

|L′(t)|[(F−1(u)− F−1(b)]

≤ KF−1(u),
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for some constant K > 0. Integrating
∫ 1

b
u(1− u)dV (u) by parts and using

the above bound for V (u) establishes the finiteness of the integral. Con-

vergence to 0 in probability of the integral over [0, a] can be shown by a

similar argument.

The asymptotic normality of
√
n(Tn−µ)
σ now follows from the above results

and the Theorem (A.3.1). �

Remark A.7.1. [Stigler (1974)] has obtained the asymptotic normality for

a general c.d.f. F (x) under the assumptions

(F’): E[X2
1 ] <∞.

(W’): L(u) is bounded and continuous a.e. F−1 on (0, 1).

Remark A.7.2. Asymptotic normality of the statistic 1
n

∑n
i=1 L( in )h(Xi)

known as L-statistic, under certain conditions on the weight function L

and the function h, has been obtained by many authors. References and

the various conditions needed may be found in the book by ([Shorack and

Wellner (1986)], Chapter 19).

A.8 A Martingale Central Limit Theorem

Certain test statistics can be expressed as stochastic integrals with respect

to counting processes which in turn involve integrals w.r.t. innovation mar-

tingales. Thus martingale central limit theorems may be used in obtaining

the asymptotic distribution of these statistics. Below we state the central

limit theorem used in this book. More details can be found in [Fleming and

Harrington (1991)], [Karr (1991)], [Andersen et al. (1993)].

We first state some definitions. Let (Ω,F , P ) be a probability space.

Definition A.8.1. A family of sub σ-fields {Ft, t ≥ 0} of F is called a

filtration if s ≤ t implies Fs ⊂ Ft.

Definition A.8.2. A counting process is a stochastic process {N(t), t ≥ 0}
with N(0) = 0, N(t) < ∞ a.s., and whose paths are piecewise constant,

right-continuous and have only jump discontinuities with jump size +1.

Definition A.8.3. A stochastic process X = {X(t), t ≥ 0} is said to be

adapted to a filtration {Ft, t ≥ 0} or Ft-adapted if for every t, X(t) is

Ft-measurable.
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Definition A.8.4. A stochastic process X = {X(t), t ≥ 0} is called a

martingale with respect to a filtration {Ft, t ≥ 0} or Ft-martingale if:

1. X is adapted to a filtration {Ft, t ≥ 0},
2. E[|X(t)|] <∞ for all t,

3. E[X(t)|Fu, u ≤ s] = X(s) a.s. for all 0 ≤ s ≤ t.

Definition A.8.5. A stochastic process X = {X(t), t ≥ 0} is said to be

predictable with respect to a filtration {Ft, t ≥ 0} or Ft-predictable, if for

each t > 0, X(t) is Ft−-measurable where Ft− = σ{
⋃
u<t Fu}, (i.e. the

smallest σ-field generated by the collection
⋃
u<t Fu).

Definition A.8.6. A nonnegative random variable T is called a stopping

time with respect to a filtration {Ft, t ≥ 0} if [T ≤ t] ∈ Ft for all t ≥ 0.

Definition A.8.7. A property is said to hold locally for a stochastic process

X if the property is satisfied by the stopped process {X(t ∧ Tn); t ≥ 0} for

each n, where {Tn, n = 1, 2, · · · } is an increasing sequence of stopping times

with limn→∞Tn =∞.

From the Doob-Meyer decomposition we have that if N = {N(t), t ≥ 0}
is a counting process adapted to a right continuous filtration {Ft, t ≥ 0}
with EN(t) < ∞ for all t, then there exists a unique increasing right con-

tinuous Ft-predictable process Λ = {Λ(t), t ≥ 0} such that Λ(0) = 0 a.s.,

EΛ(t) < ∞ for all t, and {M(t) = N(t) − Λ(t), t ≥ 0} is a right continu-

ous Ft-martingale called the innovation martingale of the process N. The

process Λ is called the compensator of the counting process with respect

to the filtration {Ft}.

The following inequality is used to prove strong consistency of the

Kaplan-Meier and Nelson-Aalen estimators.

Theorem A.8.1. (Lenglart’s Inequality) Let X be a right-continuous Ft-
adapted process, and Y a non-decreasing predictable process with Y (0) = 0.

Suppose, for all bounded stopping times T , E[X(T )] ≤ E[Y (T )]. Then for

any stopping time T , and every ε, η > 0,

P

[
sup
t≤T
|X(t)| ≥ ε

]
≤ η

ε
+ P [Y (T ) ≥ η].

A proof of the above theorem is in ([Shorack and Wellner (1986)], Inequality

B.4.1).
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Corollary A.8.1. Let M = N−Λ be the martingale corresponding to the

counting process N with compensator Λ, which is locally square integrable.

Suppose Y is a predictable and locally bounded process with respect to the

same filtration. Then for any stopping time T such that P [T < ∞] = 1,

and every ε, η > 0,

P

[
sup
t≤T
{
∫ t

0

Y (s)dM(s)}2 ≥ ε
]
≤ η

ε
+ P

[∫ T

0

Y 2(s)dΛ(s) ≥ η

]
.

For a proof see ([Fleming and Harrington (1991)], pp. 11).

We next state a central limit theorem involving stochastic integrals with

respect to the innovation martingales. Suppose for each n and i = 1, · · · , kn,

N
(n)
i is counting process with continuous compensator Λ

(n)
i and innovation

martingale M
(n)
i , and is adapted to a right continuous filtration {Ft, t ≥

0}. Further, for each n and i = 1, · · · , n, suppose {Y (n)
i (s), s ≥ 0} is a

locally bounded Ft−predictable process. Here kn = k can be fixed or can

depend on n, for example, kn = n.

Theorem A.8.2. If for every t ≤ τ , as n→∞
kn∑
i=1

∫ t

0

(Y
(n)
i (s))2dΛ

(n)
i (s)

P→ V (t), (A.8.7)

where V (t) is a non-random function and for all ε > 0,

kn∑
i=1

∫ t

0

(Y
(n)
i (s))2I

[|Y (n)
i (s)|≥ε]dΛ

(n)
i (s)

P→ 0, (A.8.8)

then, as n→∞,
n∑
i=1

∫ t

0

Y
(n)
i (s)dM

(n)
i (s)

converges weakly in the Skorohod topology to a mean zero Gaussian martin-

gale on D[0, τ ], where D[0, τ ] denotes the space of functions on [0, τ ] which

are right continuous with left-hand limits.

Proof can be found in ([Fleming and Harrington (1991)], Chapter 5).

If for each i, Λ
(n)
i (t) =

∫ t
0
λ

(n)
i (s)ds and V (t) =

∫ t
0
v(s)ds then A.8.7

holds if as n→∞,
kn∑
i=1

(Y
(n)
i (s))2λ

(n)
i (s)

P→ v(s) > 0,
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for all s ∈ [0, τ ].

If kn = k is fixed then A.8.8 holds if as n→∞,
Y

(n)
i (s)

P→ 0

for all j = 1, ..., k and s ∈ [0, τ ].

A.9 Asymptotic Distribution of the Hellinger Distance

Based Goodness-of-Fit-Statistic

We discussed a goodness-of-fit test based on the Hellinger distance in Chap-

ter 10. Below we list the assumptions required for the asymptotic normality

of the statistic.

Assumptions: [Beran (1977)].

A1. The kernel density K(·) is symmetric about zero, has compact support

and is twice continuously differentiable.

A2. The parameter space Θ is a compact subset of Rp, θ1 6= θ2 implies

fθ1 6= fθ2 on a set of positive Lebesgue measure and for almost every

x, fθ(x) is continuous in θ.

A3. For every θ ∈ Θ, fθ(x) is separated and positive on a compact interval

I and is twice continuously differentiable (in x).

Let ht = f
1/2
t . For every θ ∈ interior (Θ), the following assumptions

hold.

A4. For every x 6∈ N (a Lebesgue null set) and for every t in some

neighbourhood of θ, ht(x) has first order partial derivatives {ḣ(j)
t (x), 1 ≤

j ≤ p} with respect to t which are continuous in t at t = θ. For every

j,
∫

(ḣ
(j)
t (x))2dx is continuous in t at t = θ.

A5. For every x 6∈ N (a Lebesgue null set) and for every t in some neigh-

bourhood of θ, ht(x) has second partial derivatives {ḧ(j,k)
t (x), 1 ≤ j, k ≤ p}

with respect to t which are continuous in t at t = θ. Further for every

(j, k),
∫

(ḧ
(j,k)
t (x))2dx is continuous at t = θ.

A6. The matrix 〈
∫
ḧ

(j,k)
t (x)f

1/2
t (x)dx〉 is non-singular.

A7. For every t ∈ Θ, ht(x) is continuous in x.

A8. limn→∞ nC
7/2
n = 0 and limn→∞ nC3

n =∞.
A9. There exists a positive finite constant s depending on fθ such that√
n((Sn − s) is Op(1) under fθ.

We note that under the above assumptions, the limiting distribution

of
√
n(θ̂n − θ) is normal with mean 0 and variance 1

4 [
∫
ḣθ(x)ḣTθ (x)dx]−1

under fθ, where ḣθ(x) = (ḣ
(1)
θ (x), · · · , ḣ(p)

θ (x))T with T denoting the

transpose.
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The result holds for parametric families {fθ, θ ∈ Θ} where Θ is not

compact but can be embedded within a compact set. This, for example, is

possible for a location scale family {σ−1f(σ−1(x − µ));σ > 0,−∞ < µ <

∞} where f is continuous by the transformation µ = tan θ1, σ = tan θ2

θ = (θ1, θ2) ∈ (−π/2, π/2)X(0, π/2) = Θ′

fθ(x) = (tan θ2)−1[f((tan θ2)−1(x− tan θ1))],

θ ∈ Θ′ and f
1/2
θ − g1/2

t can be extended to a continuous function on Θ =

[−π/2, π/2]× [0, π2] which is compact.

A.10 Asymptotic Relative Efficiency

The classical ‘goodness’ criterion for a test of hypothesis is its power at a

fixed alternative, or the value of its power function at various points in the

alternative hypothesis. This works well in a finite dimensional alternative

hypothesis but not tractable in the infinite dimensional case. Pitman pro-

posed a modified measure of goodness for comparison of two tests. The

idea was to try and see how many observations the two tests of same size

require for attaining the same power for the same fixed alternative.

Then, use the ratio of the required sample sizes as the measure of relative

efficiency, the test that required the smaller number of observations was the

more efficient.

This approach too attracts the same criticism that there are too many

points in the alternative and the values may be different for different fixed

values of the power. Practically all tests that we look at will (or should)

have the property of ‘consistency’, meaning the power should tend to 1 as

the sample size increases.

Pitman’s approach was to fix a parametric family of alternatives and

consider a sequence

θn = θ0 + n−
1
2 δ + o(n−

1
2 ), δ > 0 (A.10.9)

where θ0 gives a member of the null hypothesis and θn falls in the alter-

native. For this sequence of alternatives, [Noether (1955)] considered test

statistics Tn which have asymptotically normal distribution, i.e., there are

sequences µn(θ) and σn(θ) such that the standardized statistic

Tn − µn(θ)

σn(θ)

d→ N(0, 1) as n→∞.

Assume that
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(i) µn(θ) is differentiable at θ0 and µ′n(θ0) > 0,

(ii) limn→∞
µn(θn)
µn(θ0) = limn→∞

σn(θn)
σn(θ0) = 1

and

(iii) limn→∞ n−
1
2
µ′n(θ0)
σn(θ0) = c > 0.

Then, Noether proved that the power of the one-sided test based on Tn
which rejects for large values of the statistics, tends to Φ(cδ+zα) as n→∞
where zα is the αth quantile of the standard normal distribution. Thus, the

limiting power is in terms of δ which specifies the alternative and c, which is

termed the ‘efficacy’ of the test. The Pitman-Noether asymptotic relative

efficiency (ARE) of a test 1 with respect to test 2 is defined as

e12 = (
c1
c2

)2. (A.10.10)

One can see that e12 is the lim n2

n1
as both n1 and n2 tend to ∞ such

that the test will have the same limiting power for the same alternative

given by θn.

In a way one may say that the slopes of the two power functions at θ0

are being compared and the one which has the greater slope is termed to

be the more efficient with e12 providing a precise numerical value for the

comparison.

Example: Consider the one sample location problem where

X1, X2, . . . , Xn are i.i.d from Fθ(x) = F (x − θ). Let σ2 be the variance

of X1. Three competing tests for testing H0 : θ = θ0 = 0 against H1 : θ > 0

are based on

(i) T1n = X̄.

(ii) T2n = 1
n

∑n
i=1 Ψ(Xi), where Ψ(Xi) = I(Xi > 0).

(iii) T3n =
∑n
i=1 Ψ(Xi)R

+
i , where R+

i is the rank of |Xi| in

|X1|, |X2|, . . . , |Xn|. Then T3n can be written as follows

T3n = nT2n +

(
n

2

)
T4n,

where T4n = 1

(n2)

∑
1≤i<j≤n I(Xi +Xj > 0).

Then it is easy to see that

µ1n(θ) = θ, σ2
1n(θ0) = σ2

n , c1 = 1
σ ,

µ2n(θ) = 1− F (−θ), σ2
2n(θ0) = 1

4n , c2 = 2f(0),

µ3n(θ) = 2
n−1 [1− F (−θ)] +

∫∞
−∞[1− F (−x− θ)]dF (x− θ)



September 28, 2017 15:5 ws-book9x6 BC: 9529 - Nonparametric Statistics: The... 9529-main page 254

254 NONPARAMETRIC STATISTICS: THEORY AND METHODS

σ2
3n(θ0) = 1

3n , c3 = 2
√

3
∫∞
−∞ f2(x)dx.

Then the efficiency of T1n with respect to T2n and T3n is given by

e12 = 4f2(0)σ2, e13 = 12σ2[

∫ ∞
−∞

f2(x)dx]2. (A.10.11)

When, underlying distribution is N(0, σ2), we have

e12 = 0.636, e13 = 0.954.

Hence, the sign test with level α needs 100 observations to achieve a

given power, the classical t-test would need 65 provided the underlying

distribution is N(0, σ2). On the other hand if t-test needs 95 observations

the Wilcoxon signed rank statistic needs 100 observations. In particular

one can see that for any arbitrary continuous and symmetric distribution

F (x), we have from [Lehmamm (1975)]

e13 ≥ .864. (A.10.12)

For the two sample location problem, one can check that the efficiency

of the two-sample t-test (T5n) (the optimal test when the underlying distri-

bution is normal) with respect to the Wilcoxon-Mann-Whitney test (T6n)

e56 = 12σ2[

∫ ∞
−∞

f2(x)dx]2, (A.10.13)

where σ2 is the variance of the parent distribution. Also, a lower bound for

the efficiency of the two-sample t-test (T5n) with respect to the Normal-

Scores test (T7n) is given below

e57 ≥ 1. (A.10.14)

Thus, the Normal scores test will be more efficient than the two sample

t-test for any distribution other than the normal.

Comments:

(i) In the above case the test statistic of interest has limiting normal dis-

tribution. However, if the two test statistics T1n and T2n have limiting

non-central chi-square distribution with the same degrees of freedom,

then for testing against a sequence of alternatives converging to the null

hypothesis, the Pitman ARE of T1n with respect to T2n is the ratio of

the two noncentrality parameters (see, for example, [Andrews (1954)],

[Hannan (1956)] and [Puri et al. (1971)]).

(ii) If T1n has limiting normal distribution and T2n have limiting non-

central chi-square distribution with 2 degrees of freedom one can use

the method proposed by [Rothe (1981)] to compare the two tests. See

[Singh (1984)] for a review on concepts of asymptotic efficiency.
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