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Preface

Many parametric models, possessing different characteristics, shapes, and prop-
erties, have been proposed in the literature. These models are commonly used 
to develop parametric inferential methods. The inference developed and con-
clusions drawn based on these methods, however, will critically depend on the 
specific parametric model assumed for the analysis of the observed data. For 
this reason, several model validation techniques and goodness of fit tests have 
been developed over the years.

The oldest and perhaps the most commonly used one among these is the 
chi-squared goodness of fit test proposed by Karl Pearson over a century ago. 
Since then, many modifications, extensions, and generalizations of this meth-
odology have been discussed in the statistical literature. Yet, there are some 
misconceptions and misunderstandings in the use of this method even at the 
present time.

The main aim of this book is, therefore, to provide an in-depth account of 
the theory, methods, and applications of chi-squared goodness of fit tests. In 
the process, pertinent formulas for their use in testing for some specific promi-
nent distributions, such as normal, exponential, and Weibull, are provided. The  
asymptotic properties of the tests are described in detail, and Monte Carlo simu-
lations are also used to carry out some comparisons of the power of these tests 
for different alternatives.

To provide a clear understanding of the methodology and an appreciation for 
its wide-ranging application, several well-known data sets are used as illustra-
tive examples and the results obtained are then carefully interpreted. In doing 
so, some of the commonly made mistakes and misconceptions with regard to 
the use of this test procedure are pointed out as well.

We hope this book will serve as an useful guide for this popular methodology 
to theoreticians and practitioners alike. As pointed out at a number of places in 
the book, there are still many open problems in this area, and it is our sincere 
hope that the publication of this book will rejuvenate research activity, both 
theoretical and applied, in this important topic of research.

Preparation of a book of this nature naturally requires the help and co-
operation of many individuals. We acknowledge the overwhelming support 
we received from numerous researchers who willingly shared their research 
publications and ideas with us. The editors of Academic Press/Elsevier 
were greatly supportive of this project from the start, and their production  
department were patient and efficient while working on the final production 
stages of the book. Our sincere thanks also go to our respective families for 

xi



their emotional support and patience during the course of this project, and 
to Ms. Debbie Iscoe for her diligent work on the typesetting of the entire 
manuscript.

Vassilly Voinov, Kazakhstan
Mikhail Nikulin, France

Narayanaswamy Balakrishnan, Canada
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Chapter 1

A Historical Account

The famous chi-squared goodness of fit test was proposed by Pearson (1900).

If simple observations are grouped over r disjoint intervals� j and N (n)
j denote

observed frequencies corresponding to a multinomial scheme with np j (θ) as
the expected frequencies, for j = 1,2, . . . ,r , the Pearson’s sum is given by

χ2 =
r∑

j=1

(N (n)
j − np j (θ))

2

np j (θ)
= V(n)T (θ)V(n)(θ), (1.1)

where V(n)(θ) is the vector of standardized frequencies with components

v
(n)
j (θ) = (N (n)

j − np j (θ))/(np j (θ))
1/2, j = 1, . . . ,r , θ ∈ � ⊂ Rs .

If the number of sample observations n → ∞, the statistic in (1.1) will follow
the chi-squared probability distribution with r − 1 degrees of freedom. We
know that this remarkable result is true only for a simple null hypothesis
when a hypothetical distribution is specified uniquely (i.e. the parameter θ
is considered to be known). Until 1934, Pearson believed that the limiting
distribution of the statistic in (1.1) will be the same if the unknown parameters
of the null hypothesis are replaced by their estimates based on a sample; see,
for example, Baird (1983), Plackett (1983, p. 63), Lindley (1996), Rao (2002),
and Stigler (2008, p. 266). In this regard, it is important to reproduce the words
of Plackett (1983, p. 69) concerning E.S. Pearson’s opinion: “I knew long ago
that KP (meaning Karl Pearson) used the ‘correct’ degrees of freedom for (a)
difference between two samples and (b) multiple contingency tables. But he
could not see that χ2 in curve fitting should be got asymptotically into the

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00001-6
© 2013 Elsevier Inc. All rights reserved. 1
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2 Chi-Squared Goodness of Fit Tests with Applications

same category.” Plackett explained that this crucial mistake of Pearson arose
from Karl Pearson’s assumption “that individual normality implies joint
normality.” Stigler (2008) noted that this error of Pearson “has left a positive and
lasting negative impression upon the statistical world.” Fisher (1924) clearly
showed that the number of degrees of freedom of Pearson’s test must be reduced
by the number of parameters estimated from the sample. To this point, it
must be added that Fisher’s result is true if and only if the parameters are
estimated from the vector of frequencies minimizing Pearson’s chi-squared
sum, using multinomial maximum likelihood estimates (MLEs), or by any other
asymptotically equivalent procedure (Greenwood and Nikulin, 1996, p. 74).
Such estimates based on a vector of frequencies, which is not in general
the vector of sufficient statistics, are not asymptotically efficient, however,
due to which the Pearson-Fisher test is not powerful in many cases. For a
review on using minimum chi-squared estimators, one may refer to Harris and
Kanji (1983). Nowadays, Pearson’s test with unknown parameters replaced by
estimates θ̂n based on the vector of frequencies is referred to as Pearson-Fisher
(PF) test given by

X2
n(θ̂n) =

r∑
j=1

(N (n)
j − np j (θ̂n))

2

np j (θ̂n)
= V(n)T (θ̂n)V(n)(θ̂n). (1.2)

Dzhaparidze and Nikulin (1974) proposed a modification of the standard
Pearson statistic (DN test), valid for any

√
n-consistent estimator θ̃n of an

unknown parameter, given by

U 2
n (θ̃n) = V(n)T (θ̃n)(I − Bn(BT

n Bn)
−1BT

n )V
(n)(θ̃n), (1.3)

where Bn is an estimate of the matrix B with elements

b jk = 1√
p j (θ)

∫
� j

∂ f (x,θ)

∂θk
dx, j = 1, . . . ,r , k = 1, . . . ,s.

This test, being asymptotically equivalent to the Pearson-Fisher statistic in many
cases, is not powerful for equiprobable cells (Voinov et al., 2009) but is rather
powerful if an alternative hypothesis is specified and one uses the Neyman-
Pearson classes for constructing the vector of frequencies.

Several authors, such as Cochran (1952), Yarnold (1970), Larntz (1978),
Hutchinson (1979), and Lawal (1980), considered the problem of approximating
the discrete distribution of Pearson’s sum if some expected frequencies become
too small. Baglivo et al. (1992) elaborated methods for calculating the exact
distributions and significance levels of goodness of fit statistics that can be
evaluated in polynomial time. Asymptotically normal approximation of the
chi-squared test valid for very large number of observations such that n → ∞,

n/r → α was considered by Tumanyan (1956) and Holst (1972). Haberman
(1988) noted that if some expected frequencies become too small and one does
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not use equiprobable cells, then Pearson’s test can be biased. Mann and Wald
(1942) and Cohen and Sackrowitz (1975) proved that Pearson’s chi-squared
test will be unbiased if one uses equiprobable cells. Other tests, including
modified chi-squared tests, can be biased as well. Concerning selecting category
boundaries and the number of classes in chi-squared goodness of fit tests,
one may refer to Williams (1950), the review of Kallenberg et al. (1985) and
the references cited therein, Bajgier and Aggarwal (1987) and Lemeshko and
Chimitova (2003). Ritchey (1986) showed that an application of the chi-squared
goodness of fit test with equiprobable cells to daily discrete common stock
returns fails, and so suggested a test based on a set of intervals defined by
centered approach.

Even after Fisher’s clarification, many statisticians thought that while
using Pearson’s test one may use estimators (such as MLEs) based on non-
grouped (raw) data. Chernoff and Lehmann (1954) showed that replacing the
unknown parameters in (1.1) by their MLEs based on non-grouped data would
dramatically change the limiting distribution of Pearson’s sum. In this case, it
will not follow a chi-squared distribution and that, in general, it may depend
on the unknown parameters and consequently cannot be used for testing. In
our opinion, what is difficult to understand for those who use chi-squared
tests is that an estimate is a realization of a random variable with its own
probability distribution and that a particular estimate can be quite far from the
actual unknown value of a parameter or parameters. This misunderstanding is
rather typical for those who apply both parametric and nonparametric tests for
compound hypotheses (Orlov, 1997). Erroneous use of Pearson’s test under
such settings is reproduced even in some recent textbooks; see, for example,
Clark (1997, p. 273) and Weiers (1991, p. 602). While Chernoff and Lehmann
(1954) derived their result considering grouping cells to be fixed, Roy (1956)
and Watson (1958, 1959) extended their result to the case of random grouping
intervals. Molinari (1977) derived the limiting distribution of Pearson’s sum
if moment-type estimators (MMEs) based on raw data are used, and like in
the case of MLEs, it depends on the unknown parameters. Thus, the problem
of deriving a test statistic whose limiting distribution will not depend on the
parameters becomes of interest. Roy (1956) and Watson (1958) (also see Drost,
1989) suggested using Pearson’s sum for random cells. Dahiya and Gurland
(1972a) showed that, for location and scale families with properly chosen
random cells, the limiting distribution of Pearson’s sum will not depend on the
unknown parameters, but only on the null hypothesis. Being distribution-free,
such tests can be used in practice, but the problem is that for each specific null
distribution, one has to evaluate the corresponding critical values. Therefore,
two different ways of constructing distribution-free Pearson-type tests are:
(i) to use proper estimates of the unknown parameters (e.g. based on grouped
data) and (ii) to use specially constructed grouping intervals. Yet another way
is to modify Pearson’s sum such that its limiting distribution would not depend
on the unknown parameters. Roy (1956), Moore (1971), and Chibisov (1971)
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obtained a very important result which showed that the limiting distribution
of a vector of standardized frequencies with any efficient estimator (such as
the MLE or the best asymptotically normal (BAN) estimator) instead of the
unknown parameter would be multivariate normal and will not depend on
whether the boundaries of cells are fixed or random. Nikulin (1973c), by using
this result and a very general theoretical approach (nowadays known as Wald’s
method; see Moore (1977)) solved the problem completely for any continuous
or discrete probability distribution if one uses grouping intervals based on
predetermined probabilities for the cells (a detailed derivation of this result is
given in Greenwood and Nikulin (1996, Sections 12 and 13)). A year later, Rao
and Robson (1974), by using much less general heuristic approach, obtained
the same result for a particular case of the exponential family of distributions.
Formally, their result is that

Y 12
n(θ̂n) = X2

n(θ̂n)+ V(n)T (θ̂n)Bn(Jn − Jgn)
−1BT

n V(n)(θ̂n), (1.4)

where Jn and Jgn = BT
n Bn are estimators of Fisher information matrices for

non-grouped and grouped data, respectively. Incidentally, this result is Rao and
Robson (1974) and Nikulin (1973c). The statistic in (1.4) can also be presented
as (see Nikulin, 1973b,c; Moore and Spruill, 1975; Greenwood and Nikulin,
1996)

Y 12
n(θ̂n) = V(n)T (θ̂n)(I − BnJ−1

n BT
n )

−1V(n)(θ̂n). (1.5)

The statistic in (1.4) or (1.5), suggested first by Nikulin (1973a) for testing the
normality, will be referred to in the sequel as Nikulin-Rao-Robson (NRR) test
(Voinov and Nikulin, 2011). Nikulin (1973a,b,c) assumed that only efficient
estimates of the unknown parameters (such as the MLEs based on non-grouped
data or BAN estimates) are used for testing. Spruill (1976) showed that in the
sense of approximate Bahadur slopes, the NRR test is uniformly at least as
efficient as Roy (1956) and Watson (1958) tests. Singh (1987) showed that the
NRR test is asymptotically optimal for linear hypotheses (see Lehmann, 1959, p.
304) when explicit expressions for orthogonal projectors on linear subspaces are
used. Lemeshko (1998) and Lemeshko et al. (2001) suggested an original way
of taking into account the information lost due to data grouping. Their idea is to
partition the sample space into intervals that maximize the determinant of Fisher
information matrix for grouped data. Implementation of the idea to NRR test
showed that the power of the NRR test became superior. This optimality is not
surprising because the second term in (1.4) depends on the difference between
the Fisher information matrices for grouped and non-grouped data that possibly
takes the information lost into account (Voinov, 2006). A unified large-sample
theory of general chi-squared statistics for tests of fit was developed by Moore
and Spruill (1975).

Hsuan and Robson (1976) showed that a modified statistic would be quite
different in case of moment-type estimators (MMEs) of unknown parameters.
They succeeded in deriving the limiting covariance matrix for standardized
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frequencies vi (θ̄n), where θ̄n is the MME of θ , and established that the
corresponding Wald’s quadratic form will follow in the limit the chi-squared
distribution. They also provided the test statistic explicitly for the exponential
family of distributions in which case the MMEs coincide with MLEs, thus
confirming the results of Nikulin (1973b). Voinov and Pya (2004) have shown
that, for the exponential family of distributions, this test is identically equal
to NRR statistic. Hsuan and Robson (1976) were unable to derive the general
modified test based on MMEs θ̄n explicitly, and this was achieved later by
Mirvaliev (2001). To give due credit to the contributions of Hsuan and Robson
(1976) and Mirvaliev (2001), we suggest calling this test as Hsuan-Robson-
Mirvaliev (HRM) statistic, which is of the form

Y 22
n(θ̄n) = X2

n(θ̄n)+ R2
n(θ̄n)− Q2

n(θ̄n). (1.6)

Explicit expressions for the quadratic forms R2
n(θ̄n) and Q2

n(θ̄n) are presented
in Section 4.1.

Moore (1977), using Wald’s approach, suggested a general recipe for
constructing modified chi-squared tests for any

√
n-consistent estimator, which

is a slight generalization of Nikulin’s idea, since it includes also the case of
fixed grouping cells. This is not important because nobody knows a priori
how to partition the sample space into fixed cells if the probability distribution
to be tested is unknown. Moore has not specified those tests for a particular√

n-consistent estimator, but has noted that a resulting Wald’s quadratic form
does not depend on how the limiting covariance matrix is inverted. A subclass
of the Moore-Spruill class of tests for location-scale models, that includes as
particular cases the NRR and the DN statistics, was suggested by Drost (1989).
Bol’shev and Mirvaliev (1978) and Chichagov (2006) used this approach for
constructing modified tests based on minimum variance unbiased estimators
(MVUEs). Bol’shev and Mirvaliev (1978), by using MVUEs and Wald’s
approach, constructed a chi-squared type test for the Poisson, binomial, and
negative binomial distributions. The same idea was Bol’shev and Mirvaliev
(1978), Nikulin and Voinov (1989), and Voinov and Nikulin (1994). For an
application of the best asymptotically normal (BAN) estimators for modification
of chi-squared tests, one may refer to Bemis and Bhapkar (1983). After
generalizing the idea of Dzhaparidze and Nikulin (1974) and Singh (1987)
suggested an elegant generalization of the NRR test in (1.5), valid for any√

n-consistent estimator θ̃n of an unknown parameter, of the form

Q2
s (θ̃n) = V(n)T∗ (θ̃n)(I − BnJ−1

n BT
n )

−1V(n)∗ (θ̃n), (1.7)

where

V(n)∗ (θ̃n) = V(n)(θ̃n)− BnJ−1
n W(θ̃n) (1.8)
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is the score vector for θ from the raw data, and

W(θ̃n) = 1√
n

n∑
i=1

∂ ln f (Xi ,θ)

∂θ

∣∣∣∣∣
θ=θ̃n

.

Dzhaparidze and Nikulin (1992) (see also Fisher, 1925b; Dzhaparidze, 1983)
generalized the idea of Fisher to improve any

√
n-consistent estimator to make

it asymptotically as efficient as the MLE. This gives an alternative way of
modifying chi-squared tests: improve the estimator first and then use the NRR
statistic with that improved estimator (see Section 4.4.2).

During the last 30 years, much work has been done on the classical chi-
squared tests and on proposing some very original modifications (Nikulin
and Voinov, 2006; Voinov and Nikulin, 2011). Bhalerao et al. (1980) noted
that the limiting distribution of Wald-type modifications of the Pearson-Fisher
test does not depend on the generalized minimum chi-squared procedure
used, but its power may depend on it. A numerical example for the negative
binomial distribution was considered for illustration. Moore and Stubblebine
(1981) generalized the NRR statistic to test for the two-dimensional circular
normality (see also Follmann, 1996). It is usually supposed that observations are
realizations of independent and identically distributed (i.i.d) random variables.
Gleser and Moore (1983) showed “that if the observations are in fact a stationary
process satisfying a positive dependence condition, the test (such as chi-squared)
will reject a true null hypothesis too often.” Guenther (1977) and Drost (1988)
considered the problem of approximation of power and sample size selection
for multinomial tests. Drost (1989) also introduced a generalized chi-square
goodness of fit test, which is a subclass of the Moore-Spruill class, for location-
scale families when the number of equiprobable cells tends to infinity (see
also Osius, 1985). He recommended a large number of classes for heavy-
tailed alternatives. Heckman (1984) and Andrews (1988) discussed the theory
and applications of chi-squared tests for models with covariates. Hall (1985)
proposed the chi-squared test for uniformity based on overlapping cells. He
showed that modified in such a manner the statistic is able to detect alternatives
that are n−1/2 distant from the null hypothesis. Loukas and Kemp (1986) studied
applications of Pearson’s test for bivariate discrete distributions. Kocherlakota
and Kocherlakota (1986) suggested goodness of fit tests for discrete distributions
based on probability generating functions. Habib and Thomas (1986) and
Bagdonavičius and Nikulin (2011) suggested modified chi-squared tests for
randomly censored data. Hjort (1990), by using Wald’s approach for time-
continuous survival data, proposed a new class of goodness of fit tests based on
cumulative hazard rates, which work well even when no censoring is present.
Nikulin and Solev (1999) presented a chi-squared goodness of fit test for doubly
censored data. Singh (1986) proposed a modification of the Pearson-Fisher test
based on collapsing some cells. Akritas (1988) (see also Hollander and Pena,
1992; Peña, 1998a,b) proposed modified chi-squared tests when data can be
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subject to random censoring. Cressie and Read (1984) (see also an exhaustive
review of Cressie and Read (1989)) introduced the family of power divergence
statistics of the form

2nI λ = 2

λ(λ+ 1)

k∑
i=1

Xi

{(
Xi

npi

)λ
− 1

}
, λ ∈ R1. (1.9)

Interested readers may refer to the book by Pardo (2006) for an elaborate
treatment on statistical inferential techniques based on divergence measures.
Pearson’s X2 statistic (λ = 1), the log-likelihood ratio statistic (λ → 0), the
Freeman-Tukey statistic (λ = −1/2), the modified log-likelihood ratio statistic
(λ = −1), and the Neyman modified X2(λ = −2) statistic are all particular
cases of (1.9). As a compromising alternative to Pearson’s X2 and to likelihood
ratio statistic, Cressie and Read (1984) suggested a new goodness of fit test with
λ = 2/3. Read (1984) performed exact power comparisons of different tests
from that family for symmetric null hypotheses under specified alternatives.
Moore (1986) wrote “for general alternatives, we recommend that the Pearson
X2 statistic be employed in practice when a choice is made among the statistics
2nI λ.” A comparative simulation study of some tests from the power divergence
family in (1.9) was performed by Koehler and Gan (1990). Karagrigoriou and
Mattheou (2010) (see also the references therein) suggested a generalization of
measures of divergence that include as particular cases many other previously
considered measures.

A chi-squared distributed modification of the score statistic of Cox and
Hinkley (1974) was introduced by Cordeiro and Ferrari (1991). Lorenzen
(1992), using the concept of a logarithmic mean in two arguments, reformulated
the classical Pearson’s test thus displaying a possibility to bridge the gap
between Pearson’s statistic and the log-likelihood ratio test. Li and Doss (1993)
suggested a generalization of the PF test that proves to be useful in survival
analysis. McLaren et al. (1994) proposed the generalized χ2 goodness of fit
test for detecting distributions containing more than a specified lack of fit due
to sampling errors. The test statistic coincides with the Pearson’s sum, but its
null distribution turns out to be non-central χ2. This test proves to be useful for
very large samples. Boulerice and Ducharme (1995) showed that the test statistic
introduced by Rayner and Best (1986) for Neyman’s smooth test of goodness
of fit for location-scale families does not, in general, have the anticipated chi-
squared distribution. They showed that the test is inapplicable in such cases
as logistic, Laplace, and Type I extreme-value distributions. Using Wald’s
approach, Akritas and Torbeyns (1997) developed a Pearson-type goodness of
fit test for the linear regression model. Zhang (1999) developed a chi-squared
goodness of fit test for logistic regression models. Jung et al. (2001) (see also
Jung et al., 2003) developed an adjusted chi-squared test for observational
studies of clustered binary data. Rao (2002) introduced a new test for goodness
of fit in the continuous case. Graneri (2003) proposed a χ2-type goodness of fit
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test based on transformed empirical processes for location and scale families;
see also Cabana and Cabana (1997). Johnson (2004) suggested a Bayesian χ2

test for goodness of fit. It is worth mentioning here the very original goodness of
fit tests proposed by Henze and Meintanis (2002), Davies (2002), and Damico
(2004), though they are not χ2-type. Zhang (2005) considered approximate and
asymptotic distributions of chi-squared-type mixtures that can be used to some
nonparametric goodness of fit tests, especially for nonparametric regression
models. Ampadu (2008) suggested four modified chi-squared type statistics for
testing the null hypothesis about the discrete uniform probability distribution.
Deng et al. (2009) adapted the NRR test for logistic regression models.

An important contribution to the theory of modified chi-squared goodness
of fit tests is due to McCulloch (1985) and Mirvaliev (2001) who considered
two types of decomposition of tests. The first is a decomposition of a test on
a sum of the DN statistic and an asymptotically independent (of the DN test)
additional quadratic form. Denoting W 2

n (θ) = V(n)T (θ)B(BT B)−1BT V(n)(θ)
and P2

n (θ) = V(n)T (θ)B(J − Jg)
−1BT V(n)(θ), the decomposition of the NRR

statistic in (1.4) in the case of MLEs is given by

Y 12
n(θ̂n) = U 2

n (θ̂n)+ S2
n (θ̂), (1.10)

where the DN statistic U 2
n (θ̂n) is asymptotically independent of S2

n (θ̂) =
W 2

n (θ̂) + P2
n (θ̂n) and of W 2

n (θ̂). The decomposition of the HRM statistic in
(1.6) is

Y 22
n(θ̄n) = U 2

n (θ̄n)+ S12
n(θ̄), (1.11)

where U 2
n (θ̄n) is asymptotically independent of S12

n(θ̄) = W 2
n (θ̄)+ R2

n(θ̄n)−
Q2

n(θ̄n), but is correlated with W 2
n (θ̄). The second type decomposes a modified

test on a sum of classical Pearson’s test and a correction term, which makes it
chi-square distributed in the limit, and independent of unknown parameters (see
(1.4) and (1.6)). This representation for NRR statistic was first used by Nikulin
(1973b) (see also Rao and Robson, 1974; McCulloch, 1985). The case of MMEs
was first investigated by Mirvaliev (2001). The decomposition of a modified chi-
squared test on a sum of the DN statistic and an additional term is of importance
since the DN test based on non-grouped data is asymptotically equivalent to
the Pearson-Fisher statistic for grouped data. Hence, that additional term takes
into account the Fisher information lost due to grouping. It was subsequently
shown (Voinov and Pya, 2004; Voinov et al., 2009) that the DN part, like the
PF test, is in many cases insensitive to an alternative hypothesis for the case
of equiprobable cells (fixed or random) and would be sensitive to it in the
case of non-equiprobable Neyman-Pearson classes. For equiprobable cells, this
suggests using the difference between a modified statistic and the DN part
that will be the most powerful in case of equiprobable cells (McCulloch, 1985;
Voinov et al., 2009). At this point, it is of interest to mention the elaborate works
of Lemeshko and Postovalov (1997, 1998), Lemeshko (1998), Lemeshko and
Chimitova (2000, 2002), Lemeshko et al. (2001, 2007, 2008, 2011), who have
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thoroughly investigated different tests by Monte Carlo simulations. Through
these, it has become clear that the way in which the sample space is partitioned
essentially influences the power of a test.

Fisher (1925a), who made great contributions to Statistics (see Efron, 1998)
was the first to note that “in some cases it is possible to separate the contributions
to χ2 made by the individual degrees of freedom, and so to test the separate
components of a discrepancy.” Lancaster (1951) (see also Gilula and Krieger,
1983; Nair, 1987, 1988) used the partition of χ2 to investigate the interactions
of all orders in contingency tables. Cochran (1954) wrote “that the usual χ2

tests are often insensitive, and do not indicate significant results when the
null hypothesis is actually false” and recommended to “use a single degree
of freedom, or a group of degrees of freedom, from the total χ2” for obtaining
more powerful and appropriate test. The problem of an implementation of the
idea of Fisher and Cochran was that decompositions of Pearson’s sum and
modified test statistics were not known at that time. Anderson (1994) (see also
Anderson, 1996; Boero et al., 2004a) was the first to decompose Pearson’s χ2

for a simple null hypothesis into a sum of independent χ2
1 random variables

in case of equiprobable grouping cells. Using Fourier analysis technique,
Eubank (1997) derived a decomposition of Pearson’s sum into asymptotically
independent chi-square distributed components with 1 degree of freedom. New
Neyman smooth-type tests based on those components were then suggested. An
algorithm for parametric Pearson-Fisher’s test decomposition was proposed by
Rayner (2002). Unfortunately, the components of that decomposition cannot
be written down explicitly. A parametric decomposition of Pearson’s χ2 sum
in case of non-equiprobable cells and decompositions of the RRN and HRM
statistics, based on the ideas of Mirvaliev (2001), were obtained by Voinov et al.
(2007) in an explicit form. Voinov (2010) obtained explicitly a decomposition
of Pearson-Fisher’s and Dzhaparidze-Nikulin’s statistics. A decomposition of
the Chernoff-Lehmann chi-squared test and the use of the components to test
for the binomial distribution was discussed by Best and Rayner (2006). Voinov
and Pya (2010) introduced vector-valued goodness of fit tests (based on those
components or on any combination of parametric or nonparametric statistics)
that in some cases provide a gain in power for specified alternatives.

All these variations and nuantic refinements to the chi-squared test and
their characteristics and properties have provided us an impetus to prepare
this volume. Our aim in the subsequent chapters is to provide a thorough
up-to-date review of all these developments, and also comment on their relative
performance and power under different settings.
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Chapter 2

Pearson’s Sum and
Pearson-Fisher Test

2.1 PEARSON’S CHI-SQUARED SUM

Let X1, . . . ,Xn be i.i.d. random variables (r.v.). Consider the problem of testing
a simple hypothesis H0, according to which the distribution of Xi is a member
of the parametric family

P{Xi � x |H0} = F(x; θ), θ = (θ1, . . . ,θs)
T ∈ � ⊂ Rs, x ∈ R1,

where � is an open set. Denote by f (x; θ) the density of the probability
distribution function F(x; θ) with respect to a certain σ -finite measure μ. Let

N (n)
j = Card{i : Xi ∈ � j , i = 1, . . . ,n},

p j (θ) =
∫
� j

d F(x; θ), j = 1, . . . ,r , (2.1)

where � j s are non-intersecting grouping intervals such that

�1 ∪ · · · ∪�r = R1, �i ∩� j = ∅ for i �= j .
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Denote by V(n) a column vector of dimension r of a standardized grouped
frequency with components

v
(n)
j = N (n)

j − np j (θ)√
np j (θ)

, j = 1, . . . ,r . (2.2)

Using (2.2), the standard Pearson chi-squared statistic X2
n(θ), under a simple

null hypothesis H0 (wherein the parameter θ is considered to be known),
given by

X2
n(θ) = V(n)T V(n) =

r∑
j=1

[N (n)
j − np j (θ)]2

np j (θ)
, (2.3)

possesses a limiting chi-square probability distribution (χ2
r−1)with r−1 degrees

of freedom (Pearson, 1900). For power properties of the classical Pearson test
against close alternatives, one may refer to Tumanyan (1958) and Greenwood
and Nikulin (1996).

2.2 DECOMPOSITIONS OF PEARSON’S
CHI-SQUARED SUM

In this section, we will discuss some decompositions of Pearson’s chi-squared
sum. Anderson (1994) suggested a decomposition of Pearson’s chi-squared sum
for the case of equiprobable grouping intervals in order to secure additional
information about the nature of departure from the hypothesized distribution.
A theoretical derivation of that decomposition has been presented by Boero et
al. (2004a). Let us describe briefly this theory. In the case of r equiprobable
intervals, Pearson’s sum would become

X2
n(θ) =

r∑
j=1

(N (n)
j − n/r)2

n/r
.

Let x be a r × 1 vector with components N (n)
j and μ be a r × 1 vector with its

components all as n/r . Then, evidently

X2
n(θ) = (x − μ)T [I − ppT ](x − μ)/(n/r),

where p = (
√

p1, . . . ,
√

pr )
T ,p j = 1/r ( j = 1, . . . ,r), and I is the r × r

identity matrix. There exists a (r − 1)× r matrix A such that

AAT = I, AT A = [I − ppT ].
So, with the transformation y = A(x − μ), Pearson’s sum can be expressed as

X2
n(θ) = yT y/(n/r),
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where r − 1 components y2
i /(n/r) are independently distributed as χ2

1 under
H0. Boero et al. (2004a) described the following construction for the matrix A.

Let H be the Hadamard matrix with orthogonal columns, i.e. HT H = rI.
For r being a power of 2 and using the basic Hadamard matrix

H2 =
(

1 1

1 −1

)
,

one can construct matrices of higher order as follows: H4 = H2 ⊗ H2,H8 =
H4 ⊗ H2, and so on. The matrix A is then extracted from the partition

H =
(

eT
√

rA

)
,

where e is r × 1 vector of 1s. When r = 4, for example, after rearranging the
rows, we have

A = 1

2

⎛
⎜⎝ 1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎞
⎟⎠ .

With this matrix, the transformed vector y for four equiprobable cells will be

y = A(x − μ),

or, explicitly,

y = 1

2

⎛
⎜⎝ (N

(n)
1 − n/4)+ (N (n)

2 − n/4)− (N (n)
3 − n/4)− (N (n)

4 − n/4)

(N (n)
1 − n/4)− (N (n)

2 − n/4)− (N (n)
3 − n/4)+ (N (n)

4 − n/4)

(N (n)
1 − n/4)− (N (n)

2 − n/4)+ (N (n)
3 − n/4)− (N (n)

4 − n/4)

⎞
⎟⎠ .

Thus, Pearson’s sum, when r = 4, can be decomposed as follows:

X2
n(θ) = δ2

1 + δ2
2 + δ2

3

= [(N (n)
1 − n/4)+ (N (n)

2 − n/4)− (N (n)
3 − n/4)− (N (n)

4 − n/4)]2

n

+[(N (n)
1 − n/4)− (N (n)

2 − n/4)− (N (n)
3 − n/4)+ (N (n)

4 − n/4)]2

n

+[(N (n)
1 − n/4)− (N (n)

2 − n/4)+ (N (n)
3 − n/4)− (N (n)

4 − n/4)]2

n
.

(2.4)

All terms in (2.4), which are independently distributed in the limit as χ2
1 , may

be used individually. From (2.4), we observe that the first term is sensitive to
location, the second one to scale, and the last one to skewness. So, depending on
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the alternative hypothesis, one may select a suitable component to be used for
testing. The same can be done for r = 8. In that case, a term sensitive to kurtosis
will also appear, but it is difficult to relate the remaining three components to
characteristics of the distribution (Boero et al., 2004a).

Anderson’s decomposition considered above is valid only for equiprobable
grouping cells. Another known decomposition of Pearson’s sum that is valid
for non-equiprobable cells as well is as follows (Voinov et al., 2007).

Let Z = (Z1, . . . ,Zr )
T be a random vector with EZ = 0,E(ZZT ) =

D = (di j ), the rank R(D) of D being k(�r). Denote

Z(i) = (Z1, . . . ,Zi )
T , Di = E(Z(i)ZT

(i)),

di( j) = Cov(Zi ,Z( j)), d(i) j = Cov(Z(i),Z j ), i, j = 1,2, . . . ,k.

Consider the vector δ(t) = (δ1, . . . ,δt )
T with its components as

δi = 1√|Di−1||Di |

⎡
⎢⎢⎢⎢⎢⎣

d11 d12 · · · d1(i−1) Z1

d21 d22 · · · d2(i−1) Z2

· · · · · · ·
d(i−1)1 d(i−1)2 · · · d(i−1)(i−1) Zi−1

di(1) di(2) · · · di(i−1) Zi

⎤
⎥⎥⎥⎥⎥⎦

= 1√|Di−1||Di |

[
Di−1 Z(i−1)

dT
i(i−1) Zi

]
, i = 1,2, . . . ,t . (2.5)

Assume Z(0) = 0 and |D(0)| = 1.

Theorem 2.1. Let δ(t) be a vector with its components as in (2.5). Then,

Eδ(t) = 0, E
{
δ(t)δ

T
(t)

}
= It , (2.6)

where It is a t × t identity matrix, t = 1, . . . ,R(D).

By using the well-known formula∣∣∣∣∣A C
B D

∣∣∣∣∣ = |A| · |D − BA−1C|,

δi defined in (2.5) can be expressed as

δi =
( |Di−1|

|Di |
)1/2 (

Zi − dT
i(i−1)D

−1
i−1Z(i−1)

)
, i = 1, . . . ,t . (2.7)
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The first equality in (2.6) follows immediately from (2.7). To prove the
second equality, we have to show that the components of δ(t) are all normalized.
Indeed,

Varδi = |Di−1|
|Di | E

[(
Zi − dT

i(i−1)D
−1
i−1Z(i−1)

) (
Zi − dT

i(i−1)D
−1
i−1Z(i−1)

)]

= |Di−1|
|Di |

(
dii − dT

i(i−1)D
−1
i−1Z(i−1)

)
= 1.

Along the same lines, it can be shown that the components of δ(t) are
uncorrelated as well, i.e. Eδiδ j = 0 for i �= j .

Theorem 2.2. The following identity holds:

ZT
(t)D

−1
t Z(t) = δ2

1 + · · · + δ2
t = ||δ(t)||2, t = 1, . . . ,R(D). (2.8)

Proof. If t = 1, the theorem holds trivially. Now, let us assume that the above
factorization holds up to t = k inclusive and then prove it for t = k + 1. Since

Z(k+1) =
(

Z(k)
Zk+1

)
, D(k+1) =

(
Dk d(k)k+1

dT
k+1(k) dk+1k+1

)
,

then, using block matrix inversion, we obtain

ZT
(k+1)D

−1
k+1Z(k+1) = ZT

(k)D
−1
k Z(k) +

(
dk+1k+1 − dT

k+1(k)D
−1
k d(k)k+1

)
×
(

Zk+1 − dT
k+1(k)D

−1
k d(k)k+1

)
= δ2

1 + · · · + δ2
k + δ2

k+1 = ||δ(k+1)||2,
as required. Thus, the linear transformation in (2.5) diagonalizes the quadratic
form ZT

(t)D
−1
t Z(t),t = 1, . . . ,R(D).

Remark 2.1. If a matrix B is positive definite, it can be uniquely presented in
the form B = UUT , where U is a real-valued upper triangular matrix with
positive diagonal elements. Such a factorization is known as the Cholesky
decomposition. Theorems 2.1 and 2.2 permit us to modify the Cholesky
decomposition as follows. Since we shall deal with limiting covariance matrices,
the condition of non-negative definiteness (n.n.d.) holds. If R(D) = k( � r), we
may interchange the columns of D such that the first k columns will be linearly
independent. We may also use the lower triangular matrix.

Lemma 2.1. Let a r × r matrix D be n.n.d. of rank k. Then,

RDRT = Ik, RT R =
(

D−1
k 0

0T 0

)
= D−,
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where 0 = (0, . . . ,0)T is a k-dimensional vector of zeros, R = (Rk
...0), and Rk

is a lower triangular matrix with elements

rii =
( |Di−1|

|Di |
)1/2

, i = 1, . . . ,k,

ri j = −rii dT
i(i−1)

(
D−1

i−1

)
j
, j = 1, . . . ,i − 1. (2.9)

Here, (Ai ) j denotes the jth column of the leading sub-matrix of order i × i of
the matrix A.

Proof. The proof of the lemma follows from Theorems 2.1 and 2.2, and from
the representation

δ(k) = RZ. (2.10)

Under the simple null hypothesis H0, the parameter θ in (2.1) is supposed
to be known. To simplify notation, let us denote p j (θ) = p j , j = 1, . . . ,r . Let
the components of the vector Z be

Z j = v
(n)
j = N (n)

j − np j√
np j

, j = 1, . . . ,r .

Then, under H0, the vector Z will be asymptotically normally distributed with
zero vector for its mean and its covariance matrix as

D = Ir − qqT , q = (p1/2
1 , . . . ,p1/2

r )T , R(D) = r − 1.

It is easily verified that if Dk = Ik − qkqT
k , then

|Dk | = 1 −
k∑

i=1

pi , D−1
k = Ik +

(
1 −

k∑
i=1

pi

)−1

qkqT
k , (2.11)

where qk = (p1/2
1 , . . . ,p1/2

k )T ,k = 1, . . . ,r − 1. Substituting (2.11) into (2.9),
we obtain the elements of R as

rii =
( |Di−1|

|Di |
)1/2

, i = 1, . . . ,r − 1,

ri j = rii

|Di−1|
√

pi
√

p j , j = 1, . . . ,i − 1. (2.12)

From (2.10) and (2.12), we obtain

δk =
( |Dk−1|

|Dk |
)1/2

[
Zk +

√
pk

|Dk−1|
k−1∑
i=1

√
pi Zi

]
, k = 1, . . . ,r − 1. (2.13)
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Corollary 2.1. The following decomposition of Pearson’s sum holds:
X2

n = δ2
1 + δ2

2 + · · · + δ2
r−1, (2.14)

where δk,k = 1,2, . . . ,r − 1, are independent random variables distributed in
the limit, under H0, as chi-squared with one degree of freedom. If r = 3, for
example, we have⎧⎪⎪⎨

⎪⎪⎩
δ1 = Z1√

1 − p1
,

δ2 =
√

1 − p1√
1 − p1 − p2

(
Z2 +

√
p1 p2

1 − p1
Z1

)
.

Taking into account that Z3 = −
√

p1√
p3

Z1 −
√

p2√
p3

Z2, we note that X2
n = Z2

1 +
Z2

2 + Z2
3 = δ2

1 + δ2
2 .

2.3 NEYMAN-PEARSON CLASSES AND APPLICATIONS
OF DECOMPOSITIONS OF PEARSON’S SUM

Two Neyman-Pearson classes that minimize in some sense Pearson’s measure of
the distance between null and alternative hypotheses are defined as (Greenwood
and Nikulin, 1996) �1 = {x : fN (x) < f A(x)} and �2 = {x : fN (x) �
f A(x)}, where fN (x) and f A(x) are probability density functions for a null and
an alternative hypotheses, respectively. Using points of intersection of fN (x)
and f A(x), it is possible to construct four or more Neyman-Pearson type classes
(Voinov, 2009). Tests based on those intervals possess the limiting chi-squared
distributions with usually less than r − 1 degrees of freedom. Hence, their
variance will be small, and moreover, the rate of convergence to the limit will
be essentially higher.

To illustrate some applications of the above decompositions, consider the
testing of the simple null hypothesis that a random variable X follows the logistic
probability distribution L(0,1) with density function (see Balakrishnan (1992)
for elaborate details on the logistic distribution)

l(x,0,1) =
π√

3
exp

(
− πx√

3

)
{

1 + exp
(
− πx√

3

)}2 , x ∈ R1, (2.15)

against the simple alternative that X follows the triangular distribution T (0,1)
with mean zero, variance one, and density function

t(x,0,1) = 1√
6

− |x |
6
, |x | �

√
6. (2.16)
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For the null hypothesis H0 : X ∼ L(0,1), the borders of four equiprobable
cells will be −∞ = y0 < y1 < y2 < y3 < +∞, where yi = √

3 ln
(i/(4 − i))/π, i = 1,2,3. Since for the selected null and alternative
hypotheses there is no difference in location and skewness, only

δ2
2 = [(N (n)

1 − n/4)− (N (n)
2 − n/4)− (N (n)

3 − n/4)+ (N (n)
4 − n/4)]2

n

of Anderson (1994) decomposition in (2.4) will possess power. This power
can be measured in terms of the non-centrality parameter, because the limiting
distributions of X2

n and of components δ2
i ,i = 1,2,3, for the simple alternative

hypothesis can be approximated by the non-central chi-squared distribution
with the corresponding number of degrees of freedom (three for X2

n and one
for each of the δ2

i (Kallenberg et al., 1985). If, for example, the sample size
n = 200, the non-centrality parameter of δ2

2 of (2.4) will be λ = 3.548 that for
α = 0.05 corresponds to a power of pδ2 = 0.47. For the test X2

n with 3 degrees
of freedom, the power will be pXn = 0.32 that is less than that of δ2

2. In this
example, the power of the tests δ2

1 and δ2
3 equals to zero and power of δ2

2 in
some sense “averages” between the 3 degrees of freedom of X2

n thus reducing
the power of the test.

Since Anderson’s decomposition (2.4) is valid only for equiprobable
intervals (Boero et al., 2004a), it is of interest to consider this example for
non-equiprobable cells that can result in substantial gain in power (see Best and
Rayner, 1981, Boero et al., 2004b). For r = 4 intervals, the decomposition in
(2.13) will be X2

n = δ2
1 + δ2

2 + δ2
3, where

δ j =
( |D j−1|

|D j |
)1/2

⎡
⎣Z j +

√
p j

|D j−1|
j−1∑
k=1

√
pk Zk

⎤
⎦ , j = 1,2,3, (2.17)

Z j = N (n)
j −np j√

np j
,|D j | = 1 −∑ j

k=1 pk , and p j ( j = 1,2,3) is the probability of

falling into the jth class under H0. The decomposition in (2.17) does not relate to
distributional characteristics as the decomposition (2.4) does, but investigating
power of the components in (2.17) permits sometimes to find a combination of
separate degrees of freedom that can give a more powerful test. Consider the
following example. There are four points of intersection of densities in (2.15)
and (2.16) (see Figure 2.1).

Abscissas of those points are−2.28121,−0.827723, 0.827723, and 2.28121.
Consider the following set of four Neyman-Pearson type intervals:

�11 = (− ∞; −2.28121) ∪ (− 0.827723; 0),

�12 = (0; 0.827723) ∪ (2.28121; +∞),

�21 = (− 2.28121; −0.827723),

�22 = (0.827723; 2.28121). (2.18)
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FIGURE 2.1 Graph of densities of the logistic distribution l(x,0,1) in (2.15) and the
triangular t(x,0,1) distribution in (2.16).

Over the intervals�11 and�12,t(x,0,1) < l(x,0,1), and over the intervals
�21 and �22,t(x,0,1) � l(x,0,1). The non-centrality parameters of the
statistics δ2

1,δ
2
2,δ

2
3 defined in (2.17), and X2

n in this case are λ1 = 3.646,
λ2 = 0.910,λ3 = 4.556, and λXn = 9.112, respectively. The power of
tests based on these statistics for samples of size n = 200 are pδ1 = 0.480,
pδ2 = 0.159,pδ3 = 0.569, and pXn = 0.717, respectively.

Consider the test δ2
1 + δ2

3 based on two independent most powerful
components of X2

n . This test possesses a power of 0.729 that is higher than
that of the test X2

n .
The above numerical example demonstrates an increase in power compared

to Anderson’s δ2
2 test (pδ2 = 0.47) due to the following reasons: the

ability to use non-equiprobable cells, and, consequently, the ability to apply
Neyman-Pearson type intervals that maximize in some sense the measure of
distance between hypotheses. It also illustrates the idea of Cochran (1954) to
“use a single degree of freedom, or a group of degrees of freedom, from the
total X2

n , to get more powerful and appropriate tests.”

2.4 PEARSON-FISHER AND DZHAPARIDZE-NIKULIN TESTS

The classical Pearson test in (2.3) will be distribution-free if and only if one
is testing a simple null hypothesis. In the parametric case, it is assumed that
parameters are known. During the period 1900–1924, researchers believed that
Karl Pearson was of the opinion that replacing the unknown parameters in chi-
squared sum in (2.3) by their estimates will not change the limiting distribution
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of Pearson’s sum and it will still follow χ2
r−1 distribution (Plackett, 1983; Rao,

2002; Stigler, 2008). Fisher (1924, 1928) clearly showed that the number of
degrees of freedom of Pearson’s test must be reduced by the number s of
parameters estimated from the sample. The result of Fisher is true if and only
if the parameters are estimated by grouped data (minimizing Pearson’s chi-
squared sum, using multinomial maximum likelihood estimates (MLEs) for
grouped data, or by any other asymptotically equivalent procedure; for details,
see Greenwood and Nikulin (1996)). Nowadays, Pearson’s test with unknown
parameters replaced by the estimator from the grouped data, viz., θ̂n , is known
as Pearson–Fisher (PF) test given by

X2
n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n) =

r∑
j=1

[N (n)
j − np j (θ̂n)]2

np j (θ̂n)
. (2.19)

If θ̂n is an estimator of the parameter θ based on the grouped data, then in the
limit the random vector V(n)(θ̂n) will possess multivariate normal distribution
with zero vector for its mean and its covariance matrix as

� = I − qqT − B(BT B)−1BT ,

where q = {[p1(θ)]1/2, . . . ,[pr (θ)]1/2}T , and B = B(θ) is the r × s matrix of
rank s with its elements as

1√
p j (θ)

∂ p j (θ)

∂θk
, j = 1, . . . ,r , k = 1, . . . ,s. (2.20)

In this case, the Pearson-Fisher statistic in (2.19) will be distributed in the limit
as χ2

r−s−1; for details, see Birch (1964) and Greenwood and Nikulin (1996).
For many years, researchers thought that instead of estimates based on

grouped data one may also use other estimates such as the MLEs based on raw
data. This is quite natural since it is clear that by using grouped data we lose
some information about the parameters that is contained in a sample. Consider
the following situation. Let in a particular interval realizations of a random
variable X be grouped around, say, left or right edge, but we replace the average
of those realizations by the midpoint of the interval which can be quite far from
the actual average. Evidently, much information will be lost in this case.

Chernoff and Lehmann (1954) showed that replacing unknown parameters
in (2.19) by estimators such as the maximum likelihood estimator θ̂n based on
non-grouped (raw) data would dramatically change the limiting distribution. In
this case, it will have the distribution of

χ2
r−s−1 +

r−1∑
j=r−s

λ j Z2
j ,
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where Z j are standard normal variables and coefficients 0 � λ j < 1,
j = 1, . . . ,s, may depend on θ . This result of Chernoff and Lehmann, valid
for fixed grouping cells, has been generalized by Moore (1971) and Chibisov
(1971) for random cells (see also Le et al., 1983). Since the statistic in (2.19)
is not distribution-free, it cannot be used for hypotheses testing in general. An
erroneous usage of estimates based on raw data in (2.19) is present even in some
recent textbooks in statistics, as mentioned in the preceding Chapter.

So, the natural question that arises is what to do if one intends to use estimates
based on raw (non-grouped) data. A possible solution to this issue was proposed
by Moore (1971) and Dahiya (1972a) for continuous distributions with location
and scale parameters, and in a much more general setting subsequently by
Nikulin (1973b) and Dzhaparidze and Nikulin (1974).

We now consider the theory of Dzhaparidze and Nikulin (1974) since
Pearson-Fisher and Dzhaparidze-Nikulin tests are asymptotically equivalent
and formally possess the same decompositions, with the only difference being
that the PF test uses estimators based on grouped data, while the DN test
uses any

√
n-consistent estimator based on the raw data. Being asymptotically

equivalent, these tests possess exactly the same power. In particular, they possess
almost no power for equiprobable classes (see Voinov, 2009).

Let M[�] be a space spanned by the columns of the idempotent matrix

� = I − qqT − B(BT B)−1BT .

Then, a vector U(n)(θ̃n) = �V(n)(θ̃n), where θ̃n is any
√

n-consistent estimator
of θ (not necessarily based on grouped data), will possess in the limit the
multivariate normal distribution with zero vector as its mean and its covariance
matrix as �, same as that for the Pearson-Fisher case. Since the generalized
inverse �− of � equals �, the well-known Dzhaparidze-Nikulin statistic

U 2
n (θ̃n) = V(n)T (θ̃n)[I − qnqT

n − Bn(BT
n B)−1

n BT
n ]V(n)(θ̃n), (2.21)

where qn is the estimator of the vector q, will possess in the limit the chi-
squared probability distribution χ2

r−s−1, same as that of Pearson-Fisher statistic
in (2.19). Mathematical and statistical properties of (2.21) were analyzed by
Dudley (1976, 1979) and Drost (1988).

Noting that qnqT
n V(n)(θ̂n) = 0, the Dzhaparidze–Nikulin test statistic in

(2.21) can be represented as

U 2
n (θ̃n) = V(n)T (θ̃n)[I − Bn(BT

n Bn)
−1Bn]V(n)(θ̃n). (2.22)

By using the trivial orthogonal decomposition of the identity matrix

I = qqT + B(BT B)−1BT +
[
I − qqT − B(BT B)−1BT

]
(2.23)

and the fact that qT V(n)(θ) = 0, Mirvaliev (2001) showed that the
decomposition

V(n)(θ) = Un(θ)+ Wn(θ) (2.24)
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is the sum of orthogonal vectors

Un(θ) =
[
I − qqT − B(BT B)−1BT

]
V(n)(θ)

and
Wn(θ) = B(BT B)−1BT V(n)(θ). (2.25)

From this, it follows that Pearson’s sum in (2.3) is decomposed as follows:

X2
n(θ) = U 2

n (θ)+ W 2
n (θ), (2.26)

where

U 2
n (θ) = V(n)T (θ)

[
I − qqT − B(BT B)−1BT

]
V(n)(θ) (2.27)

and
W 2

n (θ) = V(n)T (θ)B(BT B)−1BT V(n)(θ). (2.28)

If one replaces in (2.27) the parameter θ by any
√

n-consistent estimator θ̃ , the
limiting distribution of the DN statistic U 2

n (θ̃n) would be χ2
r−s−1 regardless

of the estimator chosen. This is precisely the reason why Mirvaliev (2001)
called (2.27) the invariant part of Pearson’s sum. On the contrary, the limiting
distribution of the statistic W 2

n (θ̃n) essentially depends on the limiting properties
of the estimator θ̃n , which was called the sensitive part by Mirvaliev.

Consider a decomposition of the DN statistic (2.22) into limiting
independent χ2

1 distributed limit components (Voinov, 2010). In this case,

Dk = Ik − qkqT
k − Bk(BT B)−1BT

k , k = 1, . . . ,r − s − 1,

|Dk | =
(

1 −
k∑

i=1

pi

)
|T − Tk |/|T|,

and
D−1

k = Mk + MkBk(T − Tk)
−1BT

k Mk, (2.29)

where
Mk = Ik + qkqT

k /
(

1 −∑k
i=1 pi

)
,T = BT B, and Tk = BT

k (Ik − qkqT
k )

−1Bk .

Since
dT

i(i−1) = −(√pi qT
i−1 + bi (BT B)−1BT

i−1),

where bi is the ith row of the matrix B, then, by (2.9), we obtain

rii = √|Di−1|/|Di |,
ri j = rii (

√
pi qT

i−1 + bi (BT B)−1BT
i−1)(D

−1
i−1) j , (2.30)

where j = 1, . . . ,i − 1,i = 1, . . . ,r − s − 1, and (D−1
i−1) j is the jth column of

D−1
i−1 defined by (2.29).
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Consider the transformation

δr−s−1(θ̃n) = RU(n)(θ̃n) = R�V(n)(θ̃n), (2.31)

where R = (Rr−s−1
...0) and Rr−s−1 is the lower triangular matrix with elements

defined by (2.30).

Theorem 2.3. Under the usual regularity conditions, the following decom-
position of the Dzhaparidze–Nikulin statistic holds:

U 2
n (θ̃n) = δ2

1(θ̃n)+ · · · + δ2
r−s−1(θ̃n), (2.32)

where components δ2
1(θ̃n), . . . ,δ

2
r−s−1(θ̃n) are independently distributed as χ2

1
in the limit.

Proof. It is sufficient to prove the validity of the decomposition in (2.32).
Indeed,

δ2
1(θ̃n)+ · · · + δ2

r−s−1(θ̃n) = δT
(r−s−1)(θ̃n)δ(r−s−1)(θ̃n)

= (RU(n)(θ̃n))
T (RU(n)(θ̃n))

= U(n)T (θ̃n)RT RU(n)(θ̃n).

Due to Lemma 2.1, we have RT R = �− and, since U(n)(θ̃n) = �V(n)(θ̃n),
we have

U(n)T (θ̃n)RT RU(n)(θ̃n) = U(n)T (θ̃n)�
−U(n)(θ̃n)

= V(n)T (θ̃n)��
−�V(n)(θ̃n)

= V(n)T (θ̃n)�V(n)(θ̃n) = U 2
n (θ̃n).

Corollary 2.2. Since in the limit the vector V(n)(θ̂n), where θ̂n is an estimator
based on grouped data, possesses the multivariate normal distribution with zero
mean vector and covariance matrix� = I −qqT −B(BT B)−1BT , same as for
the vector V(n)(θ̃n), the following decomposition of the Pearson-Fisher statistic
in (2.19) holds:

X2
n(θ̂n) = δ2

1(θ̂n)+ · · · + δ2
r−s−1(θ̂n), (2.33)

where the components δ2
i (θ̂n),i = 1, . . . ,r − s − 1, of the vector δr−s−1(θ̃n)

are as defined in (2.31) with θ̃ replaced by θ̂n. Naturally, all matrices in (2.31)
need to be estimated with the usage of θ̂ instead of θ̃n.
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2.5 CHERNOFF-LEHMANN THEOREM

The famous result of Chernoff and Lehmann (1954) is indeed a milestone in
the theory of chi-squared testing. Chernoff and Lehmann showed that if in
(2.19) instead of the estimators based on grouped data (such as minimum χ2 or
MLEs) one will use some other estimators such as the MLEs based on original
observations that are more efficient, then the limiting distribution of Pearson’s
sum will dramatically change. Specifically, they proved the following result.

Theorem 2.4. Under suitable regularity conditions the asymptotic distri-
bution of

X2
n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n) =

r∑
j=1

[N (n)
j − np j (θ̂n)]2

np j (θ̂n)
,

will be the same as that of

r−s−1∑
j=1

Z2
j +

r−1∑
j=r−s

λ j Z2
j , (2.34)

where Z j are standard normal random variables and λ j are between 0 and 1,
and may depend on s unknown parameters, in general.

From (2.34), we see that the limiting distribution of X2
n(θ̂n) is stochastically

larger than that of χ2
r−s−1. Chernoff and Lehmann (1954) noted that this is not

a serious drawback “in case of fitting a Poisson distribution, but may be so for
fitting of a normal.” It is much more important to note that if λi ’s depend on the
unknown parameters, then the statistic in (2.19) cannot be used in principle when
testing for normality, for example. Unfortunately, as we already mentioned, this
erroneous usage is reproduced even in some current textbooks in Statistics. It
has to be mentioned here that Chernoff and Lehmann (1954) considered only
the case of fixed grouping intervals, but their result has been generalized by
Moore (1971) and Chibisov (1971) for random grouping cells.

2.6 PEARSON-FISHER TEST FOR RANDOM CLASS
END POINTS

The first attempt to solve this problem was done by Roy (1956) in his unpub-
lished report. He showed that if probability density function of X is continuous
in x and differentiable in θ = (θ1, . . . ,θs)

T , θ̂n is a
√

n-consistent estimator of θ ,
and if the range of X, (−∞,+∞), is partitioned into r mutually exclusive inter-
vals depending on θ̂n , then the sum in (2.19) will be distributed in the limit as∑r

j=1 λ j Z2
j , where Z1, . . . ,Zr are independent standard normal random vari-

ables. In particular, if θ̂n is the MLE of θ , then r −s−1 of the λ j ’s are 1, s of λ j ’s
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lie between 0 and 1 and may depend on the unknown parameter θ in general, and
one λ j is zero. In this case, the sum in (2.19) will be distributed in the limit as

χ2
r−s−1 + λ1 Z2

1 + · · · + λs Z2
s .

Roy proved that, in the case of s = 2, the asymptotic distribution of (2.19)
will not depend on the location and scale parameters, θ1 and

√
θ2, say, if the MLE

θ̂n is used and the class end points are of the form θ̂1 + c j

√
θ̂2, j = 1,2, . . . ,r ,

where the c j ’s are specified constants.
Let X1, . . . ,Xn be i.i.d. random variables and we wish to test the null

hypothesis, H0, that the probability density function of Xi is

f (x,θ) = 1√
2πθ2

exp

(
− (x − θ1)

2

2θ2

)
,

|θ1| < ∞, |x | < ∞, θ2 > 0, (2.35)

where θ = (θ1,θ2)
T and θ1 and θ2 are the population mean and population

variance, respectively. Using the MLE θ̂n = (X ,S2)T of θ , define the end
points of intervals as

g j (θ̂n) = X̄ + c j S, j = 0,1, . . . ,r .

Constants c j are chosen such that

p j (θ̂n) = F{g j (θ̂n)} − F{g j−1(θ̂n)}
= Pr{c j−1 < [(X − θ1)/

√
θ2] < c j } = 1/r . (2.36)

For those r equiprobable intervals, the statistic in (2.19) will be distributed in
the limit as that of

χ2
r−3 + λ1 Z2

1 + λ2 Z2
2, (2.37)

where (Watson, 1958)

λ1 = 1 − r
r∑

l=1

�2
0 (l), λ2 = 1 − r

2

r∑
l=1

�2
1 (l),

�k(l) = ck
l φ(cl)− ck

l−1φ(cl−1),

andφ(u) = 1√
2π

exp (−u2/2). Based on these results, Moore (1971) calculated

the critical points of the limit distribution of (2.37) for odd r = 5,7,9,11,15,21
(see Table 1 of Moore (1971)). One year later, Dahiya (1972a) gave the table
of the critical points of the limit distribution of (2.37) for both odd and even
number of intervals r from 3 to 15.

Dahiya (1972a) generalized Roy’s result as follows. “When s = 2 it is
possible, under certain circumstances, for the asymptotic distribution of (2.19)
to be free of the parameters θ1 and θ2 without assuming θ̂n to be maximum
likelihood estimator of θ .” Specifically, they established the following result.
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Theorem 2.5. Suppose

(i) X has probability density function (1/
√
θ2)Px {(x−θ1)/

√
θ2}, where θ1 and√

θ2 are location and scale parameters, respectively, such that E(X) = θ1
and Var(X) = θ2, with Px {(x − θ1)/

√
θ2} being continuous in x and

differentiable with respect to the parameters;
(ii) θ̂n = (X̄ ,S2)T , where X̄ = 1

n

∑
Xα and S2 = 1

n

∑
(Xα − X̄)2 are the

sample mean and the sample variance, respectively;

(iii) The class end points are of the form θ̂1+ci

√
θ̂2, where the ci ’s are specified

constants,

then the asymptotic distribution of (2.19), being independent of the parameters,
is that of λ1 Z2

1 + · · · + λr Z2
r .

This result of Dahiya (1972a) can, for instance, be useful when testing for
the logistic null hypothesis when the sample mean and the sample variance are
not efficient MLEs of the location and scale parameters.

At this point, it is worth to note that the approach considered above possesses
two drawbacks. First one is that for any null hypothesis about location and
scale distributions, one has to derive the limit distribution of (2.19) and needs to
calculate critical points that will be different for different hypotheses. Second
issue is that this test possesses not high enough power, for example, when testing
for normality.



Chapter 3

Wald’s Method and
Nikulin-Rao-Robson Test

3.1 WALD’S METHOD

Let X1, . . . ,Xn be i.i.d. random variables following a continuous family of
distributions

F(x; θ), x ∈ R1, θ = (θ1, . . . ,θs)
T ∈ � ⊂ Rs .

Let f (x; θ) be the corresponding pdf, θ̂n be the MLE of θ , and J be the Fisher
information matrix for one observation with elements Ji j ,i, j = 1, . . . ,s.

Let x j (θ̂n) = F−1(p1 + · · · + p j ,θ̂n), j = 1, . . . ,r − 1. Consider
partitioning the x-axis into r disjoint intervals� j , j = 1, . . . ,r , with end points
x0,x1(θ̂n), . . . ,xr−1(θ̂n),xr , where xr = −x0 = +∞. Let N(n) be a vector
with components N (n)

j , j = 1, . . . ,r , that count the number of X1, . . . ,Xn

falling into each interval. Let p = (p1, . . . ,pr )
T . Moore (1971) then showed

that the vector N(n) is asymptotically normally distributed with the mean vector
np and covariance matrix n�, where

� = P − ppT − WT J−1W, (3.1)

with the components of the r × s matrix W being

Wi j =
∫
� j

∂ f (x; θ)
∂θi

dx, i = 1, . . . ,s, j = 1, . . . ,r ,

and P is the diagonal matrix with elements p1, . . . ,pr on the diagonal. The rank
r(�) of the matrix � is r − 1. What is of importance is that � does not depend
on the parameter θ .

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00003-X
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Suppose we wish to test a composite null hypothesis that X1, . . . ,Xn follow
a continuous family of distributions F(x; θ),x ∈ R1,θ = (θ1, . . . ,θs)

T ∈ � ⊂
Rs . Based on (3.1) and the theory of generalized inverses, Nikulin (1973c)
proposed to use the statistic

Y 12
n(θ̂n) = n−1(N(n) − np)T�−(N(n) − np), (3.2)

where �− is the generalized inverse of � which is a matrix such that
��−� = �. It is well known that it does not matter what kind of a generalized
inverse we use in (3.2) (Rao, 1965). The resulting quadratic form will be the
same and, since � does not depend on θ , will have chi-square distribution with
r−1 degrees of freedom in the limit (see Lemma 9 of Khatri, 1968). To construct
�− of the matrix� of rank r −1, Nikulin (1973c) used the following technique
due to Rao. He constructed the matrix �̃ by crossing out the last row and the
last column of �, found �̃

−1
, and then added a row and a column of zeros to

represent �− as

�− =
(
�̃

−1
0

0 0

)
.

For the sake of convenience in calculations, Nikulin (1973c) represented
(3.2) as

Y 12
n(θ̂n) = X2 + n−1αT (θ̂n)�(θ̂n)α(θ̂n), (3.3)

where

X2 =
r∑

j=1

(N (n)
j − np j )

2

np j
, �(θ̂n) =

∥∥∥∥∥Ji j −
r∑

l=1

Wil W jl

pl

∥∥∥∥∥
−1

θ=θ̂n

,

i, j = 1, . . . ,s,

and α(θ) = (α1, . . . ,αs)
T , with αi = Wi1 N (n)

1 /p1 + · · · + Wir N (n)
r /pr ,

i = 1, . . . ,s. By using the result of Moore (1971) and the theory of generalized
inverses, the statistic in (3.3) follows χ2

r−1 distribution in limit, and does not
depend on the unknown parameter θ .

Denote by B the r × s matrix with elements

B jk = 1√
p j

∫
� j

∂ f (x; θ)
∂θk

dx, j = 1, . . . ,r , k = 1, . . . ,s. (3.4)

Let N(n)/
√

np denote the vector with elements N (n)
j /

√
np j , j = 1, . . . ,r .

With this notation, we have n−1/2α(θ) = BT N(n)/
√

np. Upon noting that
BT √

np is a zero s-vector, n−1/2α(θ) can be presented as BT V(n), where
the vector V(n) is a r-vector of standardized frequencies with components
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v
(n)
j = (N (n)

j − np j )/
√

np j , j = 1, . . . ,r . Similarly, n−1/2αT = V(n)T B and
so (3.3) can be written as

Y 12
n(θ̂n) = X2 + V(n)T Bn(Jn − Jgn)

−1BT
n V(n), (3.5)

where Jgn = BT
n Bn is an estimator of the Fisher information matrix for the

vector of frequencies. The formula in (3.5) is the one that has been used in
statistical literature since 1975, and is known as Nikulin-Rao-Robson (NRR)
test; see Habib and Thomas (1986), Drost (1988), Van der Vaart (1988), and
Voinov and Nikulin (2011). Using the trivial identity

I + B(J − BT B)−1 = (I − BJ−1BT )−1, (3.6)

Moore and Spruill (1975) (see also Greenwood and Nikulin, 1996) presented
the statistic in (3.5) as

Y 12
n(θ̂) = V(n)T (I − BnJ−1

n BT
n )

−1V(n).

The approach in (3.2), suggested by Nikulin, is actually a generalization of
Wald’s (1943) idea for full rank limiting covariance matrix �.

Using a heuristic approach for the exponential family of distributions, Rao
and Robson (1974) obtained the test statistic which coincides with that of
Nikulin based on Generalized Wald’s or simply Wald’s approach (see Moore,
1977, Hadi and Wells, 1990). Instead of vector of frequencies N(n), one
may use the vector of standardized frequencies with components v j (θ̂n) =
(N (n)

j − np j (θ̂n))/

√
np j (θ̂n), j = 1,2, . . . ,r , that follows the multivariate

normal distribution in limit with zero mean vector and the covariance matrix
(Moore, 1971)

�1 = I − qqT − BJ−1BT . (3.7)

It is easily verified that the unique Moore-Penrose matrix inverse
(that satisfies the conditions AA+A = A,A+AA+ = A+,(AA+)T =
AA+,(A+A)T = A+A) for (3.7) is

�+
1 = I − qqT + B(J − BT B)−1BT .

Then, the formula in (3.5) immediately follows from (3.6) and (3.7).
Moore and Spruill (1975) showed that, regardless of whether fixed or random

intervals are used, the statistic in (3.5) can be written as

Y 12
n(θ̂n) = X2

n(θ̂n)+ P2
n (θ̂n), (3.8)

where X2
n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n),

P2
n (θ̂n) = V(n)T (θ̂n)Bn(Jn − Jgn)

−1BT
n V(n)(θ̂n),
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V(n)(θ̂n) is a vector with components v(n)j (θ̂n) = (N (n)
j −np j (θ̂n))/

√
np j (θ̂n),

and p j (θ̂n) = ∫
� j

f (x; θ̂n)dx, j = 1,2, . . . ,r .

If one uses fixed grouping intervals, then the elements of the matrix B will
be calculated as

B jk = 1√
p j (θ)

∫
� j

∂ f (x; θ)
∂θk

dx

= 1√
p j (θ)

∂ p j (θ)

∂θk
, j = 1, . . . ,r , k = 1, . . . ,s. (3.9)

After carrying out the calculations, the unknown parameter θ needs to be
replaced by the MLE θ̂n .

For equiprobable cells � j (θ) = [x j−1(θ),x j (θ)), j = 1, . . . ,r , we have

∂

∂θk

x j (θ)∫
x j−1(θ)

f (x; θ)dx = ∂ p j

∂θk
= 0,

and, hence, due to Leibnitz formula,

B jk = 1√
p j

x j (θ)∫
x j−1(θ)

∂ f (x; θ)
∂θk

dx

= 1√
p j

[
f (x j−1(θ); θ)x ′

j−1(θ)− f (x j (θ); θ)x ′
j (θ)

]
. (3.10)

Here again, after carrying out the calculations, the unknown parameter θ needs
to be replaced by the MLE θ̂n . This formula has been used by Nikulin (1973b)
to test for normality, in particular.

Remark 3.1 (Test for normality). Let X1, . . . ,Xn be i.i.d. random variables
and suppose we wish to test the hypothesis, H0, that the probability density
function of Xi is

f (x,θ) = 1√
2πθ2

exp

(
− (x − θ1)

2

2θ2

)
, |θ1| < ∞, θ2 > 0, (3.11)

where θ = (θ1,θ2)
T , and θ1 and θ2 are the population mean and population

variance, respectively. Many results for testing normality are known; see, for
example, Dahiya and Gurland (1972a) and D’Agostino et al. (1990). Here,
we describe in detail the idea of Nikulin. Using (3.5) and (3.10), Nikulin
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(1973a,b) derived a closed-form equiprobable cells test for normality (when
the parameters θ1 and θ2 are unknown) as follows:

Y 2 = X2 + 1

n

⎛
⎝ r∑

j=1

ε j N (n)
j

⎞
⎠

2

+ 1

n

⎛
⎝ r∑

j=1

ω j N (n)
j

⎞
⎠

2

,

where

X2 = r

n

r∑
j=1

N (n)
j − n,

ε j = ra j/
√
λ1,a j = ϕ(y j ) − ϕ(y j−1),λ1 = 1 − r

∑r
j=1 a2

j ,ω j = rb j/√
λ2,b j = ϕ′(y j ) − ϕ′(y j−1),λ2 = 2 − r

∑r
j=1 b2

j ,y j = �−1( j/r), j =
1, . . . ,r ,y0 = −∞,yr = +∞,�(x) = 1√

2π

∫ x
−∞ e−t2/2dt,ϕ(x) = �′(x) =

1√
2π

e−x2/2, and N (n)
j are the numbers of observations falling into r intervals

(− ∞; y1s + x̄],(y1s + x̄; y2s + x̄], . . . ,(yr−1s + x̄; +∞), with x̄ and s being
the sample mean and sample standard deviation, respectively.

Though this formula was used and in fact necessary in the 1970s, nowadays
it would be much easier to use the formula in (3.8) directly.

Let

�(x,θ1,
√
θ2) = 1√

2πθ2

x∫
−∞

exp

(
− (t − θ1)

2

2θ2

)
dt (3.12)

denote the distribution function of a normal random variable with mean θ1
and variance θ2, and consider r equiprobable random intervals (x0,x1],(x1,x2],
. . . ,(xr−1,xr ), where

x j = �−1
(

j/r ,θ̂1,

√
θ̂2

)
= θ̂1 +

√
θ̂2�

−1( j/r ,0,1), j = 0,1, . . . ,r ,

(3.13)
with θ̂1 and θ̂2 being the MLEs of θ1 and θ2, respectively. The identity in (3.13)
follows easily from (3.12) by taking x = j/r .

Denoting θ̂n = (θ̂1,θ̂2)
T , the probability to fall into each such interval will

be p j (θ̂n) = p j = 1/r , j = 1, . . . ,r . In this case, the vector VT (θ̂n) does
not depend on θ̂n , and its components are (ν j − np j )/

√
np j , where ν j is the

number of observations that fall into the jth interval.
For the normal distribution with density in (3.11), the Fisher information

matrix J for one observation is

J =
(

1
θ2

0

0 1
2θ2

2

)
. (3.14)
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Considering p j (θ) as a function of θ , we have

p j (θ) = 1√
2πθ2

θ1+√
θ2�

−1(
j
r ,0,1)∫

θ1+√
θ2�−1(

j−1
r ,0,1)

exp

(
− (x − θ1)

2

2θ2

)
dx

= �

(
θ1 + √

θ2�
−1(

j

r
,0,1),θ1,

√
θ2

)

−�
(
θ1 + √

θ2�
−1(

j − 1

r
,0,1),θ1,

√
θ2

)
,

and the elements of the r × 2 matrix B (see (3.10)), for j = 1, . . . ,r , are given
by

B j1 = 1√
2πθ2 p j

(
exp

(
− (�x j−1)

2

2θ2

)
− exp

(
− (�x j )

2

2θ2

))
, (3.15)

B j2 = 1

2θ2
√

2πθ2 p j

×
(
�x j−1 exp

(
− (�x j−1)

2

2θ2

)
−�x j exp

(
− (�x j )

2

2θ2

))
,

(3.16)

where �x j−1 = x j−1 − θ1 and �x j = x j − θ1. Replacing θ1 and θ2 by their
MLEs θ̂1 and θ̂2, and upon substituting (3.14), (3.15), and (3.16) into (3.8), we
obtain a test statistic that is quite suitable for producing computer codes (see
Section 9.6). Formulas (3.15) and (3.16) can also be used for fixed equiprobable
intervals, in which case instead of the formula in (3.13) for x j we will use

x j = �−1( j/r ,0,1), j = 0,1, . . . ,r .

Remark 3.2 (Wald’s method generalized). Hsuan and Robson (1976)
showed that the resulting modified statistic would be quite different when using
moment-type estimators (MMEs) for the unknown parameters. They succeeded
in deriving the limiting covariance matrix for the standardized frequencies
v
(n)
j (θ̄n), j = 1,2, . . . ,r , where θ̄n is the MME of θ and establishing that the

corresponding Wald’s quadratic form will follow chi-squared distribution in the
limit. They also provided the test statistic explicitly for the exponential family of
distributions in which case the MMEs coincide with the MLEs, thus confirming
the already known result of Nikulin (1973b). However, they were unable to
derive the general modified test based on MMEs θ̄n explicitly, but this was
achieved later by Mirvaliev (2001) (see Chapter 4).

Moore (1977) summarized all known results until that time pertaining to
Wald’s approach as follows. Assume that an estimator θ̃n of θ satisfies in the
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limit, when θ = θ0, the condition that

n1/2(θ̃n − θ0) = n−1/2
n∑

i=1

h(Xi )+ op(1), (3.17)

where h(x) is a s-valued function such that E[h(X)] = 0 and E[h(X)h(X)T ] is
a finite s × s matrix. The minimum chi-squared, maximum likelihood, moment
type, and many other estimators possess the limiting property in (3.17). Define
the r × r matrices

C = −BLBT + BE[h(X)W (X)T ] + E[W (X)h(X)T ]BT (3.18)

and
� = I − qqT − C, (3.19)

where W (X) is the r-vector with components [χ j − p j ]/√p j , j = 1, . . . ,r ,
and χ j is the indicator function for the jth cell. Then, under the usual regularity

conditions, the vector of standardized frequencies with components v(n)j (θ̃n) =
(N (n)

j − np j (θ̃n))/

√
np j (θ̃n) will follow in the limit the multivariate normal

distribution with zero mean vector and covariance matrix�. If rank(�) = r−1,
and since qqT is a projection orthogonal to �, then rank(I − C) = r and
(I − C)−1 will be a generalized inverse of � (Moore, 1977, p. 134). From the
above facts, it follows that Wald’s statistic

Tn(θ̃n) = V(n)T (θ̃n)�
−
n V(n)(θ̃n) (3.20)

is invariant under the choice of �−
n and can be calculated, for instance, as

Tn(θ̃n) = V(n)T (θ̃n)(I − Cn)
−1V(n)(θ̃n), (3.21)

where Cn is an estimator of C. The expression in (3.21) is very general. For
a particular estimator, one has only to find the matrix C and then use (3.21).
Moore and Spruill (1975) showed that Wald’s approach is valid not only for
continuous hypotheses, but for discrete ones as well.

It is worth noting that all classical and modified chi-squared tests are
particular cases of Wald’s approach.

For a simple null hypothesis, the vector of standardized grouped frequencies
with components v(n)j = (N (n)

j − np j )/
√

np j , j = 1, . . . ,r , is asymptotically

normally distributed with zero mean vector and covariance matrix� = I−qqT .
This matrix is idempotent, its generalized inverse is �− = I − qqT , and so

X2
n = V(n)T�−V(n) =

r∑
j=1

(N (n)
j − np j )

2

np j
,
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which is the classical Pearson’s formula with X2
n being asymptotically

distributed as χ2
r−1.

If one wishes to test a composite hypothesis using the minimum chi-squared
estimator θ̂n of a parameter θ , then the limiting covariance matrix will be

�1 = I − qqT − B(BT B)−1BT ,

which is symmetric and idempotent. Its Moore-Penrose inverse �+
1 identically

equals �1, from which it follows that the statistic in (3.20) will become

Tn(θ̂n) = X2
n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n) =

r∑
j=1

[N (n)
j − np j (θ̂n)]2

np j (θ̂n)
,

which is the well-known Pearson-Fisher (PF) test discussed in the preceding
Chapter.

If one wishes to test a composite hypothesis using any
√

n-consistent
estimator θ̃n of a parameter θ , then the limiting covariance matrix will again be

�1 = I − qqT − B(BT B)−1BT ,

using which, from (3.20), we obtain the DN statistic as

U 2
n (θ̃n) = V(n)T (θ̃n)[I − qnqT

n − Bn(BT
n Bn)

−1BT
n ]V(n)(θ̃n).

The DN statistic as well as the asymptotically equivalent PF test are distributed
as χ2

r−s−1 in the limit.

3.2 MODIFICATIONS OF NIKULIN-RAO-ROBSON TEST

A very important decomposition of (3.8) was provided by McCulloch (1985).
By using the identity

(I − BJ−1BT )−1 = I − B(BT B)−1BT + B
(
(J − BT B)−1 + (BT B)−1

)
BT ,

McCulloch presented (3.8) as

Y 12
n(θ̂n) = U 2

n (θ̂n)+ S2
n (θ̂n), (3.22)

where

U 2
n (θ̂n) = V(n)T (θ̂n)[I − qnqT

n − Bn(BT
n Bn)

−1BT
n ]V(n)(θ̂) (3.23)

is the DN statistic (note that qnqT
n V(n)(θ̂n) = 0) and

S2
n (θ̂n) = W 2

n (θ̂n)+ V(n)T (θ̂)(Jn − Jgn)
−1BT

n V(n)(θ̂n)

= V(n)T (θ̂n)Bn

[
(Jn − Jgn)

−1 + (BT
n Bn)

−1
]

BT
n V(n)(θ̂n).

(3.24)
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The test statistic in (3.24) is referred to as McCulloch test (McCu test).
McCulloch (1985) proved that the statistics U 2

n (θ̂n) and S2
n (θ̂n) in (3.23)

and (3.24) are asymptotically independent. The DN test U 2
n (θ̂n) in (3.23) is

distributed asymptotically as χ2
r−s−1 while McCu statistic S2

n (θ̂n) in (3.24) is
distributed asymptotically as χ2

s . McCulloch (1985) showed that, under the
rather mild regularity conditions of Moore and Spruill (1975), the DN test
based on non-grouped data behaves locally like the Pearson-Fisher test in (2.19)
based on frequencies. Monte Carlo simulations by McCulloch and the results
of Voinov et al. (2009) demonstrate an essential increase in power for the NRR
test over the PF and DN tests in case of equiprobable fixed or random cells.
The decomposition in (3.22), the lack of power and the asymptotic equivalence
of the PF and DN tests in this case, all suggest to interpret the McCu statistic
as a term of the NRR test that recovers the Fisher information lost due to data
grouping.

The asymptotic independence of the McCu statistic and the DN test permits
to use it on its own (McCulloch, 1985). For equiprobable fixed or random cells,
with respect to some alternatives, it can give a significant increase in power.
In addition, this statistic possesses the lowest variance and the highest rate of
convergence to the limit.

Consider the powers of Y 12
n(θ̂n),S2

n (θ̂n), and U 2
n (θ̂n)when testing normality

against the logistic distribution which is very close to normal; see Voinov et al.
(2009). For different sample sizes (from n = 40 to 300) and two different
expected cell frequencies (np = 5 and np = 10) using equiprobable cells,
powers of Y 12

n(θ̂n),S2
n (θ̂n), and U 2

n (θ̂n) against the logistic distribution were
all simulated for N = 10,000 runs. From Figure 3.1, we see that in the
range of sample sizes 40–300 the ratio of the power of S2

n (θ̂n) to Y 12
n(θ̂n)

increases attaining the value of 1.76 for np = 5, and 1.59 for np = 10.

FIGURE 3.1 Ratios R10 and R5 of the power of S2
n (θ̂n) to Y 12

n(θ̂n) for np = 10 and
np = 5, respectively, as functions of the sample size n.
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FIGURE 3.2 Ratios R110 and R15 of the power of S2
n (θ̂n) to U2

n (θ̂n) for np = 10 and
np = 5, respectively, as functions of the sample size n.

It is useful to note that a maximal gain in power is attained if n ∼ 200
for np = 5 which means that the number of equiprobable classes equals 40
(with the corresponding simulated power of Y 12

n(θ̂n) and S2
n (θ̂n) being 0.263

and 0.463).
Figure 3.2 shows the ratio of the power of S2

n (θ̂n) to the DN statistic U 2
n (θ̂n)

for the same expected cell frequencies (np = 5 and np = 10). We see that these
ratios are monotone increasing attaining values in the range of 5.6–5.8. In this
case, the power of the DN test if n = 40,np = 5 is only 0.082 which is 5.6
times less than that of S2

n (θ̂n). The fact that the power of Dzhaparidze-Nikulin
test is very low for equiprobable cells has also been mentioned by Voinov et al.
(2009).

Based on the idea of Dzhaparidze and Nikulin (1974), and Singh (1987)
suggested the following modification to the NRR statistic valid for any√

n-consistent estimator θ̃n of θ :

Q2
s (θ̃n) = V(n)T∗ (θ̃n)(I − BnJ−1

n BT
n )

−1V(n)∗ (θ̃n), (3.25)

where V(n)∗ (θ̃n) = V(n)(θ̃n)− BnJ−1
n W(θ̃n) and

W(θ̃n) = 1√
n

n∑
i=1

∂ ln f (Xi ,θ)

∂θ j

∣∣∣∣
θ=θ̃n

, j = 1, . . . ,s.

The statistic in (3.25) follows theχ2
r−1 distribution in limit, and in fact coincides

with the NRR test if the MLEs are used, since in this case the term BnJ−1
n W(θ̃n)

vanishes (see also Thomas and Pierce, 1979). The test in (3.25) can alternatively
be presented as

Q2
s (θ̃n) = V(n)T∗ (θ̃n)V(n)∗ (θ̃n)+ (BT

n V(n)∗ (θ̃n))
T (Jn − Jgn)

−1BT
n V(n)∗ (θ̃n).

(3.26)
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However, it should be mentioned that the tests in (3.25) and (3.26) are
computationally more complicated for large sample sizes than the NRR test
in (3.8).

Remark 3.3. The statistic S2
n (θ̂n), in addition to gaining power for many

alternatives in the case of equiprobable intervals, also possesses the smallest
variance if s < r − 1 and is, therefore, more stable. Moreover, it possesses a
higher rate of convergence to the limiting distribution.

3.3 OPTIMALITY OF NIKULIN-RAO-ROBSON TEST

Singh (1987) showed that the NRR test can be obtained through a standard
method of constructing asymptotically optimal uniformly most powerful
invariant tests for linear hypotheses. He derived the NRR test by using explicit
expressions for orthogonal projectors on linear subspaces to solve a typical
problem of testing linear hypotheses. Optimality of the NRR test immediately
follows from Singh’s results. He also showed the optimality of the DN statistic,
though the criterion of optimality for the NRR test is different from that of the
DN test (see Singh, 1987, p. 3264).

It is clear that by grouping data and using frequencies we lose information
about the hypothesized distribution. Lemeshko (1998) suggested to define the
end-points of the r grouping intervals, x0 < x1 < · · · < xr−1 < xr , in
such a way that the determinant |Jg(θ̂n)| of the Fisher information matrix for
the grouped data will be maximized. This way of data grouping was called
“optimal,” but the word “optimal” may not be reasonable in this case as there
are many different functionals of the Fisher information matrix that could be
used in this context. In particular, Lemeshko (1998) showed that if one uses the
MLEs based on the raw data and the “optimal” grouping, then the large values
of the PF test will be close to those of the χ2

r−s−1 distribution. Using Monte
Carlo simulation, Lemeshko et al. (2001) showed that the power of the NRR
test cannot be improved using this “optimal” way of data grouping.

Voinov (2006) provided an explanation to this by mentioning that the second
term in (3.8) depends on (J−Jg), the difference between the Fisher information
for non-grouped and grouped data, respectively, and that possibly takes into
account the information lost due to data grouping. This may be one reason to
question the use of the term “optimal” in the procedure of Lemeshko (1998).

3.4 DECOMPOSITION OF NIKULIN-RAO-ROBSON TEST

In Section 2.2, decompositions of the Pearson-Fisher and DN statistics into
asymptotically independent χ2

1 components were presented. Here, we discuss
an analogous decomposition for the NRR statistic (Voinov et al., 2007). In this
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case, we have

�1k = Ik − qkqT
k − BkJ−1BT

k , k = 1, . . . ,r − 1. (3.27)

If rank(B) = s, then

|�1k | =
(

1 −
k∑

i=1

pi

)
|J − Jk |/|J|

and
�−1

1k = Mk + MkBk(J − Jk)
−1BT

k MT
k , (3.28)

where Mk = Ik + qkqT
k /(1 − ∑k

i=1 pi ) and Jk = BT
k MkBk,k = 1, . . . ,r − 1.

Using Lemma 2.1, we then obtain

rii = √|�1i−1|/|�1i |, i = 1, . . . ,r − 1,

ri j = rii (
√

pi qT
i−1 + bi J−1BT

i−1)(�
−1
1i−1) j ,

where j = 1, . . . ,i − 1,i 	= j,i � 2,(�−1
1i−1) j is the jth column of �−1

1i−1

defined by (3.28), and bi is the ith row of B. With R = (Rr−1
...0) and the MLEs

of all the matrices involved, we finally get

δ(r − 1)(θ̂n) = RV(n)(r) (θ̂n), (3.29)

where θ̂n is the MLE of θ . Thus, we have the following result.

Theorem 3.1. Under proper regularity conditions (see Moore and Spruill,
1975, for example), the expansion

Y 12
n(θ̂n) = δ2

1(θ̂n)+ · · · + δ2
r−1(θ̂n)

of the NRR statistic holds and in the limit, under H0, the components δ2
i (θ̂n),i =

1, . . . ,r − 1, are distributed independently as χ2
1 and the statistic Y 12

n(θ̂) is
distributed as χ2

r−1.

3.5 CHI-SQUARED TESTS FOR MULTIVARIATE NORMALITY

3.5.1 Introduction

It is well known that the joint normality does not follow from the normality
of marginal univariate distributions; see Kotz et al. (2000). The literature on
tests of fit for the multivariate normal family is certainly not as extensive as
for assessing the univariate normality, but the last three decades have seen an
increased activity in this regard. Mardia (1970) and Malkovich and Afifi (1973)
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presented some tests based on a generalization of the univariate skewness and
kurtosis measures. For some generalizations of these measures and their use in
tests for multivariate normality, one may refer to Balakrishnan et al. (2007) and
Balakrishnan and Scarpa (2012). For other pertinent work in this regard, see
Shapiro and Wilk (1965), Royston (1983), Srivastava and Hui (1987), Tserenbat
(1990),Looney (1995), Henze and Wagner (1997), and Doornik and Hansen
(1994). More elaborate lists of references can be obtained from the review
articles of Henze (2002) and Mecklin and Mundfrom (2004).

3.5.2 Modified chi-squared tests

Moore and Stubblebine (1981) developed a test for multivariate normality as
follows. Let X1, · · · ,Xn be i.i.d. p-variate (p � 2) normal random vectors with
the following joint probability density function:

f (x|θ) = (2π)−p/2|�|−1/2 exp

[
−1

2
(x − μ)T�−1(x − μ)

]
,

where μ is the p-vector of means and � is a nonsingular p × p matrix. Let a
given vector θ = (μ,�) of unknown parameters be

θT = (μ1, . . . ,μp,σ11,σ12,σ22, . . . ,σ1 j ,σ2 j , . . . ,σ j j , . . . ,σpp);
that is, the elements of the matrix � are arranged column-wise by taking the
elements of the upper-triangular submatrix of �. The MLE θ̂n of θ is known
to be the vector of sample means, X̄, and the matrix of sample covariances, S.
Given 0 = c0 < c1 < . . . < cM = ∞, the M random cells can be defined as
(Moore and Stubblebine, 1981)

Ein(θ̂n) =
{

X ∈ R p : ci−1 � (X − X̄)T S−1(X − X̄) < ci

}
, i = 1, . . . ,M .

The probability of falling into the ith cell is then

pin(θ̂n) =
∫

Ein(θ̂n)

f (x|θ̂n)dx.

If ci is the i/M point of the χ2(p) distribution, then the cells are equiprobable
under the estimated parameter value, θ̂n , and pin(θ̂n) = 1/M .

Denote the vector of standardized cell frequencies by Vn , with its
components as

Vin(θ̂n) = (Nin − n/M)√
n/M

, i = 1, . . . ,M,

where Nin is the number of random vectors X1, · · · ,Xn falling into Ein(θ̂n).
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The Fisher information matrix for one observation J(θ) can be evaluated as

J(θ) =
[
�−1 0

0 Q−1

]
.

The dimension of J(θ) is m × m, where m = p + p(p + 1)/2 is the dimension
of θ , and Q is the p(p + 1)/2 × p(p + 1)/2 covariance matrix of r, a vector
of the entries of

√
nS (arranged column-wise by taking the upper triangular

elements),
rT = (s11,s12,s22,s13,s23,s33, . . . ,spp).

The elements of Q can be expressed as (Press, 1972)

Var(si j ) = σ 2
i j + σi iσ j j , i, j = 1, . . . ,p, i � j,

Cov(si j ,skl) = σikσ jl + σilσ jk, i, j,k,l = 1, . . . ,p, i � j, k � l,

where σi j ,i, j = 1, . . . ,p, are the elements of �.
For example, in the two-dimensional case, the matrix Q will be (see also

McCulloch, 1980)

Q =
⎛
⎜⎝ Var(s11) Cov(s11,s12) Cov(s11,s22)

Cov(s12,s11) Var(s12) Cov(s12,s22)

Cov(s22,s11) Cov(s22,s12) Var(s22)

⎞
⎟⎠

=
⎛
⎜⎝ 2σ 2

11 2σ11σ12 2σ 2
12

2σ11σ12 σ11σ22 + σ 2
12 2σ12σ22

2σ 2
12 2σ12σ22 2σ 2

22

⎞
⎟⎠ .

For a specified θ0 = (μ0,�0), let us define

pi (θ ,θ0) =
∫

Ei (θ0)

f (x|θ)dx,

where

Ei (θ0) =
{

X in R p : ci−1 � (X − μ0)
T�−1

0 (X − μ0) < ci

}
, i = 1, . . . ,M .

Define M × m matrix B(θ ,θ0) with its elements as

Bi j = 1√
pi (θ ,θ0)

∂ pi (θ ,θ0)

∂θ j
.

Then, from Lemma 1 of Moore and Stubblebine (1981), it follows that, for any
ci and θ0,

∂ pi (θ ,θ0)

∂μ j

∣∣∣∣
θ=θ0

= 0, 1 � i � M, 1 � j � p,

∂ pi (θ ,θ0)

∂σ jk

∣∣∣∣
θ=θ0

= diσ
jk, 1 � i � M, 1 � j � k � p,
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where σ jk are the elements of �−1
0 , and

di =
(

cp/2
i−1e−ci−1/2 − cp/2

i e−ci /2
)

bp/2,

bp = [p(p − 2) · · · 4 · 2]−1 if p is even,

bp = (2/π)1/2
[

p(p − 2) · · · 5 · 3
]−1 if p is odd.

The Nikulin-Rao-Robson (NRR) statistic based on the MLEs can be presented
as Nikulin (1973b,c), Rao and Robson (1974), and Voinov and Nikulin (2011))

Y 2
n = VT

n (θ̂n)Vn(θ̂n)+ VT
n (θ̂n)Bn

[
Jn − BT

n Bn

]−1
BT

n Vn(θ̂n), (3.30)

where Jn = J(θ̂n) and Bn = B(θ̂n,θ̂n).
Unfortunately, in this case, the limiting covariance matrix I−qqT −BJ−1BT

of the standardized frequencies Vn , where q is a M-vector with its entries as
1/

√
M , depends on the unknown parameters. So, Lemma 9 of Khatri (1968)

can not be invoked to claim that Y 2
n in (3.30) is distributed as chi-square.

3.5.3 Testing for bivariate circular normality

Kowalski (1970) was one of the early ones to consider “some rough tests for
bivariate circular normality.” Gumbel (1954) pointed out some applications
of the circular normal distribution in “economic statistics,” geophysics, and
medical studies. Following Moore and Stubblebine (1981), let us consider
testing for bivariate circular normality. The hypothesized probability density
function in this case is

f (x,y|θ) = (2πσ 2)−1 exp

{
− 1

2σ 2 [(x − μ1)
2 + (y − μ2)

2]
}
, (3.31)

where θ = (μ1,μ2,σ )
T . Using a random sample (X1,Y1), . . . ,(Xn,Yn), the

MLEs of μ1,μ2, and σ 2 can be obtained as X̄ ,Ȳ , and

s2 = 1

2n

⎧⎨
⎩

n∑
j=1

(X j − X̄)2 +
n∑

j=1

(Y j − Ȳ )2

⎫⎬
⎭ .

If ci = −2 ln (1 − i/M),i = 1, . . . ,M − 1, then p̂in = 1/M . Evidently, we
have

∂ pin

∂μ1

∣∣∣∣
θ̂n

= ∂ pin

∂μ2

∣∣∣∣
θ̂n

= 0,

∂ pin

∂σ

∣∣∣∣
θ̂n

= νi/s,
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where νi = 2
[
(1 − i

M ) ln (1 − i
M )− (1 − i−1

M ) ln (1 − i−1
M )

]
. From these, it

follows that the matrix Bn is

Bn =

⎛
⎜⎜⎜⎝

0 0
√

Mν1/s

0 0
√

Mν2/s

. . . . . . . . . . . . . . . . . . ..

0 0
√

MνM/s

⎞
⎟⎟⎟⎠ . (3.32)

Since the estimate Jn of the Fisher information matrix for the family in (3.31)
is (Moore and Stubblebine, 1981)

Jn =
⎛
⎜⎝1/s2 0 0

0 1/s2 0

0 0 4/s2

⎞
⎟⎠ , (3.33)

we obtain

(Jn − BT
n Bn)

−1 =
⎛
⎜⎝

s2 0 0

0 s2 0

0 0 s2

4−M
∑
ν2

i

⎞
⎟⎠ . (3.34)

Denoting Vn =
(
(N1n−n/M)√

n/M
, . . . ,

(NMn−n/M)√
n/M

)T = (Ñ1, . . . ,ÑM )
T , where N jn

is the number of di = 1
s2

[
(Xi − X̄)2 + (Yi − Ȳ )2

]
,i = 1, . . . ,n, that fall into

the interval [c j−1,c j ) for j = 1, . . . ,M , the statistic in (3.30) is easily derived
to be

Y 2
n =

M∑
i=1

Ñ 2
i + M

4 − M
∑M

i=1 ν
2
i

(
M∑

i=1

Ñiνi

)2

. (3.35)

We may note here that the formula for Y 2
n given by Moore and Stubblebine

(1981, p. 724) contains an error.
The second term of Y 2

n in (3.30) recovers information lost due to data
grouping. Another useful decomposition of Y 2

n has been proposed by McCulloch
(1985) as

Y 2
n = U 2

n + S2
n ,

where the Dzhaparidze-Nikulin (DN) statistic U 2
n (Dzhaparidze and Nikulin,

1974) is

U 2
n = VT

n (θ̂n)
[
I − Bn(BT

n Bn)
−1BT

n

]
Vn(θ̂n) (3.36)

and

S2
n = Y 2

n − U 2
n

= VT
n (θ̂n)Bn

[
(Jn − BT

n Bn)
−1 + (BT

n Bn)
−1

]
BT

n Vn(θ̂n). (3.37)
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McCulloch (1985) showed that if the rank of B is s, then U 2
n and S2

n are
asymptotically independent and distributed as χ2

M−s−1 and χ2
s , respectively,

in the limit.
Since the first two columns of the matrix Bn in our case are columns of

zeros and the rest are linearly dependent, the matrix Bn has rank 1. From this,
it readily follows that (BT

n Bn)
−1 does not exist, but by using some known facts

on multivariate normal distribution (Moore, 1977, p. 132), we may replace
A−1 = (BT

n Bn)
−1 by A− = (BT

n Bn)
−, where A− is any generalized inverse of

A, which can be computed by using singular value decomposition, for instance.
So, for testing two-dimensional circular normality with random cells Ein(θ̂n),
we may use the NRR statistic Y 2

n defined in (3.30), the DN statistic

U 2
n = VT

n (θ̂n)
[
I − Bn(BT

n Bn)
−BT

n

]
Vn(θ̂n), (3.38)

where I is the M × M identity matrix, and

S2
n = Y 2

n − U 2
n

= VT
n (θ̂n)Bn

[
(Jn − BT

n Bn)
−1 + (BT

n Bn)
−]

BT
n Vn(θ̂n), (3.39)

which possess asymptotically χ2
M−1,χ

2
M−2, and χ2

1 distributions, respectively.
Note that, in this case, the limiting covariance matrix is I − qqT − BJ−1Bt ,
where

BJ−1BT = M

4

⎛
⎜⎜⎜⎝

ν2
1 ν1ν2 · · · ν1νM

ν1ν2 ν2
2 · · · ν2νM

· · · · · ·
ν1νM ν2νM · · · ν2

M

⎞
⎟⎟⎟⎠

and I − B(BT B)−BT do not depend on the unknown parameter σ .
From (3.32), it follows that

BT
n Bn =

⎛
⎜⎝0 0 0

0 0 0

0 0 a

⎞
⎟⎠ , (3.40)

where a = M
s2

∑M
i=1 ν

2
i . From the singular-value decomposition, we then have

(BT
n Bn)

− =
⎛
⎜⎝ 0 0 0

0 0 0

0 0 1/a

⎞
⎟⎠ . (3.41)

After some simple matrix algebra, we obtain in this case

U 2
n =

M∑
i=1

Ñ 2
i −

(∑M
i=1 νi Ñi

)2

∑M
i=1 ν

2
i

(3.42)
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FIGURE 3.3 Powers of the tests Y 2 in (3.35), U2 in (3.42), S2 in (3.43), and ChLeh
test as functions of M.

and

S2
n = 4(

4 − M
∑M

i=1 ν
2
i

)∑M
i=1 ν

2
i

(
M∑

i=1

Ñiνi

)2

. (3.43)

To investigate the power of tests in (3.35), (3.42), and (3.43), we first consider
their simulated distributions under the null hypothesis in (3.31).

Simulation results show that empirical values of level significance at level
α = 0.05 differ by no more than one simulated standard deviation (tested for
samples of size n = 200 and for the number M of grouping intervals such that
the expected cell frequencies are at least 5). The same is true for n = 100
if M � 10. This suggests that, while simulating the power under different
alternatives, we could use rejection region by using the critical values from the
corresponding chi-squared distributions.

Let the alternative be the two-dimensional standard logistic distribution with
independent components distributed as

l(x,0,1) =
π√

3
exp

(
− πx√

3

)
{

1 + exp
(
− πx√

3

)}2 , x ∈ R1.

Simulated powers of the tests in (3.35), (3.42), and (3.43), and ChLeh=
∑M

i=1 Ñ 2
i

(see Chernoff and Lehmann, 1954; Moore and Stubblebine, 1981, p. 721) are
all displayed in Figure 3.3.

First of all, we see that power of S2
n is the highest and that it almost does

not depend on the number M of grouping intervals. Secondly, because of the
decomposition Y 2

n = U 2
n + S2

n , the power of Y 2
n is more than that of U 2

n and
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less than that of S2
n . The same situation was observed in the univariate case

(see Voinov et al., 2009, 2012). From the result of Chernoff and Lehmann
(1954), it is known that the Pearson-Fisher statistic

∑M
i=1 Ñ 2

i does not follow
the χ2

M−1 distribution in the limit, and may depend on the unknown parameters.
Roy (1956), Watson (1958), and Dahiya and Gurland (1972a) have shown that
for a location and scale family, if one uses random intervals, then the statistic∑M

i=1 Ñ 2
i will be distribution-free following the chi-squared distribution in the

limit, but the number of degrees of freedom will depend on the null hypothesis.
This is exactly the case considered by Moore and Stubblebine (1981) who
proved that, under the two-dimensional circular normal distribution, the limiting
distribution of

∑M
i=1 Ñ 2

i does not depend on the parameters and follows the chi-
squared distribution in the limit with the number of degrees of freedom between
M − 2 and M − 1. From Figure 3.3, we see that the power of ChLeh is indeed
between that of Y 2

n (with M − 1 d.f.) and U 2
n (with M − 2 d.f.). McCulloch

(1985) and Mirvaliev (2001) showed that “the DN statistic (U 2
n ) behaves locally

like the Pearson-Fisher statistic (ChLeh).” In the univariate case, we did not see
the essential difference between the powers of the DN and Pearson-Fisher’s∑M

i=1 Ñ 2
i (Voinov et al., 2009), but in the two-dimensional case, the power of

ChLeh is noticeably higher than that of the DN statistic. Still, the power of
these two statistics is much less than that of S2

n . This suggests us to use S2
n

if we wish to test for the two-dimensional circular normal distribution against
the two-dimensional logistic distribution with independent components using
chi-squared type tests.

As another alternative, we may consider the two-dimensional normal
distribution with correlated components. Let the alternative hypothesis be such

that μ = (0,0)T and �01 =
(

2 1.4

1.4 2.5

)
. In this case, the powers of the tests

in (3.35), (3.42), and (3.43), as functions of M, are displayed in Figure 3.4.
From Figure 3.4, we see that the powers of S2

n and Y 2
n , being high, are almost

the same (still, the power of S2
n is slightly higher than that of Y 2

n ), and that the
power of U 2

n is much lower as expected. We see also that the power of both S2
n

and Y 2
n is the highest and the same is when M = 2. The same results are also

obtained if �02 =
(

2 −1.4

−1.4 2.5

)
.

3.5.4 Comparison of different tests

Let us test the null hypothesis in (3.31) by using the modified chi-squired test S2
n

in (3.43), the multivariate skewness test (Sk) b1,2 of Mardia (1970), the kurtosis
test (Kur) b2,2 of Mardia (1970), Anderson-Darling A2, and Cramer-von Mises
W 2 EDF-tests (see Henze, 2002). Considering the two-dimensional standard
logistic alternative with independent components as an alternative, the powers
of all these tests are as presented in Table 3.1.
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FIGURE 3.4 Powers of the tests Y 2 in (3.35), U2 in (3.42) and S2 in (3.43), as functions
of M.

�

�

�
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TABLE 3.1 Powers of S
2
n , Sk, Kur, A2, and W 2 tests for the circular two-

dimensional normal against two-dimensional standard logistic distribution
with independent components. Errors are within one simulated standard
deviation.

Test Power

S2
n 0.609 ± 0.005

Sk 0.357 ± 0.006

Kur 0.832 ± 0.005

A2 0.668 ± 0.009

W 2 0.671 ± 0.010

From Table 3.1, we see that Mardia’s test b2,2 is the most powerful for
the particular null and alternative hypotheses. It may also be noted that the
application of A2 and W 2 is somewhat involved since one has to determine
critical values of these tests by simulation.

Consider now the power of different tests for the circular two-dimensional
normal null distribution against two-dimensional alternative with correlated
components. Let the alternatives be two-dimensional normal distributions with
zero mean vector and covariance matrices�01 and�02. The power results in this
case from a simulation study are presented in Tables 3.2 and 3.3, respectively.
In these tables, “Sk right” and “Sk left” denote the skewness test b1,2 of Mardia
(1970) applied with right-tailed and left-tailed rejection regions, respectively.
From Tables 3.2 and 3.3, we observe that all these tests do not differentiate
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�

�

�

TABLE 3.2 Powers of S
2
n , Sk right, Sk left, Kur, A2, and W 2 tests for

the circular two-dimensional normal against two-dimensional normal
distribution with covariance matrix �01 . Errors are within one simulated

standard deviation.

Test Power

S2
n 0.485 ± 0.008

Sk right 0.027 ± 0.002

Sk left 0.813 ± 0.005

Kur 0.182 ± 0.005

A2 0.622 ± 0.013

W 2 0.622 ± 0.012

�

�

�

�

TABLE 3.3 Powers of S
2
n , Sk right, Sk left, Kur, A2, and W 2 tests for

the circular two-dimensional normal against two-dimensional normal
distribution with covariance matrix �02 . Errors are within one simulated

standard deviation.

Test Power

S2
n 0.486 ± 0.008

Sk right 0.026 ± 0.002

Sk left 0.817 ± 0.008

Kur 0.180 ± 0.006

A2 0.617 ± 0.010

W 2 0.618 ± 0.010

between alternatives with positive (�01) and negative (�02) correlation. Next,
we observe that “Sk right” is biased, in contradiction to the opinion of Mardia
(1970, p. 523); see also Henze (2002). We further note that the power of “Sk
left” is the highest, the power of “Kur” is considerably lower than that of the
chi-squared type test S2

n , and that the power of A2 and W 2 are higher but close
to that of S2

n .

3.5.5 Conclusions

Among all modified chi-squared tests for the two-dimensional circular normal-
ity discussed in Section 3.5.3, the test S2

n possesses high enough power and has
more power than that of NRR Y 2 and DN U 2 tests for the alternatives considered.
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TABLE 3.4 Ratios of powers of S
2
n , Sk, Kur, A2 , and W 2 tests.

Test Ratio

S2
n 0.609/0.485 = 1.25

Sk 0.815/0.357 = 2.28

Kur 0.832/0.181 = 4.6

A2 0.668/0.619 = 1.08

W 2 0.671/0.620 = 1.08

The same results were observed in the univariate case (Voinov et al., 2009, 2011),
but in the two-dimensional case of the circular normal the power of S2

n does
not seem to depend on the number of equiprobable grouping intervals. This is
clearly an advantage since in the univariate case it is not easy to find the optimal
number of grouping intervals; see, e.g. Greenwood and Nikulin (1996).

To examine the dependence of the power of tests to alternative hypotheses,
we consider ratios of powers of tests discussed earlier in Section 3.5.4. By
Ratio, we mean the ratio of power for logistic alternative to that for the two-
dimensional normal distribution (we always divide the large value by a small
one). From Tables 3.1, 3.2, and 3.3, we determined the Ratio values for all the
tests and these are presented in Table 3.4.

From Table 3.4, we see that S2
n ,A

2, and W 2 tests are, in some sense, much
less sensitive (Ratio = 1.25, 1.08, and 1.08) for the alternatives considered. We
cannot conclude that S2

n ,A
2, and W 2 tests are “omnibus” tests from this result

since many other alternatives need to be considered for this purpose, but with
respect to the logistic and two-dimensional normal alternatives, they seem to
be more preferable than other tests.

Overall, we observe that S2
n test is quite comparable to EDF tests and pos-

sesses some advantages. One does not have to simulate critical values to define
rejection regions since for S2

n tests they are simply found from the chi-squared
distribution with 1 d.f.. Another advantage is that there is no need to worry about
the determination of the optimal number of grouping intervals. A final mention
that needs to be made is that Mardia’s multivariate skewness test is quite biased
and therefore cannot be recommended for the considered testing problem.

3.6 MODIFIED CHI-SQUARED TESTS FOR THE
EXPONENTIAL DISTRIBUTION

3.6.1 Two-parameter exponential distribution

Consider the two-parameter exponential distribution which has been
used quite extensively in reliability and survival analysis; see, for example,
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Balakrishnan and Basu (1995). In this case, several approaches for testing this
null hypothesis are known in the literature; see, for example, Engelhardt and
Bain (1975), Balakrishnan (1983), Spinelli and Stephens (1987), Ascher (1990),
Ahmad and Alwasel (1999), Castillo and Puig (1999), and Gulati and Neus
(2003). Here, we discuss two tests. The first one is based on the NRR statistic in
(3.8). The elements of the Fisher information matrix J and the elements of the
matrix B needed in this case are presented in Chapter 9, and the Excel version
of the test is described in there as well.

Another way for testing H0 has been suggested by Greenwood and Nikulin
(1996, p.143) by exploiting the fact that the first-order statistic X(1) is a
superefficient estimator of the threshold parameter μ. Their idea, as published,
however contains some mistakes which we shall correct here.

Let X1, . . . ,Xn be i.i.d. random variables with density

f (x) = 1

θ
e−(x−μ)/θ , x � μ, θ > 0.

If H0 is true, then

U2 = X(2) − X(1), . . . ,Un = X(n) − X(1),

where X(i),i = 1, . . . ,n, are the order statistics, form a sample of i.i.d. random
variables from the scale-exponential distribution with distribution function

F(u,θ) = 1 − exp (− u/θ), u � 0, θ > 0.

The MLE θ̂n of the parameter θ , calculated from U2, . . . ,Un , is

θ̂n = 1

n − 1

n∑
i=2

Ui = n

n − 1
[X̄n − X(1)] = 1

n − 1

n∑
i=1

(Xi − X(1)).

Now, construct the frequency vector N(n)∗ = (N (n)∗
1 , . . . ,N (n)∗

r )T by grouping
U2, . . . ,Un over the equiprobable random intervals

(0,x1θ̂n],(x1θ̂n,x2θ̂n], . . . ,(xr−1θ̂n,+ ∞),

where x j = − ln (1 − j/r), j = 1, . . . ,r − 1. It should be mentioned that the
intervals, (X(1),x1θ̂n], . . . ,(X(1)+xr−1θ̂n,+∞), suggested by Greenwood and
Nikulin (1996, p. 143) are not equiprobable.

An explicit expression for the test Y 2
n , as given in Greenwood and Nikulin

(1996, p. 143) is

Y 2
n = r

(n − 1)

r∑
j=1

N (n)∗2
j − (n − 1)+ r2

(n − 1)λ2

⎛
⎝ r∑

j=1

N (n)∗
j c2 j

⎞
⎠

2

, (3.44)
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FIGURE 3.5 The power of Y 2
n = Y ˆ2 (for n = 200 and n = 50,α = 0.05,N = 5000)

and the power of the NRR test in (3.8), as functions of the number of cells r.

where

c2 j =
(

1 − j − 1

r

)
ln

(
1 − j − 1

r

)
−

(
1 − j

r

)
ln

(
1 − j

r

)
, j = 1, . . . ,r ,

and

λ2 = 1 − r
r∑

j=1

c2
2 j .

The formula for λ2 given by Greenwood and Nikulin (1996, p. 141) is, however,
incorrect and should read as

λ2 = 1 − 1

r

[
(r − 1)2 ln2 (1 − 1/r)+ ln2 (1/r)

]

−r
r−1∑
j=2

[(
1 − j/r

)
ln

(
r − j + 1

r − j

)
+ 1

r
ln

(
1 − j − 1

r

)]2

.

A Monte Carlo simulation of the test in (3.44) shows that the limiting distribution
of Y 2

n is distribution-free and follows χ2
r−1.

A comparison of the power of the NRR test in (3.8) with that of (3.44) with
respect to the seminormal alternative with pdf

f (x;μ,θ) =
√

2√
πθ

exp

[
− (x − μ)2

2θ2

]
, x � μ, θ > 0,

with parameters μ = 1,θ = 1 are presented in Figure 3.5.
From Figure 3.5, we see that, surprisingly, the power of (3.44) for the

seminormal alternative is higher than that of the classical NRR test in (3.8).
In addition, the statistic in (3.44) is computationally much simpler than the
NRR test in (3.8), and for this reason we recommend the test in (3.44).
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�
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TABLE 3.5 Power of Y
2
n for the seminormal distribution with parameters

μ = 0 , θ = 1, as a function of r.

r 2 3 4 6 8 10

Power 0.922 0.931 0.927 0.906 0.870 0.844

3.6.2 Scale-exponential distribution

Consider now the simpler situation when X1, . . . ,Xn are i.i.d. random variables
from the scale-exponential distribution with distribution function

F(x,θ) = 1 − exp (− x/θ), x � 0, θ > 0.

The MLE θ̂n of a parameter θ is θ̂n = ∑n
i=1 Xi/n. Construct the frequency

vector N(n) = (N (n)
1 , . . . ,N (n)

r )T by grouping X1, . . . ,Xn over the equiprobable
random intervals

(0,x1θ̂n],(x1θ̂n,x2θ̂n], . . . ,(xr−1θ̂n,+ ∞),

where x j = − ln (1 − j/r), j = 1, . . . ,r − 1.
The expression for the test Y 2

n in this case is (Greenwood and Nikulin, 1996)

Y 2
n = r

n

r∑
j=1

N (n)2
j − n + r2

nλ2

⎛
⎝ r∑

j=1

N (n)
j c2 j

⎞
⎠

2

, (3.45)

where, as before,

c2 j =
(

1 − j − 1

r

)
ln

(
1 − j − 1

r

)
−

(
1 − j

r

)
ln

(
1 − j

r

)
, j = 1, . . . ,r ,

and

λ2 = 1 − r
r∑

j=1

c2
2 j .

The statistic in (3.45) follows asymptotically the χ2
r−1 distribution and, under

H0, does not depend on the unknown parameter θ . From Table 3.5, we see
that power of the statistic in (3.45) for the seminormal alternative is like that
of the NRR test (see Section 4.4), being the highest for smaller number of
equiprobable random cells.

A different approach for testing exponentiality has been suggested by Dahiya
and Gurland (1972b).
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3.7 POWER GENERALIZED WEIBULL DISTRIBUTION

In accelerated life studies, the Power Generalized Weibull (PGW) family with
distribution function

F(t; θ,γ,ν) = 1 − exp

{
1 −

[
1 +

(
t

θ

)ν]1/γ
}
, t,θ,γ,ν > 0, (3.46)

proves to be very useful (Bagdonavičius and Nikulin, 2002). The family in (3.46)
has all its moments to be finite. Depending on the values of the parameters, the
hazard rate function

α(t; θ,γ,ν) = ν

γ θν
tν−1

[
1 +

(
t

θ

)ν] 1
γ

−1

can be constant, monotone increasing or decreasing, ∩-shaped and ∪-shaped.
Note also that F(t; θ,ν,1) = W (t; θ,ν), the Weibull distribution, and
F(t; θ,1,1) = E(t; θ) is the exponential distribution. More details on this
distribution can be found, for example, in Bagdonavičius et al. (2006).

Alloyarova et al. (2007), under the assumption that the shape parameter γ is
known, developed a modified HRM chi-squared test based on the approximate
MMEs of the parameters. These authors, however, erroneously concluded that
the MLEs are inconsistent in this case. Here, we shall consider modified tests
based on MLEs of the three parameters in (3.46) which are actually consistent
(Voinov et al., 2011, 2012).

3.7.1 Estimation of parameters

Let T1,T2, . . . ,Tn be a random sample from the distribution in (3.46). Assuming
the parameters θ,γ,ν to be unknown, the log likelihood function is given by

ln L = n ln

(
eν

γ θν

)
+ (ν − 1)

n∑
i=1

ln Ti +
(

1

γ
− 1

) n∑
i=1

ln

[
1 +

(
Ti

θ

)ν]

−
n∑

i=1

[
1 +

(
Ti

θ

)ν]1/γ

. (3.47)

Since analytical maximization of (3.47) is not possible, we examine the
maximum likelihood estimates (MLEs) θ̂n,γ̂n,ν̂n ,of the parameters θ,γ,ν, by
Monte Carlo simulation. Samples of pseudorandom numbers Ti ,i = 1,2, . . . ,n,
from the distribution in (3.46) were generated by the formula

Ti = θ
{[

1 − ln (1 − ξi )
]γ − 1

}1/ν
,

where ξi is a pseudorandom number uniformly distributed over the interval [0,1].
MLEs from the simulated samples can be obtained by a numerical maximization
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FIGURE 3.6 Simulated average absolute errors of the MLEs θ̂n,γ̂n,ν̂n versus their true
values as a function of sample size n. Number of runs for every n was fixed as N = 600.
The graph for n−0.5 is shown as the dotted line.

of the log-likelihood function in (3.47). An example of a simulation for θ =
3,γ = 2,ν = 3 is presented in Figure 3.6. A power function fit of the curves in
Figure 3.6 gives the following rates of convergence: θ̂n ∼ n−0.55,γ̂n ∼ n−0.56,
and ν̂n ∼ n−0.60, and so the MLEs converge faster than the rate n−0.5 and are
therefore

√
n-consistent.

3.7.2 Modified chi-squared test

Denote the unknown parameter by θ = (θ1,θ2,θ3)
T , where θ1 = θ,θ2 = γ,θ3 =

ν, with the MLE θ̂n of θ being θ̂n = (θ̂1n,θ̂2n,θ̂3n)
T , where θ̂1n = θ̂n,θ̂2n =

γ̂n,θ̂3n = ν̂n . Let � j (θ̂n) be non-intersecting random equiprobable cells with
the following end points:

a j (θ̂n) = θ̂n

{[
1 − ln

(
1 − j

r

)]γ̂n

− 1

}1/ν̂n

, j = 0,1, . . . ,r ,

a0(θ̂n) = 0, ar (θ̂n) = ∞.

The probability p j of falling into jth cell is p j = 1/r , j = 1, . . . ,r . The Fisher
information matrix J can be evaluated as
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J = Eθ

⎛
⎜⎜⎜⎜⎝

(
∂ ln f
∂θ

)2 (
∂ ln f
∂θ

∂ ln f
∂γ

) (
∂ ln f
∂θ

∂ ln f
∂ν

)
(
∂ ln f
∂γ

∂ ln f
∂θ

) (
∂ ln f
∂γ

)2 (
∂ ln f
∂γ

∂ ln f
∂ν

)
(
∂ ln f
∂ν

∂ ln f
∂θ

) (
∂ ln f
∂ν

∂ ln f
∂γ

) (
∂ ln f
∂ν

)2

⎞
⎟⎟⎟⎟⎠ .

Define also the matrix B with elements

B jk = 1√
p j

∫ a j (θ)

a j−1(θ)

∂ f (t; θ,γ,ν)
∂θk

, j = 1, . . . ,r , k = 1,2,3,

where f (t; θ,γ,ν) is the pdf of the distribution in (3.46). Explicit expressions
for the elements of J and B are presented in Chapter 9.

The NRR test in (3.8) can be presented as

Y 12
n(θ̂n) = U 2

n (θ̂n)+ S2
n (θ̂n), (3.48)

where

U 2
n (θ̂n) = V(n)T (θ̂n)[I − qnqT

n − Bn(BT
n Bn)

−1BT
n ]V(n)(θ̂) (3.49)

is the DN statistic distributed under the null hypothesis as χ2
r−s−1, in the limit,

where s is the number of parameters under estimation (three in the present case),
and

S2
n (θ̂n) = W 2

n (θ̂n)+ V(n)T (θ̂)(Jn − Jgn)
−1BT

n V(n)(θ̂n)

= V(n)T (θ̂n)Bn

(
(Jn − Jgn)

−1 + (BT
n Bn)

−1
)

BT
n V(n)(θ̂n).(3.50)

3.7.3 Evaluation of power

To assess the power of the NRR statistic Y 12
n(θ̂), the DN statistic U 2

n (θ̂), and the

statistic S2
n (θ̂) for the PGW null hypothesis in (3.46) against the Exponentiated

Weibull (EW) distribution (Mudholkar et al., 1995)

FEW (x) =
{

1 − exp

[
−

( x

α

)β]}γ
, x,α,β,γ > 0. (3.51)

Generalized Weibull (GW) distribution (Mudholkar et al., 1996)

FGW (x) = 1 −
[

1 − λ
( x

σ

)1/α
]1/λ

, x,α,σ > 0, λ ∈ R1, (3.52)

and Three-parameter Weibull (W3) distribution

FW 3(x) = 1 − exp

[
−

(
x − μ

θ

)p]
, x � μ,θ, p > 0, (3.53)
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FIGURE 3.7 Simulated distribution of the NRR statistic (Y 1ˆ2)under the null hypothesis
(θ = 3,γ = 2,ν = 3) against the chi-squared distribution with 9 degrees of freedom,
for n = 200,r = 10,N = 10,000.

Monte Carlo simulation was conducted for different number r of equiprobable
random cells.

Figure 3.7 presents the simulated distribution of the NRR statistic Y 12
n(θ̂)

under the null hypothesis in (3.46) (with θ = 3,γ = 2,ν = 3) against the
chi-squared distribution with 9 degrees of freedom (with r = 10).

From Figure 3.7, we see that, as expected, the NRR statistic is quite close
to the limiting chi-squared distribution with r − 1 degrees of freedom. Same
results were also obtained for different values of the parameters and different
numbers of equiprobable random cells, which does mean in this case that the
limiting distribution of the NRR test is distribution-free. Since the simulated
levels of significance for the left-hand sided rejection region coincide with those
corresponding to theoretical levels of the chi-squared distribution, we estimated
the power as probability of falling into the theoretical rejection region under
the alternatives.

To analyze the power of the tests for alternatives that are close to each other,
we selected parameters for the alternatives in such a manner that graphs of the
densities would be quite close (see Figure 3.8).

The simulation results show that the simulated probability density functions
of Y 12

n(θ̂) for EW, GW, and W3 alternatives are all shifted to the left compared
to the density of χ2

r−1 valid for the null hypothesis. This means that the NRR

test Y 12
n(θ̂) and its asymptotically independent component S2

n (θ̂) are biased if
one uses the right-tailed rejection region, i.e. S2

n (θ̂) > χ2
r−1(α). This situation

is analogous to that when testing for Poisson against the binomial alternative
using the index of dispersion test (see Section 7.1.3, for example).
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FIGURE 3.8 Probability density functions of EW (with α = 4.50,β = 3.00,γ = 1.03),
GW (with α = 0.3,σ = 4.2,λ = 0.0006), and W3 (with p = 2.5,θ = 4.0,μ = 0.3)
distributions.

FIGURE 3.9 Power of Y 12
n(θ̂)(Y 1ˆ2),U2

n (θ̂)(U ˆ2),S2
n (θ̂)(Sˆ2), A2(θ̂)(Aˆ2) and

W 2(θ̂)(W ˆ2) tests for the Exponentiated Weibull alternative in (3.51) as a function
of the number r of equiprobable random intervals (with α = 0.05,n = 200,N = 5000
runs).

Results of power simulation for the chi-squared tests Y 12
n(θ̂),U

2
n (θ̂),S

2
n (θ̂),

and, for comparison, Anderson-Darling A2(θ̂) and Cramer-von Mises W 2(θ̂)

tests, are all presented in Figures 3.9, 3.10, and 3.11.
From these figures, several important conclusions can be drawn. First of

all, we see that, for equiprobable cells, the DN statistic and, of course, its
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FIGURE 3.10 Power of Y 12
n(θ̂)(Y 1ˆ2),U2

n (θ̂)(U ˆ2),S2
n (θ̂)(Sˆ2),A2(θ̂)(Aˆ2) and

W 2(θ̂)(W ˆ2) tests for the Generalized Weibull alternative in (3.52) as a function of
the number r of equiprobable random intervals (with α = 0.05,n = 200,N = 5000
runs).

FIGURE 3.11 Power of Y 12
n(θ̂)(Y 1ˆ2),U2

n (θ̂)(U ˆ2),S2
n (θ̂)(Sˆ2),A2(θ̂)(Aˆ2) and

W 2(θ̂)(W ˆ2) tests for the Three Parameter Weibull alternative in (3.53) as a function
of the number r of equiprobable random intervals (with α = 0.05, n = 200,N = 5000
runs).

asymptotically equivalent Pearson-Fisher test, possess no power and, therefore,
cannot be recommended. The same is true for the Anderson-Darling and
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Cramer-von Mises tests as well. Secondly, Y 12
n(θ̂),U

2
n (θ̂), and S2

n (θ̂), even
for samples of size n = 200, possess almost no power for small and moderate
number r of cells (5–20), and they can be used only with r = 35–40. It may be
impractical to use r > 40 since expected frequencies may become less than
5 in this case. We also observe that the power of S2

n (θ̂) test is approximately
two times more than that of RNN test Y 12

n(θ̂). This power, in some sense,
“averages” the very low power of the DN statistic and rather high power of its
second asymptotically independent component S2

n (θ̂) (see Section 3.2).
Overall, for the problem of testing for the PGW distribution, we can

recommend only the use of S2
n (θ̂) statistic with relatively large number of

equiprobable intervals. At the same time, we note that the power of S2
n (θ̂)

for the PGW null hypothesis against the EW, GW, and W3 alternatives is not
high enough to discriminate between these four models with confidence. So,
for the selection of one of these models for a survival analysis, one needs to
have a test that will compare their hazard rate functions directly. This problem
has been successfully solved for time-continuous survival data by Hjort (1990).

3.8 MODIFIED CHI-SQUARED GOODNESS OF FIT TEST
FOR RANDOMLY RIGHT CENSORED DATA

3.8.1 Introduction

In this section, following the lines of Bagdonavičius and Nikulin (2011),
Bagdonavičius et al. (2011a,b), Bagdonavičius et al. (2010), and Nikulin et
al. (2011), we describe a chi-squared test for testing composite parametric
hypotheses when data are right censored. This problem arises naturally in
reliability and survival analysis. In particular, we consider the tests for the
Power Generalized Weibull and Birnbaum-Saunders families of distributions,
and the latter possesses some very interesting properties; see, for example Ng
et al. (2003), Sanhueza et al. (2008), Leiva et al. (2008).

In the case of complete data, well-known modification of the classical chi-
squared test is the NRR statistic Y 2

n which is based on the differences between
two estimators of the probabilities of falling into grouping intervals with one
estimator being based on the empirical distribution function, and the other being
the maximum likelihood estimators of the unknown parameters of the tested
model using initial non-grouped data; see Nikulin (1973a,b,c), Rao and Robson
(1974), Moore (1977), Drost (1988), LeCam et al. (1983), Van der Vaart (1988),
Voinov and Nikulin (1993), Voinov et al. (2007, 2008a,b, 2009).

Habib and Thomas (1986) and Hollander and Pena (1992) considered natural
modifications of the NRR statistic to the case of censored data. These tests
are also based on the differences between two estimators of the probabilities
of falling into grouping intervals with one being based on the Kaplan-Meier
estimator of the cumulative distribution function, and the other being the
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maximum likelihood estimators of unknown parameters of the tested model
using initial non-grouped censored data.

The idea of comparing observed and expected numbers of failures in time
intervals is due to Akritas (1988), which was developed further by Hjort (1990).
We discuss this here by considering the choice of random grouping intervals as
data functions and then present simple formulas for computing the test statistics
for some common classes of survival distributions.

3.8.2 Maximum likelihood estimation for right censored data

Suppose the failure times T1, . . . ,Tn are absolutely continuous i.i.d. random
variables, and the p.d.f. of the random variable Ti belongs to a parametric
family { f ( · ,θ),θ ∈ � ⊂ Rm}, where f ( · ,θ) is the density with respect to
σ -finite measure μ, and � is an open set. Denote by

S(t,θ) = Pθ {T1 > t}, λ(t,θ) = lim
h↓0

1

h
Pθ {t < T1 � t + h|T1 > t}

the corresponding survival function and the hazard rate, respectively. For any
t > 0, the value S(t,θ) of the survival function is the probability not to fail by
time t, and the value λ(t,θ) of the hazard rate characterizes the failure risk just
after the time t for the objects survived until this time. Suppose, instead of the
sample T1, . . . ,Tn , we observe the right censored simple

(X1,δ1), . . . ,(Xn,δn), (3.54)

where
Xi = Ti ∧ Ci = min{Ti ,Ci }, δi = 1{Ti �Ci }.

Denote by Ḡi the survival function of the censoring time Ci . Thus, for any
t > 0, the value Ḡi (t) is the probability for the ith object not be censored by
time t.

Let us consider the distribution of the random vector (Xi ,δi ) in the case of
random censoring with absolutely continuous censoring times Ci with p.d.f.
gi (t). In this case, we have the likelihood function as

L(θ) =
n∏

i=1

f δi (Xi ,θ)S
1−δi (Xi ,θ)Ḡ

δi
i (Xi )g

1−δi
i (Xi ), θ ∈ �. (3.55)

Now, we suppose that the censoring is non-informative, meaning that we
suppose that the function Ḡi does not depend on the parameter θ =
(θ1, . . . ,θm)

T .
For the estimation of the parameter θ , we can omit the multipliers which

does not depend on this parameter. So, under non-informative censoring, the
likelihood function has the form

L(θ) =
n∏

i=1

f δi (Xi ,θ)S
1−δi (Xi ,θ), θ ∈ �. (3.56)



60 Chi-Squared Goodness of Fit Tests with Applications

Using the relationship f (t,θ) = λ(t,θ)S(t,θ), the likelihood function in (3.56)
can be written as

L(θ) =
n∏

i=1

λδi (Xi ,θ)S(Xi ,θ), θ ∈ �. (3.57)

The estimator θ̂ , maximizing the likelihood function L(θ),θ ∈ �, is the
maximum likelihood estimator. Evidently, the log-likelihood function

�(θ) =
n∑

i=1

δi ln λ(Xi ,θ)+
n∑

i=1

ln S(Xi ,θ), θ ∈ �, (3.58)

is maximized at the same point as the likelihood function.
If λ(u,θ) is a sufficiently smooth function of the parameter θ , then the ML

estimator satisfies the equation:

�̇(θ̂) = 0; (3.59)

here 0 = 0s = (0, . . . ,0)T ∈ Rm , and �̇ is the score vector given by

�̇(θ) = ∂

∂θ
�(θ) =

(
∂

∂θ1
�(θ), . . . ,

∂

∂θm
�(θ)

)T

. (3.60)

Equation (3.58) implies that

�̇(θ) =
n∑

i=1

δi
∂

∂θ
ln λ(Xi ,θ)−

n∑
i=1

∂

∂θ
�(Xi ,θ),

where

�(t,θ) = − ln S(t,θ) =
t∫

0

λ(u,θ)du.

The Fisher information matrix is defined as

I(θ) = −Eθ �̈(θ), (3.61)

where

�̈(θ) =
n∑

i=1

δi
∂2

∂θ2 ln λ(Xi ,θ)−
n∑

i=1

∂2

∂θ2�(Xi ,θ). (3.62)

In the case of non-informative and random censoring, the asymptotic
properties of the ML estimators result from general results on asymptotic
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statistics; see, for example, Van der Vaart (1998). Suppose θ0 is the true value
of θ . Then, in this case, under some regularity conditions, we have

θ̂
P→ θ0,

√
n(θ̂ − θ0) = i−1(θ0)

1√
n
�̇(θ0)+ oP (1),

− 1
n �̈(θ̂)

P→ i(θ0), (3.63)
√

n(θ̂ − θ0)
d→ Nm(0,i−1(θ0)),

1√
n
�̇(θ0)

d→ Nm(0,i(θ0)), (3.64)

where θ̂ is the solution to Eq. (3.59), and the matrix

i(θ0) = lim
n→∞ I(θ0)/n. (3.65)

Let us write the log-likelihood function �(θ) and the score vector �̇(θ) in
terms of stochastic processes Ni (t) and Yi (t). The trajectories of the counting
processes Ni have the form

Ni (t) =
{

0, 0 � t < Xi

1, t � Xi
(3.66)

if δi = 1, and Ni (t) ≡ 0 if δi = 0. So,

∫ ∞

0
ln λ(u,θ)d Ni (u) =

{
ln λ(Xi ,θ), δi = 1,

0, δi = 0,

= δi ln λ(Xi ,θ). (3.67)

The trajectories of the stochastic process Yi have the form

Yi (t) =
{

1, 0 � t � Xi

0, t > Xi .
(3.68)

So, we have

∞∫
0

Yi (u)λ(u,θ)du =
Xi∫

0

λ(u,θ)du = − ln S(Xi ,θ), {θ ∈ �}. (3.69)

These relations imply that, under non-informative and random censoring, the
log-likelihood function may be written in the form

�(θ) =
n∑

i=1

∞∫
0

{ln λ(u,θ)d Ni (u)− Yi (u)λ(u,θ)}du, θ ∈ �, (3.70)
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from which it follows that

�̇(θ) =
n∑

i=1

∞∫
0

∂

∂θ
ln λ(u,θ)d Mi (u,θ), θ ∈ �,

and

�̈(θ) =
∑n

i=1

∞∫
0

∂2

∂θ2 ln λ(u,θ)d Mi (u,θ)

−
∑n

i=1

∞∫
0

∂

∂θ
ln λ(u,θ)

(
∂

∂θ
ln λ(u,θ)

)T

×λ(u,θ)Yi (u)du, θ ∈ �,

where

Mi (t,θ) = Ni (t)− Ai (t) = Ni (t)−
t∫

0

Yi (u)λ(u,θ)du, θ ∈ �, (3.71)

is a martingale of counting process Ni (t),t � 0. Let us consider the following
two processes

N (t) =
n∑

i=1

Ni (t) and Y (t) =
n∑

i=1

Yi (t), t � 0. (3.72)

It is quite common in survival analysis and reliability to assume that the
processes Ni and Yi are observed for finite time τ > 0, which means that at
time τ , observation on all surviving objects are censored, and so instead of
using censoring time Ci , we shall use censoring time Ci ∧ τ . We shall denote
them once again by Ci . The process N (t) shows, for any t > 0, the number of
observed failures in the interval [0,t] and the process Y (t) shows the number of
objects which are at risk (not failed, not truncated, and not censored) just prior
to time t, for t < τ . We note that, in this case, the Fisher information matrix
can be written as

I(θ) = −Eθ �̈(θ)

= Eθ
n∑

i=1

τ∫
0

∂

∂θ
ln λ(u,θ)

(
∂

∂θ
ln λ(u,θ)

)T

×λ(u,θ)Yi (u)du. (3.73)
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3.8.3 Chi-squared goodness of fit test

Let us consider the hypothesis

H0 : F(x) ∈ F0 = {F0(x; θ),θ ∈ � ⊂ Rm}

meaning that F belongs to the class F0 of the form F0(x; θ); here,

θ = (θ1, . . . ,θm)
T ∈ � ⊂ Rm

is an unknown m-dimensional parameter and F0 is a known distribution
function. Divide the interval [0,τ ] into k > m smaller intervals I j = (a j−1,a j ],
with a0 = 0,ak = τ , and denote by

U j = N (a j )− N (a j−1) (3.74)

the number of observed failures in the jth interval I j , j = 1,2, . . . ,k. Then, what
is the “expected” number of failures in the interval I j , under the null hypothesis
H0? Taking into account the equality

EN (t) = E

t∫
0

λ(u,θ0)Y (u)du, (3.75)

we can “expect” to have

e j =
a j∫

a j−1

λ(t,θ̂)Y (u)du (3.76)

failures, where θ̂ is the MLE of the parameter θ andλ(t,θ) is the hazard function.
A chi-squared test considered by Akritas (1988) is based on the vector

Z = (Z1, . . . ,Zk)
T , with Z j = 1√

n
(U j − e j ), j = 1, . . . ,k. (3.77)

To investigate the properties of the statistic Z, we need the properties of the
stochastic process

Hn(t) = 1√
n

⎛
⎝N (t)−

t∫
0

λ(u,θ̂)Y (u)du

⎞
⎠ (3.78)

in the interval [0,τ ]. We remind that consistency and asymptotic normality of
the ML estimator θ̂ hold under the following sufficient conditions.
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Conditions A:

(1) There exists a neighborhood �0 of θ0 such that for all n and θ ∈ �0, and
almost all t ∈ [0,τ ], the partial derivatives of λ(t,θ) of the first, second,
and third order with respect to θ exist and are continuous in θ for θ ∈ �0.
Moreover, they are bounded in [0,τ ] ×�0 and the log-likelihood function
in (3.70) may be differentiated three times with respect to θ ∈ �0 by
interchanging the order of integration and differentiation;

(2) λ(t,θ) is bounded away from zero in [0,τ ] ×�0;
(3) There exists a positive deterministic function y(t) such that

sup
t∈[0,τ ]

|Y (t)/n − y(t)| P→ 0;

(4) The matrix i(θ0) = limn→∞ I(θ0)/n (the limit exists under Conditions
(1)–(3)) is positive definite.

Lemma 3.1. Under Conditions A, the following convergence holds:

Hn
d→ V on D[0,τ ],

where V is zero mean Gaussian martingale such that, for all 0 � s � t ,

Cov(V (s),V (t)) = A(s)− CT (s)i−1(θ0)C(t), (3.79)

with

A(t) =
t∫

0

λ(u,θ0)y(u)du, C(t) =
t∫

0

∂

∂θ
ln λ(u,θ)λ(u,θ)

∣∣∣∣∣∣
θ=θ0

y(u)du,

and
d→ means weak convergence in the space D[0,τ ] of cadlag functions with

Skorokhod metric.

The proof is given, for example, in Bagdonavičius and Nikulin (2011) and
Bagdonavičius et al. (2010, 2011a,b).

Let us set, for i = 1, . . . ,m and j, j ′ = 1, . . . ,k,

Vj = V (a j )− V (a j−1), v j j ′ = Cov(Vj ,Vj ′),

A j = A(a j )− A(a j−1), C j = (C1 j , . . . ,Csj )
T = C(a j )− C(a j−1),

V = [v j j ′ ]k×k, C = [Ci j ]m×k,

and denote by A the k × k diagonal matrix with diagonal elements A1, . . . ,Ak .
From Lemma 3.1, it follows that, under Conditions A, we have the following

result.
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Assertion 3.1.

Z
d→ Y ∼ Nk(0,V), as n → ∞, (3.80)

where
V = A − CT i−1(θ0)C. (3.81)

Remark 3.4. Set

G = i − CA−1CT . (3.82)

The generalized inverse V− of the matrix V in (3.81) may be written as

V− = A−1 + A−1CT G−CA−1. (3.83)

We see that we need to invert only the diagonal k × k matrix A and then
find the generalized inverse of the m × m matrix G = i − CA−1CT (usually
m = 1,m = 2, or m = 3).

Assertion 3.1 then implies the next assertion.

Assertion 3.2. Under Conditions A, the following estimators of A j ,C j ,i(θ0),
and V are consistent:

Â j = U j

n
, Ĉ j = 1

n

a j∫
a j−1

∂

∂θ
ln λ(u,θ̂)d N (u),

and

î = 1

n

τ∫
0

∂

∂θ
ln λ(u,θ)

(
∂

∂θ
ln λ(u,θ)

)T
∣∣∣∣∣∣
θ=θ̂

d N (u),

V̂ = Â − ĈT î−1Ĉ.

Proper demonstrations of Assertions 3.1 and 3.2 can be found, for example,
in Bagdonavičius and Nikulin (2011).

Remark 3.5. The above written estimators may be expressed in the form

Â j = U j

n
, U j =

∑
i :Xi ∈I j

δi , Ĉ j = 1

n

∑
i :Xi ∈I j

δi
∂

∂θ
ln λ(Xi ,θ̂).

e j =
∑

i :Xi>a j−1

[�(a j ∧ Xi ; θ̂)−�(a j−1; θ̂)],

î = 1

n

n∑
i=1

δi
∂ ln λ(Xi ,θ̂)

∂θ

(
∂ ln λ(Xi ,θ̂)

∂θ

)T

.
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Then, Assertions 3.1 and 3.2 imply that a test for the hypothesis H0 can be
based on the statistic

Y 2 = ZT V̂−Z, (3.84)

where V̂− is the generalized inverse of the matrix V̂. Using the expressions

V̂− = Â−1 + Â−1ĈT Ĝ−ĈÂ−1andĜ = î − ĈÂ−1ĈT ,

and the definition of Z in (3.77), the test statistic can be expressed as

Y 2 =
k∑

j=1

(U j − e j )
2

U j
+ Q, (3.85)

where

Q = WT Ĝ−W, W = ĈÂ−1Z = (W1, . . . ,Wm)
T ,

Ĝ = [ĝll ′ ]m×m, ĝll ′ = îll ′ −
k∑

j=1

Ĉl j Ĉl ′ j Â−1
j , Wl =

k∑
j=1

Ĉl j Â−1
j Z j ,

îll ′ = 1

n

n∑
i=1

δi
∂ ln λ(Xi ,θ̂)

∂θl

∂ ln λ(Xi ,θ̂)

∂θl ′
,

Ĉl j = 1

n

∑
i :Xi ∈I j

δi
∂

∂θl
ln λ(Xi ,θ̂), j = 1, . . . ,k; l,l ′ = 1, . . . ,m.

From results on the distributions of quadratic forms (see, for example, Rao,
2002 and Greenwood and Nikulin, 1996), the limiting distribution of the statistic
Y 2

n is chi-square with its degrees of freedom as

r = rankV− = T r(V−V).

A formal proof of this limiting results remains open, however. A careful study
of the limiting distribution of Y 2 in (3.85) and its power is warranted. The null
hypothesis is rejected with approximate significance level α if Y 2

n > χ2
α(r) or

Y 2
n < χ2

1−α(r) depending on an alternative, where χ2
α(r) and χ2

1−α(r) are the
upper and lower α percentage points of the χ2

r distribution, respectively.
If G is non-degenerate, then r = k since, by using the equality G = i −

CA−1CT , we obtain

V−V = (A−1 + A−1CT G−1CA−1)(A − CT i−1C)

= I − A−1CT (i−1 − G−1Gi−1)C = I,

so that T r(V−V) = k, as desired.
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Remark 3.6. The matrix G = i − CA−1CT is degenerate if and only if the
vector-function

ψ(t,θ) = ∂

∂θ
ln λ(t,θ)

is such that there exists a vector x = (x1, . . . ,xm) 	= (0, . . . ,0)T with
xTψ(t,θ0) being constant on each interval I j (see Hjort, 1990).

Remark 3.7. Replacing ψ(t,θ0) by ψ(t,θ̂) and y(u)λ(u,θ0)du by d N (u)

in the expressions of i,C and A, we get î,Ĉ and Â, respectively. So, the matrix
Ĝ = î−ĈÂ−1ĈT is degenerate if and only if the vector-functionψ(t,θ̂) is such
that there exists a vector x = (x1, . . . ,xm) 	= (0, . . . ,0)T with xTψ(Xi ,θ̂)

being the same for all Xi ∈ I j such that δi = 1.

Remark 3.8. As in the complete sample case, it is recommended to take a j as
random data functions. The idea is to divide the interval [0,τ ] into k intervals
with equal expected numbers of failures (which need not be integers). It seems
that it is better to divide [0,τ ] into intervals with equal estimated probabilities
under the model because in most cases, most of the right censored times will
be concentrated on the right side of the data, and so small number of failures
or no failures may be observed in the end intervals.

Define

Ek =
∫ τ

0
λ(u,θ̂)Y (u)du =

n∑
i=1

[�(Xi ,θ̂)−�(Di ,θ̂)],

E j = j

k
Ek, j = 1, . . . ,k. (3.86)

So, we seek â j satisfying the equality

g(â j ) = E j , with g(a) =
a∫

0

λ(u,θ̂)Y (u)du. (3.87)

It is easy to prove that the limiting distribution of the test statistic does not
change in this case.

Denote by X(1) � · · · � X(n) the ordered values from X1, . . . ,Xn . Note
that the function

g(a) =
∑n

i=1
�(Xi ∧ a,θ̂)

=
∑n

i=1

[
(n − i + 1)�(a,θ̂)+

i−1∑
l=1

�(X(l),θ̂)

]
1[X(i−1),X(i)](a)
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is continuous and increasing in [0,τ ]; here, X(0) ≡ 0, and we use the convention
that

∑0
l=1 cl ≡ 0. Set

bi = (n − i)�(X(i),θ̂)+
i∑

l=1

�(X(l),θ̂).

If i is the smallest natural number satisfying E j ∈ [bi−1,bi ], then the equality
in (3.87) can be expressed as

(n − i + 1)�(a,θ̂)+
i−1∑
l=1

�(X(l),θ̂) = E j ,

and so if E j ∈ [bi−1,bi ], j = 1, . . . ,k − 1, then we have

â j = �−1

(
(E j −

i−1∑
l=1

�(X(l),θ̂))/(n − i + 1),θ̂

)
, âk = X(n), (3.88)

where �−1 is the inverse of the function �. We have 0 < â1 < â2 < · · · <
âk = τ .

Under this choice of the intervals, we have E j = Ek/k for any j. Taking
into account that

E j

n
P→ j

k

τ∫
0

λ(u,θ0)y(u)du,

we have â j
P→ a j , where a j is defined by

∫ a j

0
λ(u,θ0)y(u)du = j

k

τ∫
0

λ(t,θ0)y(u)du.

Thus, replacing a j by â j in the expression of the statistic Y 2, the limiting
distribution of the statistic Y 2 is still chi-squared with r degrees of freedom, as
in the case of fixed a j .

3.8.4 Examples

Example 3.81 (Exponential distribution). Let us consider the null hypothesis

H0 : F(t) = 1 − e−λt , t � 0, λ > 0,

i.e. the distribution of the failure times is exponential, where λ > 0 is an
unknown scale parameter.
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Under the hypothesis H0, we have

S(t; θ,ν) = exp{−λt}, �(t; θ,ν) = λt,

λ(t; λ) = λ, ln λ(t; θ,ν) = ln λ.

Setting Sn = ∑n
i=1 Xi , we have

λ̂ = δ/Sn, U j =
∑

i :Xi ∈I j

δi , Ĉ j = U j

nλ̂
,

î = δ

nλ̂2
, Ĝ = ĝ11 = δ

nλ̂2
−

k∑
j=1

U 2
j

n2λ̂2

n

U j
= 0.

Remarks 3.6 and 3.7 also imply that G = g11 and Ĝ = ĝ11 are degenerate,
i.e. equal to zero. We cannot therefore consider general inverse of G = 0 and
Ĝ = 0, and so we find the general inverse V̂− of the matrix V̂ directly.

Under the exponential distribution, the elements of the matrix V̂ are

v̂ j j = Â j − Ĉ2
j î−1 = U j

n
− U 2

j

nδ
,

and

v j j ′ = −Ĉ j î
−1Ĉ j ′ = −U jU j ′

nδ
for j 	= j ′.

Now, set

π̂ j = U j

δ
,

k∑
j=1

π̂ j = 1, π̂ = (π̂1, . . . ,π̂k)
T .

Denote by D the diagonal matrix with its diagonal elements as π̂ . The matrix
V̂ and its generalized inverse V̂− are then of the form

V̂ = δ

n
(D̂ − π̂ π̂

T
), V̂− = n

δ
(D̂−1 + 11T ),

and due to the equalities

1T D̂ = π̂
T
, 1T π̂ = π̂

T 1 = 1, D̂1 = π̂ , π̂
T D̂−1 = 1T ,

we obtain V̂V̂−V̂ = V̂.
The quadratic form Y 2 = ZT V̂−Z has the form

Y 2 = n

δ
ZT D̂−1Z + n

δ
(ZT 1)2 =

k∑
j=1

(U j − e j )
2

U j
+ 1

δ

⎡
⎣ k∑

j=1

(U j − e j )

⎤
⎦

2

.
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Under the hypothesis H0, the limiting distribution of the statistic Y 2 is chi-
square with T r(V−V) = k − 1 degrees of freedom, because

Â j
P→ A j > 0, δ/n

P→ A =
k∑

j=1

A j ∈ (0,1), π̂ j
P→ A j/A = π j , D̂

P→ D,

so

V−V = 1

A
(D−1 + 11T )A(D − ππT ) = I − 1πT ,

T r(I − 1πT ) = k −
k∑

j=1

π j = k − 1.

But, a careful study of the limiting distribution of Y 2 and its power is warranted.
Note that

∑k

j=1
e j = λ̂

τ∫
0

Y (u)du = λ̂

n∑
i=1

Xi = λ̂Sn = δ =
k∑

j=1

U j .

So

Q = 1

δ

⎡
⎣ k∑

j=1

(U j − e j )

⎤
⎦

2

= 0.

Remark 3.9 (About the choice of â j ). Set

S0 ≡ 0, Si =
i∑

l=1

X(l) + (n − i)X(i), i = 1, . . . ,n.

Then, Remark 3.8 implies that the limits of the intervals I j are chosen in the
following way: if i is the smallest natural number such that

Si−1 � j

k
Sn � Si ,

then

â j =
j
k Sn − ∑i−1

l=1 X(l)
n − i + 1

, j = 1, . . . ,k − 1, and âk = X(n).

The number of expected failures in all intervals are equal in this case, and is

e j = δ/k for any j .
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It is evident that the null hypothesis will be rejected with approximate

significance level α if Y 2 = ∑k
j=1

(U j −e j )
2

U j
> χ2

α(k − 1)or Y 2 =∑k
j=1

(U j −e j )
2

U j
< χ2

1−α(k − 1) depending on an alternative, where χ2
α(k − 1)

and χ2
1−α(k − 1) are the upper and lower α percentage points of the χ2

k−1
distribution, respectively.

Example 3.82 (Shape and scale families). Let us consider the hypothesis

H0 : F(t) = F0((t/θ)
ν), θ > 0,ν > 0,

meaning that the lifetime distribution belongs to a specified shape and scale
family, with F0 being a specified distribution function, and θ and ν being the
unknown scale and shape parameters, respectively.

Set
S0 = 1 − F0, �0 = − ln S0, λ0 = −S′

0/S0.

Under the hypothesis H0, we then have

S(t; θ,ν) = S0

{(
t

θ

)ν}
, �(t; θ,ν) = �0

{(
t

θ

)ν}
,

λ(t; θ,ν) = ν

θν
tν−1λ0

{(
t

θ

)ν}
,

ln λ(t; θ,ν) = (ν − 1) ln t − ν ln θ + ln ν + ln λ0

{(
t

θ

)ν}
.

Denote by θ̂ and ν̂ the ML estimators of the parameters θ and ν, respectively.
These estimators maximize the log-likelihood function

�(θ,ν) =
∑n

i=1

{
δi

[
(ν − 1) ln Xi − ν ln θ

+ ln ν + ln λ0

((
Xi

θ

)ν)]
−�0

((
Xi

θ

)ν)}
.

The estimator î = [îls]2×2 has the form

î11 = ν̂2

nθ̂2

n∑
i=1

δi [1 + Yi g0(Yi )]2,

î12 = − 1

nθ̂

n∑
i=1

δi [1 + Yi g0(Yi )][1 + ln Yi (1 + Yi g0(Yi ))],

î22 = 1

nν̂2

n∑
i=1

δi [1 + ln Yi (1 + Yi g0(Yi ))]2,
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where

Yi =
(

Xi

θ̂

)ν̂
, g0 = ( ln λ0)

′.

The test statistic for testing H0 is given by

Y 2 =
k∑

j=1

(U j − e j )
2

U j
+ Q,

where

Q = WT Ĝ−W, W = (W1,W2)
T ,

Ĝ = [ĝi i ′ ]2×2, ĝi i ′ = îi i ′ −
k∑

j=1

Ĉi j Ĉi ′ j Â−1
j ,

Wi =
∑k

j=1
Ĉi j Â−1

j Z j , i,i ′ = 1,2,

Â j = U j/n, Ĉ1 j = − ν̂

nθ̂

∑
i :Xi ∈I j

δi (1 + Yi g0(Yi )),

Ĉ2 j = 1

nν̂

∑
i :Xi ∈I j

δi [1 + ln Yi (1 + Yi g0(Yi ))], Z j = 1√
n
(U j − e j ).

A careful study of the limiting distribution of Y 2 and its power is warranted.
To construct â j , we set

bi = (n − i)�0(Yi )+
i∑

l=1

�0(Y(l)).

If i is the smallest natural number such that E j ∈ [bi−1,bi ], then

â j = θ̂

{
�−1

0

(
(E j −

i−1∑
l=1

�0(Y(l)))/(n − i + 1)

)}1/ν̂

and âk = X(n),

where �−1
0 is the inverse of the function �0.

Under such a choice of the intervals, we have e j = Ek/k for any j, where
Ek = ∑n

i=1�0(Yi ). Accordingly, the chi-squared test for testing the null
hypothesis H0 will reject the null hypothesis with approximate significance
level α if Y 2 > χ2

α(r) or Y 2 < χ2
1−α(r) depending on an alternative, where

χ2
α(r) and χ2

1−α(r) are the upper and the lower α percentage points of the χ2
r

distribution, respectively.
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The degrees of freedom r in this case is given by

r = rank(V−) = T r(V−V), V = A − CT i−1C,

V− = A−1 + A−1CT G−CA−1.

It is evident that if G is non-degenerate, then r = k.

Example 3.83 (Chi-squared test for the Weibull distribution). Let us
consider the hypothesis

H0 : F(t) = 1 − e−(t/θ)ν ,t � 0,

which means the lifetime distribution is Weibull; here, θ > 0 and ν > 0 are the
unknown scale and shape parameters, respectively. Under the null hypothesis,
we have

S(t; θ,ν) = exp

{
−

(
t

θ

)ν}
, �(t; θ,ν) =

(
t

θ

)ν
,

λ(t; θ,ν) = ν

θν
tν−1, ln λ(t; θ,ν) = (ν − 1) ln t − ν ln θ + ln ν.

Denote by θ̂ and ν̂ the ML estimators of the parameters θ and ν, respectively.
These estimators then maximize the log-likelihood function

�(θ,ν) =
n∑

i=1

{δi [(ν − 1) ln Xi − ν ln θ + ln ν] − (Xi/θ)
ν}.

For the existence and uniqueness of the ML estimators θ̂ and ν̂, one may refer
to Balakrishnan and Kateri (2008). In this case, to construct â j , we set

Yi =
(

Xi

θ̂

)ν̂
, b0 = 0, bi =

i∑
l=1

Y(l) + (n − i)Y(i), i = 1, . . . ,n.

Then, Remark 3.8 implies that the limits of the intervals I j are chosen in the
following way: if i is the smallest natural number such that

bi−1 � j

k
bn � bi ,

then

â j = θ̂

(
j
k bn − ∑i−1

l=1 Y(l)
n − i + 1

)1/ν̂

, j = 1, . . . ,k − 1, and âk = X(n).

For such a choice of the intervals, we have

e j = δ/k for all j .
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Remark 3.8 implies that the matrices G and Ĝ are degenerate and have rank
1, since

g11 = g12 = ĝ11 = ĝ12 = 0.

So, we need only ĝ22 to find Ĝ−. We have

î22 = 1

nν̂2

n∑
i=1

δi [1 + ln Yi ]2, Ĉ2 j = 1

nν̂

∑
i :Xi ∈I j

δi [1 + ln Yi ],

ĝ22 = î22 −
k∑

j=1

Ĉ2
2 j Â−1

j , Â j = U j/n.

Then, the matrix Ĝ− has the form

Ĝ− =
(

0 0

0 ĝ−1
22

)
,

and consequently

Q = W 2
2

ĝ22
, W2 =

k∑
j=1

Ĉ2 j Â−1
j Z j , Z j = 1√

n
(U j − e j ).

According to the chi-squared test based on the statistic Y 2 for testing H0, the
null hypothesis will be rejected with approximate significance level α if X2 =∑k

j=1
(U j −e j )

2

U j
+ Q > χ2

α(k − 1) or X2 = ∑k
j=1

(U j −e j )
2

U j
+ Q < χ2

1−α(k − 1)

depending on an alternative, where χ2
α(k − 1) and χ2

1−α(k − 1) are the upper
and lower α percentage points of the χ2

k−1 distribution, respectively. In fact, a
careful study of the limiting distribution of X2 and its power is warranted.

Example 3.84 (Chi-squared test for the Power Generalized Weibull
distribution). Following Bagdonavičius et al. (2010), we suppose that under
H0, the distribution of failure times is Power Generalized Weibull (see
Bagdonavičius and Nikulin, 2002), with its survival function

S(t,θ,ν,γ ) = exp

{
1 −

(
1 +

(
t

θ

)ν)1/γ
}
, t � 0, θ,ν,γ > 0,

the cumulative hazard function

�(t,θ,ν,γ ) = −
{

1 −
(

1 +
(

t

θ

)ν)1/γ
}
,

and the hazard function

λ(t,θ,ν,γ ) = ν

γ θν
tν−1

(
1 +

(
t

θ

)ν)(1/γ )−1

.

The hazard function has following properties:



75Chapter | 3 Wald’s Method and Nikulin-Rao-Robson Test

If ν > 1,ν > γ , then the hazard rate increases from 0 to ∞;
If ν = 1,γ < 1, then the hazard rate increases from (γ θ)−1 to ∞;
If 0 < ν < 1,ν < γ , then the hazard rate decreases from ∞ to 0;
If 0 < ν < 1,ν = γ , then the hazard rate decreases from ∞ to 1/θ ;
If γ > ν > 1 , then the hazard rate increases from 0 to its maximum value and
then decreases to 0, that is, it is

⋂
-shaped;

If 0 < γ < ν < 1, then the hazard rate decreases from ∞ to its minimum value
and then increases to ∞, that is, it is

⋃
-shaped.

It is known that all the moments of this distribution are finite.

The likelihood function can be expressed as

L =
n∏

i=1

[λ(ti ,θ,ν,γ )]δi [S(ti ,θ,ν,γ )],

with δi being the censoring indicator defined by

δi =
{

1 if Xi < Ci

0 otherwise.

The log-likelihood function in this case is

� = lnL =
∑n

i=1
δi {ln ν − ln γ − ν ln θ + (ν − 1) ln ti

+
(

1

γ
− 1

)
ln (1 + Yi )

}
+ n −

n∑
i=1

(1 + Yi )
1/γ ,

where Yi = (ti/θ)ν . The chi-squared test statistic in this case is

Y 2
n =

k∑
j=1

(U j − e j )
2

U j
+ Q,

where

U j =
∑

i :Xi ∈I j
δi ,

e j =
∑

i :Xi>aJ−1

[
�

((
a j ∧ Xi

θ̂

)ν̂)
−�

(
a j−1

θ̂

)ν̂]
,

Q =
∑m

l=1

m∑
l ′=1

Wl g
ll′Wl ′ ,

with m being the number of parameters in the lifetime distribution, and

Wl =
k∑

j=1

Ĉi j Â−1
j Z j , ĝll ′ = îll ′ −

k∑
j=1

Ĉi j Ĉi ′ j Â−1
j ,

[ĝll′]m×m = [ĝll′]−1
m×m, Â j = U j/n,
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Ĉ j = 1

n

∑
i :Xi ∈I j

δi
∂

∂θ
ln λ(Xi ; θ̂ ), Ĉ j = (Ĉ1 j ,Ĉ2 j ,Ĉ3 j )

T ,

Ĉ1 j = − ν̂

nθ̂

∑
i :Xi ∈I j

δi

{
1 + (

1

γ̂
− 1)

Yi

1 + Yi

}
,

Ĉ2 j = 1

nν̂

∑
i :Xi ∈I j

δi

{
1 + ln Yi + (

1

γ̂
− 1)

Yi ln Yi

1 + Yi

}
,

Ĉ3 j = − 1

nγ̂

∑
i :Xi ∈I j

δi

{
1 + 1

γ̂
ln (1 + Yi )

}
.

Since

îll ′ = 1

n

n∑
i=1

δi
∂ ln λ(Xi ; θ̂)

∂θl

∂ ln λ(Xi ; θ̂)
∂θl ′

,

we have the elements of the symmetric matrix î as

î11 = ν̂

nθ̂2

n∑
i=1

δi

{
1 +

(
1

γ̂
− 1

)
Yi

1 + Yi

}2

,

î22 = 1

nν̂2

n∑
i=1

δi

{
1 + ln Yi +

(
1

γ̂
− 1

)
Yi ln Yi

1 + Yi

}2

,

î33 = 1

nγ̂ 2

n∑
i=1

δi

{
1 + 1

γ̂
ln (1 + Yi )

}2

,

î12 = − 1

nθ̂

n∑
i=1

δi

{
1 +

(
1

γ̂
− 1

)
Yi

1 + Yi

}{
1 + ln Yi +

(
1

γ̂
− 1

)
Yi ln Yi

1 + Yi

}
,

î13 = ν̂

nθ̂ γ̂

n∑
i=1

δi

{
1 +

(
1

γ̂
− 1

)
Yi

1 + Yi

}{
1 + 1

γ̂
ln (1 + Yi )

}
,

î23 = − 1

nγ̂ ν̂

n∑
i=1

δi

{
1 + ln Yi +

(
1

γ̂
− 1

)
Yi ln Yi

1 + Yi

}{
1 + 1

γ̂
ln (1 + Yi )

}
.

In fact, a careful study of the limiting distribution of Y 2
n and its power is

warranted.
Evidently, by setting γ = 1, we can deduce the elements of the estimator

î = [îll ′ ]2×2 and Ĉ j for the case of the Weibull distribution with survival
function

S(t; θ,ν) = exp

{
−

(
t

θ

)ν}
,
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and in this case

î11 = ν̂

nθ̂2

{
−δ + (ν̂ + 1)

n∑
i=1

Yi

}
,

î12 = 1

nθ̂

{
δ −

n∑
i=1

Yi
(
1 + ln Yi

)}
,

î22 = 1

nν̂2

{
δ +

n∑
i=1

Yi ln2 Yi

}
,

where ∑n

i=1
δi = δ, Ĉ j = (Ĉ1 j ,Ĉ2 j )

T ,

Ĉ1 j = − ν̂
θ̂

U j

n
, Ĉ2 j = 1

nν̂

∑
i :Xi ∈I j

δi {1 + ln Yi } .

Example 3.85 (Chi-squared test for Birnbaum-Saunders distribution).
Birnbaum and Saunders (1969a,b) proposed a two-parameter distribution as
a fatigue life distribution with unimodal hazard rate function; see Kundu et al.
(2008) for a formal proof of this property and some inferential issues associated
with it. The cumulative distribution function of this distribution is

F(t;α,β) = �

[
1

α

{(
t

β

) 1
2 −

(
β

t

) 1
2
}]

, 0 < t < ∞, α,β > 0,

whereα is the shape parameter,β is the scale parameter, and�(x) is the standard
normal distribution function. The corresponding probability density function is

f (t;α,β) = 1

2
√

2παβ

{(
β

t

) 1
2 +

(
β

t

) 3
2
}

exp

[
− 1

2α2

(
t

β
+ β

t
− 2

)]
,

0 < t < ∞, α,β > 0.

The existence and uniqueness of the ML estimators β̂ and α̂, of the parameters
β and α, based on complete and censored samples have been established by
Birnbaum and Saunders (1969b) and Balakrishnan and Zhu (2012), respectively.
In this case, from the log-likelihood function, we can estimate the Fisher
information matrix by using the equality

î ll ′ = 1

n

n∑
i=1

δi
∂ ln λ(Xi ; θ̂)

∂θ l

∂ ln λ(Xi ; θ̂)
∂θ l ′

.

The elements of the above Fisher information matrix are as follows:

î11 = 1

n

n∑
i=1

δi

[
− 1

α
+ 1

α3

(
ti
β

+ β

ti
− 2

)
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+
�′
α

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

⎤
⎥⎥⎥⎦

2

,

î22 = 1

n

n∑
i=1

δi

⎡
⎢⎢⎢⎣− 1

β
+

1
2t

{(
ti
β

) 1
2 + 3

(
β
ti

) 1
2
}

(
β
ti

) 1
2 +

(
β
ti

) 3
2

− 1

2α2

(
− ti
β2 + 1

ti

)

+
�′
β

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

⎤
⎥⎥⎥⎦

2

,

î12 = 1

n

n∑
i=1

δi

[
− 1

α
+ 1

α3

(
ti
β

+ β

ti
− 2

)

+
�′
α

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣− 1

β
+

1
2ti

{(
ti
β

) 1
2 + 3

(
β
ti

) 1
2
}

(
β
ti

) 1
2 +

(
β
ti

) 3
2

− 1

2α2

(
− ti
β2 + 1

ti

)

+
�′
β

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2
})

⎤
⎥⎥⎥⎦ ,

where �′(x) = ϕ(x) = 1√
2π

e−x2/2, so that we have

�′
α

(
1

α

{(
ti
β

) 1
2 −

(
β

ti

) 1
2
})

= − 1√
2πα2

{(
ti
β

) 1
2 −

(
β

ti

) 1
2
}

exp

[
− 1

2α2

(
ti
β

+ β

ti
− 2

)]
,

�′
β

(
1

α

{(
ti
β

) 1
2 −

(
β

ti

) 1
2
})
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= − 1

2
√

2παti

{(
ti
β

) 3
2 +

(
ti
β

) 1
2
}

exp

[
− 1

2α2

(
ti
β

+ β

ti
− 2

)]
.

Moreover, we have

Ĉl j = 1

n

∑
i :Xi ∈I j

δi
∂

∂θ
ln λ(Xi ,θ̂),

where

Ĉ1 j = 1

n

∑
i :Xi ∈I j

δi

⎡
⎢⎢⎢⎢⎣− 1

α
+ 1

α3

(
ti
β

+ β

ti
− 2

)
+

�′
α

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2

})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2

})
⎤
⎥⎥⎥⎥⎦ ,

Ĉ2 j = 1

n

∑
i :Xi ∈I j

δi

⎡
⎢⎢⎢⎢⎣− 1

β
+

1
2ti

{(
ti
β

) 1
2 + 3

(
β
ti

) 1
2

}

(
β
ti

) 1
2 +

(
β
ti

) 3
2

− 1

2α2

(
− ti
β2 + 1

ti

)

+
�′
β

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2

})

1 −�

(
1
α

{(
ti
β

) 1
2 −

(
β
ti

) 1
2

})
⎤
⎥⎥⎥⎥⎦ .

3.9 TESTING NORMALITY FOR SOME CLASSICAL
DATA ON PHYSICAL CONSTANTS

The classical measurements from Cavendish’s determination of the mean
density of the earth (relative to that of water), from Millikan’s determinations
of the charge of electron, and from Michelson and Newcomb’s measurements
of the velocity of light have all been analyzed by a number of authors including
Stigler (1977) and Moore (1984). The main interest of Stigler was to compare
11 different estimators of location parameters by using real data. He concluded
that the simple sample mean “compares favorably” with all other estimators
considered by him. If an experiment is well organized and all systematic effects
are excluded, the measurements, being a sum of numerous independent random
effects, should approximately follow a normal distribution. Though Stigler
(1977) did not use statistical tests to check for normality of the data, he did
comment “that the data set considered tend to have slightly heavier tails than
the normal, but that a view of the world through Cauchy-colored glasses may
be overly-pessimistic.” Moore (1984) carried out a test of normality on the data
compiled by Stigler (1977) by using the test of Moore (1971) and Dahiya and
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TABLE 3.6 Values of Cavendish’s determinations of the density of earth.

5.50 5.55 5.57 5.34 5.42 5.30

5.61 5.36 5.53 5.79 5.47 5.75

4.88 5.29 5.62 5.10 5.63 5.68

5.07 5.58 5.29 5.27 5.34 5.85

5.26 5.65 5.44 5.39 5.46

Gurland (1972a), viz. the MDG test statistic χ2
M DG , that is, defined in (2.19)

with specially constructed grouping intervals (see Section 2.6) and a measure
X2/n for the degree of lack of fit. The main interest of Moore (1984) was to
check for the normality of the data using not only the level of significance
but also using the measure of degree of lack of fit, comparing its behavior
for real and simulated data. To simplify his analysis, Moore used the Pearson-
Fisher test with random cells (Moore, 1971) instead of the more powerful NRR
statistic. Here, we revisit this analysis by using not only the NRR test, but also
the more powerful test S2

n (θ̂n), proposed first by McCulloch (1985), which is
easily implemented through Microsoft Excel and VBA codes. In the subsequent
analysis, the data compiled by Stigler (1977) and the data from Linnik (1958)
are used for this purpose.

3.9.1 Cavendish’s measurements

The 29 measurements that Cavendish made on the density of earth (Stigler,
1977, p. 1076) are reproduced in Table 3.6. The boldfaced value of 4.88 in this
table deserves some additional discussion. Stigler (1977) noted that “Cavendish
erred in taking the mean (5.48) of all 29 (measurements) by treating the value
4.88 as if it were in fact 5.88.” He also added that this error of Cavendish was
first mentioned and corrected by Bailey in 1843 who gave the mean density of
5.448. Of course, we may consider 4.88 as an outlier, but it seems that 4.88 is
a real measurement of Cavendish. Keeping this in mind, Stigler examined the
robustness of estimators of the mean for two versions of data from Table 3.6,
with and without replacing 4.88 by 5.88.

The main question in any statistical analysis of data is whether we could
consider the data as realizations of i.i.d. random variables. To answer this, one
has to investigate at least the correlation between measurements and randomness
of the data. The sample autocorrelation function of the data in Table 3.6 is
shown in Figure 3.12. The non parametric runs test for these data gives a
P-value of 0.453, from which we may conclude that Cavendish’s data do not
provide evidence against the hypothesis that they are realizations of i.i.d. random
variables. At this point, it is worth mentioning that the sample autocorrelation
function of the data in Table 3.6, with 4.88 replaced by 5.88, is only slightly



81Chapter | 3 Wald’s Method and Nikulin-Rao-Robson Test

FIGURE 3.12 The sample ACF for the data in Table 3.6.
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TABLE 3.7 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), and the corresponding

P-values, as functions of r. The observation 4.88 was retained in the data.

P -values

r χ
2
r−1

(0 .05) Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

4 7.815 0.585 0.521 0.900 0.771

5 9.488 2.807 1.760 0.591 0.415

6 11.070 4.796 2.460 0.441 0.292

7 12.592 2.239 1.804 0.896 0.406

8 14.067 1.875 0.321 0.966 0.852

different from that of Figure 3.12. The corresponding P-value of the runs test in
this case is 0.132 which also does not contradict the null hypothesis that those
data are realizations of i.i.d. random variables.

In Table 3.7, the values of the NRR test Y 12
n(θ̂n) and the test S2

n (θ̂n), and
the P-values of these tests, as functions of the number of equiprobable intervals
used, are given. Here, θ̂n stands for the MLE of θ = (θ1,θ2)

T , where θ1 = μ

and θ2 = σ 2 of the normal distribution. The values of statistics presented in
bold mean that the null hypothesis is not rejected at level 0.05.

Taking into account that for the test S2
n (θ̂n), the number of degrees of free-

dom is 2, and χ2
2 (0.05) = 5.991, we observe that the test does not reject the



82 Chi-Squared Goodness of Fit Tests with Applications�

�

�

�

TABLE 3.8 Simulated power values of Y 1
2
n (θ̂n) and S

2
n (θ̂n) for the logistic

alternative, as functions of r.

Power

r Y 12
n (θ̂n) S2

n (θ̂n)

4 0.0903 0.0884

5 0.0966 0.0930

6 0.1041 0.1056

7 0.0966 0.1053

8 0.0935 0.1107

hypothesis of the normal distribution for Cavendish’s determinations of the
density of earth. Incidentally, using the MDG test with r = 7 intervals, Moore
(1984) obtained the same result. It is now of interest to compare the power
of Y 12

n(θ̂n),S2
n (θ̂n), and χ2

M DG tests for the logistic alternative which is quite
close to the normal null hypothesis. With n = 29,μ̂ = 5.448,σ̂ = 0.2171 (see
also Stigler, 1977), and the simulated critical value of χ2

M DG test for α = 0.05
which is 10.038 as found in Table 2 of Dahiya and Gurland (1972a), the power
is determined to be P(χ2

M DG > 10.038) = 0.059. This is only slightly higher
than the nominal level of the test. Based on N = 10,000 simulations, the powers
of NRR and S2

n (θ̂n) tests were determined under the same conditions and these
values are presented in Table 3.8.

From Table 3.8, we see that the power of the NRR and S2
n (θ̂n) tests, when

the number of equiprobable cells r = 7, are higher than that of the χ2
M DG

test. Moreover, the power of the S2
n (θ̂n) test is higher than that of the NRR

test for r = 6,7,8. It is worth mentioning here that the DN test possesses
no power at all in this case. So, the most powerful S2

n (θ̂) test for the logistic
alternative confirms Moore’s (1984) conclusion that the normal distribution fits
Cavendish’s data very well.

From the viewpoint of robustness of modified chi-squared tests, it is of
interest to calculate Y 12

n(θ̂n) and S2
n (θ̂n) statistics when 4.88 is replaced by

5.88. These results are presented in Table 3.9.
From Table 3.9, we see that if we replace the value 4.88 by 5.88, the result

is obtained to be the same, and these data do not contradict normality either.
From the results in Tables 3.7 and 3.9, it also follows that the NRR and S2

n (θ̂n)

tests are robust to the presence of an “outlier.”

3.9.2 Millikan’s measurements

Millikan obtained 58 values for the charge of the electron, and these are
presented in Table 3.10. They are reproduced from the book of Linnik (1958).
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TABLE 3.9 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), and the corresponding

P-values, as functions of r. The observation 5.88 is used in place of 4.88.

P -values

r χ
2
r−1

(0 .05) Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

4 7.815 1.831 1.827 0.608 0.401

5 9.488 1.867 1.190 0.760 0.551

6 11.070 2.399 0.172 0.792 0.918

7 12.592 3.229 0.172 0.780 0.918

8 14.067 6.540 1.138 0.478 0.566

�

�

�

�

TABLE 3.10 Millikan’s values of the charge of the electron.

4.781 4.764 4.777 4.809 4.761 4.769

4.795 4.776 4.765 4.790 4.792 4.806

4.769 4.771 4.785 4.779 4.758 4.779

4.792 4.789 4.805 4.788 4.764 4.785

4.779 4.772 4.768 4.772 4.810 4.790

4.775 4.789 4.801 4.791 4.799 4.777

4.772 4.764 4.785 4.788 4.799 4.749

4.791 4.774 4.783 4.783 4.797 4.781

4.782 4.778 4.808 4.740 4.790

4.767 4.791 4.771 4.775 4.747

The sample autocorrelation function for the data in Table 3.10 is displayed in
Figure 3.13. The non parametric runs test for these data gives a P-value of
0.784, from which we may conclude that Millikan’s data do not contradict the
hypothesis that they are realizations of i.i.d. random variables. In Table 3.11,
the values of the NRR test Y 12

n(θ̂n) and the test S2
n (θ̂n), and the P-values of

these tests, as functions of the number of equiprobable random intervals used,
are presented. Here, θ̂n denotes the MLE of θ = (θ1,θ2)

T , where θ1 = μ and
θ2 = σ 2 of the normal distribution. For Millikan’s data in Table 3.10, we find
θ̂1 = 4.7808 and θ̂2 = σ̂ 2 = 0.00023.

Taking into account that, for the test S2
n (θ̂n), the number of degrees of

freedom is 2, and χ2
2 (0.05) = 5.991, we observe that the test does not reject

the hypothesis of the normal distribution for Millikan’s determinations of the
charge of the electron.
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FIGURE 3.13 The sample ACF for the data in Table 3.10.
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TABLE 3.11 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), and the corresponding

P-values, as functions of r.

P -values

r χ
2
r−1

(0.05 ) Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n(θ̂n)

4 7.815 2.100 1.757 0.552 0.415

8 14.067 6.199 3.202 0.517 0.202

10 16.919 6.448 1.791 0.694 0.408

15 23.685 13.959 3.775 0.453 0.151

�

�

�

�

TABLE 3.12 Simulated power of Y 1
2
n (θ̂n) and S

2
n (θ̂n) tests for the logistic

alternative, as functions of r.

Power

r Y 12
n (θ̂n) S2

n (θ̂n)

4 0.122 0.125

8 0.133 0.169

10 0.139 0.178

15 0.128 0.207
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TABLE 3.13 The values below +299000 are Michelson’s determinations of
the velocity of light in km/s.

850 960 880 890 890 740 940 880 810 840

900 960 880 810 780 1070 940 860 820 810

930 880 720 800 760 850 800 720 770 810

950 850 620 760 790 980 880 860 740 810

980 900 970 750 820 880 840 950 760 850

1000 830 880 910 870 980 790 910 920 870

930 810 850 890 810 650 880 870 860 740

760 880 840 880 810 810 830 840 720 940

1000 800 850 840 950 1000 790 840 850 800

960 760 840 850 810 960 800 840 780 870

Based on N = 10,000 simulations, the powers of NRR and S2
n (θ̂n) tests for the

logistic alternative were determined and these values are presented in Table 3.12.
From Table 3.12, we see that the maximum gain in power for the S2

n (θ̂n) test
compared to that of the NRR test for the logistic alternative is 0.207/0.128 =
1.617. This ratio is higher than the ratio 0.1107/0.0935 = 1.184 found from
Table 3.8. Evidently, the gain in power increases with an increase in the number
of measurements (see Figure 3.1).

3.9.3 Michelson’s measurements

Michelson’s data of 100 determinations of the velocity of light (see Stigler,
1977, Table 6) are reproduced here in Table 3.13.

The sample autocorrelation function for the data in Table 3.13 is displayed
in Figure 3.14. This sample ACF shows a statistically significant positive

FIGURE 3.14 The sample ACF for the data in Table 3.13.
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TABLE 3.14 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), and the corresponding

P-values, as functions of r, for Michelson’s data in Table 3.13.

P -values

r χ
2
r−1

(0 .05) Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

7 12.591 10.325 3.054 0.112 0.217

8 14.067 12.990 0.503 0.072 0.778

10 16.919 20.171 0.180 0.017 0.914

15 23.685 17.852 0.901 0.214 0.637

20 30.143 46.133 2.626 0.001 0.269

25 36.415 49.005 1.147 0.002 0.563

correlation of lag 1 and not a statistically significant but systematic positive
correlation for other lags. The fact of “positive dependence among the
observations” was mentioned earlier by Moore (1984). From this and the
fact that the P-value of the runs test is close to zero, we may conclude that
Michelson’s measurements cannot be considered as realizations of i.i.d. random
variables. If, however, we proceed to apply the NRR test Y 12

n(θ̂n) and the
test S2

n (θ̂n) for these data, we obtain the results as presented in Table 3.14.
From Table 3.14, we observe that the NRR test rejects the null hypothesis for
r = 10,20,25. Also, the more powerful S2

n (θ̂n) test does not reject it for all
values of equiprobable random intervals r considered.

Based on N = 10,000 simulations, the power of NRR and S2
n (θ̂n) tests for

the logistic alternative for Michelson’s data (with μ̂ = 852.4 and σ̂ = 78.6145)
were determined and these results are presented in Table 3.15.�

�

�

�

TABLE 3.15 Simulated power of Y 1
2
n (θ̂n) and S

2
n (θ̂n) for the logistic

alternative, as functions of the number of equiprobable random cells r,
for Michelson’s data in Table 3.13.

Power

r Y 12
n (θ̂n) S2

n (θ̂n)

7 0.178 0.231

8 0.174 0.233

10 0.177 0.253

15 0.173 0.269

20 0.176 0.288

25 0.173 0.374
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From Table 3.15, we observe that for the logistic alternative the power of
S2

n (θ̂n) is 1.64 times more than that of the NRR test if r = 20, and is 2.16 times
more if r = 25. Using the MDG test χ2

M DG with r = 7 intervals, we obtain
χ2

M DG = 7.52 (see also Moore, 1984) which does not reject the hypothesis
of normality at level α = 0.05. Based on N = 10,000 simulations and the
critical value of 10.03 of the χ2

M DG test for α = 0.05 level, we obtain the power
P(χ2

M DG > 10.03) = 0.108 which 2.14 times less than the power of 0.231 of

the S2
n (θ̂n) test; see Table 3.15.

Moore (1982) commented that “for testing of fit to a special normal law, it
is shown that when observations come from a quite general class of Gaussian
stationary processes, positive correlation among the observations is confounded
with lack of normality.” Gleser and Moore (1983) further mentioned that
“confounding of positive dependence with lack of fit is a general phenomenon
in use of omnibus tests of fit.” This is especially so with the modified chi-
squared tests of the form V T (θ̂n)Wn(θ̂n)V (θ̂n) where Wn(θ̂n) converges to
Wn(θ0) in probability. Evidently, the S2

n (θ̂n) test belongs to this class, but
it does not confound the positive dependence with lack of fit with the null
hypothesis formulated under an assumption that observations are realizations
of i.i.d. random variables. This contradiction can possibly be explained by the
fact that Gleser and Moore (1983) did not take into account the power of the
tests used.

3.9.4 Newcomb’s measurements

Newcomb made a series of measurements on the passage of time for light to
pass over a distance of 3721 meters and back, from Fort Myer on the west bank
of the Potomac to a fixed mirror at the base of the Washington monument. These
data are presented in Table 3.16. The sample autocorrelation function for the�

�

�

�

TABLE 3.16 Newcomb’s measurements on the passage time for light, taken
from Stigler (1977, Table 5).

28 29 24 37 36 26 29

26 22 20 25 23 32 27

33 24 36 28 27 32 28

24 21 32 26 27 24 29

34 25 36 30 28 39 16

−44 30 28 32 27 28 23

27 23 25 36 31 24

16 29 21 26 27 25

40 31 28 30 26 32

−2 19 29 22 33 25
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FIGURE 3.15 The sample ACF for the data in Table 3.16.

data in Table 3.16 is displayed in Figure 3.15, which does not show significant
correlation among Newcomb’s measurements. Since the P-value of the runs
test is 0.078 in this case, we may conclude that, at level 0.05, these data do not
contradict the hypothesis that they are realizations of i.i.d. random variables.
The MDG test, with r = 11 intervals and all 66 observations in Table 3.16,
yields χ2

M DG = 43.333 that rejects the hypothesis of normality; refer to Table
1 of Moore (1984). The same result is obtained by the usage of the NRR and
S2

n (θ̂n) tests as well. Moore (1984) noted that there is “one egregious outlier
(−44), which Newcomb himself eliminated.” After the exclusion of that outlier,
and with r = 7 and n = 65, we obtain the value of χ2

M DG = 7.908 using which
we do not reject the hypothesis of normality. Due to the low power of the
χ2

M DG , we may also apply the NRR and S2
n (θ̂n) tests, with r = 7,8,10,12,15

equiprobable random cells and n = 65. The results so obtained are presented
in Table 3.17.

�

�

�

�

TABLE 3.17 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), as functions of r, for 65

measurements from Newcomb’s data in Table 3.16.

r χ
2
r−1

(0 .05 ) Y 12
n (θ̂n) S2

n (θ̂n)

7 12.591 16.079 11.694

8 14.067 10.855 7.063

10 16.919 14.323 8.345

12 19.675 27.962 11.119

15 23.685 22.942 19.826
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�

�

�

TABLE 3.18 Values of Y 1
2
n (θ̂n) and S

2
n (θ̂n), as functions of r, for 64

measurements from Newcomb’s data in Table 3.16.

r χ
2
r−1

(0 .05 ) Y 12
n (θ̂n) S2

n (θ̂n)

7 12.591 3.228 1.587

8 14.067 6.056 1.144

10 16.919 12.989 0.119

12 19.675 6.414 2.294

15 23.685 16.099 1.032

From Table 3.17, we see that the NRR test does not reject the null hypothesis
for r = 8,10,15 while it rejects for r = 7,12. Also, the S2

n (θ̂n) tests rejects
H0 for all grouping intervals considered. For this reason, we may consider
excluding one more “outlier,” from the data, viz. −2. The results obtained from
the remaining 64 observations are presented in Table 3.18.

From Table 3.18, we observe that the normal distribution fits the data of
these 64 measurements obtained by removing the two smallest outliers from
Table 3.16.

3.10 TESTS BASED ON DATA ON STOCK RETURNS
OF TWO KAZAKHSTANI COMPANIES

Suppose Pt is the price of a security at time t. Then, Rt = ln (Pt/Pt−1) is
called the return for period t. It is usually assumed that Rt ,t = 1,2, · · ·, are
independent normal random variables. Though this model has been criticized,
“much financial theory has continued to employ the simpler normal model”; see
Moore and Stubblebine (1981) and the references therein. A popular opinion is
that weekly and monthly returns follow normality very well, but this may not
be true for daily returns.

We shall consider here daily and weekly returns for two Kazakhstani
companies: Kazkommerts Bank and Kazakhmys (data have been taken from
the site: http://finance.yahoo.com, secured on 18.02.2010). Kazkommerts bank
is one of the largest private banks in CIS. Kazakhmys is an international
natural resources company. It processes, refines, and produces metals such as
copper, zinc, gold, and silver. Kazakhmys is also the largest power provider in
Kazakhstan. From Figure 3.16, we observe two evidently different patterns—
one before the financial crisis started in August 2008 (observation 439 on the
graph) and another during the crisis from August 2008 till February 2010. The
behavior of daily returns of Kazakhmys is observed to have the same pattern.
We observe more or less stable volatility of returns before the crisis. Then, at the

http://finance.yahoo.com
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Kazkom Daily
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FIGURE 3.16 Daily returns of Kazkommerts bank for the period December 2006–
February 2010.

Kazkom Weekly
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FIGURE 3.17 Weekly returns of Kazkommerts bank for the period December 2006–
February 2010.

first stage of the crisis, it has increased much and then has gradually decreased.
The same picture is seen for weekly returns in Figure 3.17. For this reason, we
shall analyze these data separately for these two periods.

3.10.1 Analysis of daily returns

To be able to use the test statistics discussed in the preceding sections, we have
to ensure that the data can be considered as realizations of at least uncorrelated
random variables. The nonparametric runs test yielded the following P-values:
0.064 for daily returns of Kazkommerts bank before the crisis, and 0.206 during
the crisis. Therefore, at level α = 0.05, the hypothesis of randomness is not
rejected. The sample ACFs for those two time periods are shown in Figures 3.18
and 3.19, respectively.
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FIGURE 3.18 The sample ACF of Kazkommerts bank daily returns for the period
December 2006–August 2008.

Figures 3.18 and 3.19 do not show a significant correlation for almost all
lags. For the data from Kazakhmys company, the P-values are found to be 0.434
and 0.530, and consequently, the hypothesis of randomness is not rejected in
this case as well. A significant correlation of daily returns is not observed either.

An application of the NRR Y 12
n(θ̂n) and McCh S2

n (θ̂n) tests to 420
observations (from 15.12.2006 till 14.08.2008) of Kazkommerts bank daily
returns before the crisis yields nearly zero P-values, thus rejecting normality.
But, normality can also be rejected if the process is not stationary. To check for
this, we divided the data of 420 observations before crisis into four segments:
first 100 values, second 100, third 100, and last 120 values. The standard
deviations of daily returns for those segments are found to be 0.018, 0.030,
0.035, and 0.023, respectively. From these, we indeed see that, for Kazkommerts
bank’s daily returns before the crisis, the process is not stationary. A similar
partitioning was done for the remaining 382 observations (from 15.08.2008 till
18.02.2010) of Kazkommerts bank’s daily returns during the crisis, with the
last segment containing 82 values. In this case, the standard deviations of daily
returns for these segments are 0.103, 0.090, 0.032, and 0.024, respectively. Here
again, the process cannot be considered as being stationary.
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FIGURE 3.19 The sample ACF of Kazkommerts bank daily returns for the period August
2008–February 2010.

An application of the NRR Y 12
n(θ̂n) and McCh S2

n (θ̂n) tests for partitioned
data gives P-values as presented in Table 3.19. To make the results comparable,
we used in all cases r = 10 equiprobable random grouping intervals. From
Table 3.19, we observe that for two segments (first and third) the normality
of Kazkommerts bank’s daily returns before the crisis is not rejected at level
α = 0.05. The situation changes for the crisis period (see the last two columns
of Table 3.19). The NRR test rejects normality for all four segments, while the
McCh test rejects at level α = 0.05 for the first and fourth segments. In fact,�

�

�

�

TABLE 3.19 P-values of Y 1
2
n (θ̂n) and S

2
n (θ̂n) for Kazkom Daily data.

Before crisis During crisis

Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

First 100 0.058 0.309 0.000 0.000

Second 100 0.001 0.002 0.000 0.071

Third 100 0.504 0.228 0.000 0.019

Last 120/82 0.000 0.000 0.000 0.089
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�

�

�

TABLE 3.20 P-values of Y 1
2
n (θ̂n) and S

2
n (θ̂n) for Kazakhmys Daily data.

Before crisis During crisis

Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

First 100 0.128 0.852 0.121 0.070

Second 100 0.502 0.192 0.774 0.584

Third 100 0.009 0.403 0.570 0.701

Last 120/82 0.168 0.634 0.148 0.007

the McCh test rejects normality for all four segments at level α = 0.1. Thus,
we observe a clear violation of normality of Kazkommerts bank’s daily returns
during the crisis period.

An analogous analysis for Kazakhmys’ daily returns are given in Table 3.20.
From Table 3.20, we observe that normality of daily returns before and during
crisis for the Kazakhmys company is not rejected at level α = 0.05 in 14 cases

FIGURE 3.20 The sample ACF of Kazkommerts bank, weekly returns for the period
December 2006–August 2008.
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FIGURE 3.21 The sample ACF of Kazkommerts bank, weekly returns for the period
August 2008–February 2010.

out of 16. It is important to mention here that Kazakhmys company is much
more stable than Kazkommerts bank, since its average price per share is 91
times more than that of Kazkommerts bank.

3.10.2 Analysis of weekly returns

The nonparametric runs test in this case provided the following P-values: 0.120
for weekly returns of Kazkommerts bank before the crisis, and 0.909 for the
crisis period. So, at levelα = 0.05, the hypothesis of randomness is not rejected.
The sample ACFs for these two time periods are shown in Figures 3.20 and 3.21,
respectively, and they do not show a significant correlation.

For Kazakhmys company, the P-values are found to be 0.972 and 0.252,
and so, the hypothesis of randomness is not rejected. A significant correlation
of weekly returns is also not observed and we can, therefore, proceed to use the
goodness of fit tests discussed in the preceding sections.

The results so obtained are presented in Table 3.21. From Table 3.21, we
observe that under normal business conditions, the weekly stock returns follow
normality very well. However, during the period of financial crisis, both Y 12

n(θ̂n)
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�

�

�

TABLE 3.21 P-values of Y 1
2
n (θ̂n) and S

2
n (θ̂n) for Kazkom and Kazakhmys

weekly data.

Kazkom Kazakhmys

Y 12
n (θ̂n) S2

n (θ̂n) Y 12
n (θ̂n) S2

n (θ̂n)

Before crisis 0.846 0.901 0.197 0.507

During crisis 0.000 0.000 0.091 0.052

and S2
n (θ̂n) reject normality for Kazkommerts bank’s weekly returns at level

α = 0.05, but do not reject normality for Kazakhmys’ weekly returns. This
again confirms the higher stability of Kazakhmys company.

Remark 3.10. From the above analysis, it may also be noted that if normality

is actually present in the data, then the NRR test Y 12
n(θ̂n) rejects it more often

than the more powerful and more stable McCh test S2
n (θ̂n) (see Remark 3.3).
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Chapter 4

Wald’s Method and
Hsuan-Robson-Mirvaliev Test

4.1 WALD’S METHOD AND MOMENT-TYPE ESTIMATORS

Let X1, · · · ,Xn be i.i.d. random variables following a continuous family of
distributions with cdf

F(x; θ),x ∈ R1,θ = (θ1, · · · ,θs)
T ∈ � ⊂ Rs,

and f (x; θ) be the corresponding pdf.
Let a function g(x) = (g1(x), · · · ,gs(x))T be such that the system of s

equations
m(θ) = g,

where g = (g1, · · · ,gs)
T ,m(θ) = (m1(θ), · · · ,ms(θ))

T ,g j = 1
n

∑n
i=1

g j (Xi ) for j = 1, · · · ,s, and m j (θ) = ∫
g j (x) f (x,θ)dx is uniquely solved to

obtain θn = m−1(g). Then, θn is the method of moments estimator (MME) for
the parameter θ . It is customary to use the functions gi (x) = xi ,i = 1, · · · ,s,
even though it may be convenient to use some other functions in some situations;
see Balakrishnan and Cohen (1991), for example.

Let K be a s × s matrix with its elements as

Ki j (θ) =
∫

xi ∂ f (x,θ)

∂θ j
dx, i, j = 1, · · · ,s, (4.1)

and V be a s × s matrix with its elements as

Vi j (θ) = mi j (θ)− mi (θ)m j (θ), (4.2)

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00004-1
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where mi (θ) = Eθ (Xi ) and mi j (θ) = Eθ (Xi+ j ),i, j = 1, · · · ,s, are popula-
tion moments. Consider the partition of x-axis into r disjoint fixed or random
intervals � j , j = 1, . . . ,r . Let p j (θ) be the probability for the jth interval and
consider the r × s matrix C with its elements as

C jk(θ) = 1√
p j (θ)

⎛
⎜⎝∫
� j

xk f (x,θ)dx − p j (θ)mk(θ)

⎞
⎟⎠ ,

j = 1, . . . ,r , k = 1, · · · ,s. (4.3)

Hsuan and Robson (1976) showed that, for both fixed and random grouping
intervals, the limiting covariance matrix of the vector V(n)(θn) of standardized

frequencies with components v j (θn) = (N (n)
j − np j (θn))/

√
np j (θn),

j = 1, · · · ,r , is

� = I − qqT + BK−1V(K−1)T BT − C(K−1)T BT − BK−1CT , (4.4)

where q =
(√

p1(θ), · · · ,
√

pr (θ)
)T

and the elements of the matrix B are

as defined in (3.9) or (3.10) depending on whether fixed or random cells
are used. They showed that Wald’s statistic Q(θn) = V(n)T (θn)�

−
n V(n)(θn),

where �−
n is the generalized matrix inverse of the estimate of �, will follow

the chi-squared distribution with r − 1 degrees of freedom in limit. Hsuan and
Robson (1976) have given the test statistic Q(θn) explicitly for the exponential
family of distributions in the case of equiprobable grouping cells. Later, in
Section 4.3, we shall show that this result coincides with the NRR test. They
did not present the statistic Q(θn) explicitly in the general case.

Mirvaliev (2001) presented � in the following equivalent form

� = I − qqT − CV−1CT + (C − BK−1V)V−1(C − BK−1V)T , (4.5)

and then obtained the Moore-Penrose matrix inverse �+ as follows:

�+ = A − A(C − BK−1V)L−1(C − BK−1V)T A, (4.6)

where
A = I − qqT + C(V − CT C)−1CT , (4.7)

and
L = V + (C − BK−1V)T A(C − BK−1V). (4.8)

Direct matrix manipulations show that the matrix �+ satisfies the conditions
��+� = �,�+��+ = �+,(��+)T = ��+, and (�+�)T = �+�, and
is therefore the Moore-Penrose matrix inverse of matrix � in (4.5). By using
the invariance principle of Rao and Mitra (1971), Wald’s test statistic in this
case can be written as

Y 22
n(θn) = X2

n(θn)+ R2
n(θn)− Q2

n(θn), (4.9)
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where
R2

n(θn) = V(n)T (θn)C(V − CT C)−1CT V(n)(θn), (4.10)

and

Q2
n(θn) = V(n)T (θn)A(C−BK−1V)L−1(C−BK−1V)T AV(n)(θn); (4.11)

here, in all matrices involved, we replace θ by its MME θn . The quadratic form
in (4.9) is henceforth referred to as Hsuan-Robson-Mirvaliev (HRM) statistic
that follows the chi-squared distribution with r − 1 degrees of freedom in the
limit.

Using the formulas in (2.25)–(2.27), the HRM test in (4.9) can be presented
as

Y 22
n(θn) = U 2

n (θn)+ S12
n(θn), (4.12)

where U 2
n (θn) is the DN statistic and

S12
n(θn) = W 2

n (θn)+ R2
n(θn)− Q2

n(θn) (4.13)

is asymptotically independent of the U 2
n (θn) part of Y 22

n(θn) in (4.12). Just as in
the case of the NRR test, the statistic S12

n(θn), for fixed or random equiprobable
cells, as a rule possesses higher power than the HRM statistic (see also
Remark 3.3).

Singh (1987) suggested a modification of the NRR test valid for any√
n-consistent estimator including the MME (see the comments in the preceding

Chapter in this regard).

4.2 DECOMPOSITION OF HSUAN-ROBSON-MIRVALIEV TEST

Consider the limiting covariance matrix in (4.5) of the standardized frequencies.
If

�k = Ik − qkqT
k − CkV−1CT

k + (Ck − BkK−1V)V−1(Ck − BkK−1V)T ,

then

|�k | =
(

1 −
k∑

i=1

pi

)
|V − Vk ||Lk |/|V|2, (4.14)

and

�−1
k = Ak − Ak(Ck − BkK−1V)L−1

k (Ck − BkK−1V)T Ak, (4.15)

where

Ak = Mk + MkCk(V − Vk)
−1CT

k Mk,

Mk = Ik +
(

1 −
k∑

i=1

pi

)−1

qkqT
k ,

Lk = V + (Ck − BkK−1V)T Ak(Ck − BkK−1V),
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and

Vk = CT
k Ck +

(
1 −

k∑
i=1

pi

)−1

(CT
k qk)(CT

k qk)
T , k = 1, · · · ,r − 1.

Consider the matrix Rr−1 with its elements as

rii = √|�i−1|/|�i |, i = 1, · · · ,r − 1,

ri j = −rii (d∗
i(i−1))

T (�−1
i−1) j , j = 1, · · · ,i − 1, i �= j,i � 2,

where

(d∗
i(i−1))

T = −(√pi qT
i−1+ci V−1CT

i−1−(ci−bi K−1V)V−1(Ci−Bi K−1V)T ),

ci and bi the ith row of matrices C and B, and (�−1
i−1) j being the jth column

of �−1
i−1.

From Lemma 2.1 and the transformation δr−1(θ) = RV(θ), where
R = (Rr−1

...0), with the use of MME in place of θ in all the matrices, we
obtain the following result.

Theorem 4.1. Under suitable regularity conditions (Hsuan and Robson, 1976),
the expansion

Y 22
n(θn) = δ2

1(θn)+ · · · + δ2
r−1(θn)

of the HRM statistic holds and, in the limit, under H0, the statistics δ2
i (θn),

i = 1, · · · ,r − 1, are distributed independently as χ2
1 and the statistic Y 22

n(θn)

is distributed as χ2
r−1.

4.3 EQUIVALENCE OF NIKULIN-RAO-ROBSON
AND HSUAN-ROBSON-MIRVALIEV TESTS
FOR EXPONENTIAL FAMILY

Consider the exponential family of distributions with density

f (x; θ) = h(x) exp

⎧⎨
⎩

s∑
j=1

θ j x j + V (θ)

⎫⎬
⎭, x ∈ X ⊆ R1, (4.16)

X is open in R1,X = {x : f (x,θ) > 0}, and θ ∈ � ⊂ Rs . The family in (4.16)
is quite rich, and contains many important distributions such as the family of
Poisson distributions and the family of normal distributions. In this case, it is
known that, under H0, the statistic

Un =
(

n∑
i=1

Xi ,

n∑
k=1

X2
i , · · · ,

n∑
i=1

Xs
i

)T
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is minimal sufficient for the parameter θ ; see Voinov and Nikulin (1993), for
example.

Let us now assume that

(1) the support X does not depend on θ ;
(2) the s × s matrix with elements

Hi j = − ∂2

∂θi∂θ j
V (θ), i, j = 1, · · · ,s,

is positive definite on �;
(3) The population moments m j (θ) = Eθ (X

j
1), j = 1, · · · ,s, all exist.

Differentiating the evident equality
∫

x∈X f (x,θ)dx = 1 with respect to θ j ,
we obtain

∫
x∈X

∂ f (x,θ)

∂θ j
dx =

∫
x∈X

h(x) exp

⎧⎨
⎩

s∑
j=1

θ j x j + V (θ)

⎫⎬
⎭

(
x j + ∂V (θ)

∂θ j

)
dx

= m j (θ)+ ∂V (θ)

∂θ j
= 0.

From this, it follows that the population moments of the distribution in
(4.16) are

m j (θ) = −∂V (θ)

∂θ j
, j = 1, · · · ,s. (4.17)

The statistic Tn = Un/n is the best unbiased estimator for m(θ) = (m1(θ),

· · · ,ms(θ))
T , i.e. Eθ (Tn) = m(θ). It is possible to find the method of moments

estimator θ̄n for θ in a unique way from the equation Tn = m(θ). This estimator
is expressed in terms of the sufficient statistic Un as θ̄n = θ̄n(Un).

On the other hand (see Theorem 5.1.2 of Zacks, 1971), Conditions (1)–(3)
provide the existence of the maximum likelihood estimator θ̂n = θ̂n(Un)which
is the root of the same equation Tn = m(θ), and so for the exponential family in
(4.16), the method of maximum likelihood and the method of moments provide
the same estimator for θ , viz., θ̄n ≡ θ̂n .

Theorem 4.2 (Voinov and Pya, 2004). Assume that Conditions (1)–(3) stated
above hold. Then, for the exponential family of distributions in (4.16), the NRR
Y 12

n(θ̂n) and the HRM Y 22
n(θn) statistics are identical.
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Proof. For the model in (4.16), the elements of the r × s matrix B are

B jk = 1√
p j (θ)

∫
� j

∂ f (x,θ)

∂θk
dx = 1√

p j (θ)

∫
� j

f (x,θ)

(
xk + ∂V (θ)

∂θk

)
dx

= 1√
p j (θ)

⎛
⎜⎝∫
� j

xk f (x,θ)dx − p j (θ)mk(θ)

⎞
⎟⎠ ,

j = 1, · · · ,r , k = 1, · · · ,s.
Comparing this with the elements of the matrix C in (4.3), we see that the
matrices B and C coincide for the exponential family in (4.16).

Consider the elements of matrices K in (4.1) and V in (4.2). For the model
in (4.16), we have

Ki j (θ)=
∫

x∈X
xi ∂ f (x,θ)

∂θ j
dx =

∫
x∈X

xi+ j f (x,θ)dx +
∫

x∈X
xi f (x,θ)

∂V (θ)

∂θ j
dx

= mi j (θ)− mi (θ)m j (θ) = Vi j (θ), i, j = 1, · · · ,s.
Since B equals C and K equals V, we readily have

C − BK−1V = C − B = 0.

From this identity and Eq. (4.11), it follows that Q2(θ) = 0.
Since

∂ ln f (x,θ)

∂θi
= ∂

∂θi

[
ln (h(x))+

s∑
i=1

θi x i + V (θ)

]
= xi+∂V (θ)

∂θi
= xi−mi (θ),

it is easy to observe that the Fisher information matrix

J = Eθ

[(
∂ ln f (x,θ)

∂θ1
, · · · , ∂ ln f (x,θ)

∂θs

)

×
(
∂ ln f (x,θ)

∂θ1
, · · · , ∂ ln f (x,θ)

∂θs

)T
]

= V.

From the above identity and (4.10), it readily follows that

C(V − CT C)−1CT = B(J − BT B)−1BT ,

R2
n(θ) = P2

n (θ),

where P2
n (θ) is as defined in (3.8). Finally, since θ̂n equals θn for the exponential

family in (4.16), we have Y 12
n(θ̂n) ≡ Y 22

n(θn).
Hsuan and Robson (1976) derived explicitly their test statistic for the family

in (4.16), but they did not mention that in this case MMEs coincide with MLEs
and, consequently, their test coincides with the already known NRR test.
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4.4 COMPARISONS OF SOME MODIFIED CHI-SQUARED TESTS

In this section, we present some simulated results of powers of the modified
chi-squared tests (see Voinov et al., 2009) introduced in the preceding sections.
It is well known that if the random cells converge to a certain limit in probability,
then they will not change the limiting distributions of chi-squared type statistics
(Chibisov, 1971 and Moore and Spruill, 1975). In the empirical study here, we
observed no difference between the simulated results for both random and fixed
cells within statistical errors of simulation. Under H0, the simulated levels
of tests considered, defined with the use of theoretical critical value of level
α = 0.05 of a corresponding chi-squared distribution, always remained within
the 95% confidence interval [0.046, 0.054] for N = 10,000 runs. For this reason,
we determined the simulated power of tests by using the theoretical critical
values. For the nonparametric Anderson and Darling (1954) test, we simulated
the power by using simulated critical values at level α = 0.05, since analytical
expressions of limiting distributions of this test are unavailable.

4.4.1 Maximum likelihood estimates

Many results are known for testing composite null hypothesis about normality
using chi-squared type tests; see, for example, Dahiya and Gurland (1973),
McCulloch (1985), and Lemeshko and Chimitova (2003), as discussed earlier
in Chapter 3. Figure 4.1 provides a graphical plot of the power of these tests. The
dramatic increase in the power of S2

n (θ̂n) compared to the NRR Y 12
n(θ̂n) test

was first mentioned by McCulloch (1985). This means that the statistic S2
n (θ̂n)

in (3.24) recovers and uses the largest part of the Fisher sample information
lost due to grouping by equiprobable random or fixed intervals. Note that the
DN U 2

n (θ̂n) test and the Pearson-Fisher test in (2.19), which use a very small
part of the sample information, possess almost no power for any number of
equiprobable cells. The power of the X R2 test of Dahiya and Gurland (1972a),
Dahiya and Gurland (1973) is maximal for the smallest number of cells r, but
is still less than that of the NRR Y 12

n(θ̂n) test, which in turn is less than that
of S2

n (θ̂n) for any r. If r > 40, the expected cell frequencies become small and
limiting distributions of chi-squared type tests may differ from those of χ2, and
for this reason we restricted r to the range of 4–40.

Analogous behavior of powers for all the tests is also observed for some
other symmetrical alternatives such as the triangular, uniform, and double-
exponential (Laplace); see, for example, Figure 4.2 for the triangular alternative.

It seems that for both heavy-tailed and short-tailed symmetrical alternatives,
in the case of equiprobable cells, the statistic S2

n (θ̂n) is the superior one for the
normal null.

It has to be noted that the relation between powers of different chi-squared
type statistics depend not only on the alternative, but also on the null hypothesis.
Consider, for example, the null hypothesis as the two-parameter exponential
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FIGURE 4.1 Estimated powers as functions of the number of equiprobable cells r
when testing H0: Normal against the logistic alternative for NRR (Y 1ˆ2),DN(U ˆ2),
S2

n (θ̂n)(Y 1ˆ2−U ˆ2), Dahiya and Gurland (X Rˆ2), Pearson-Fisher (PF), and Anderson–
Darling (Aˆ2) tests, based on the number of runs N = 10,000, sample size n = 100,
and level α = 0.05.

FIGURE 4.2 Estimated powers as functions of the number of equiprobable cells r
when testing H0: Normal against the triangular alternative for NRR (Y 1ˆ2),DN(U ˆ2),
S2

n (θ̂n)(Y 1ˆ2−U ˆ2), Dahiya and Gurland (X Rˆ2), Pearson-Fisher (PF), and Anderson–
Darling (Aˆ2) tests, based on the number of runs N = 10,000, sample size n = 100,
and level α = 0.05.

distribution with pdf f (x,μ,θ) = 1
θ

e−(x−μ)/θ ,x � μ. The MLEs θ̂n and μ̂n , of
the parameters θ and μ, in this case are X and X(1), 1

n

∑n
i=2 (X(i) − X(1)),

respectively. The simulated power of the NRR test for the semi-normal
alternative with density

f (x,μ,θ) =
√

2√
πθ

exp

{
− (x − μ)2

2θ2

}
, x � μ, θ > 0, μ ∈ R1, (4.18)
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FIGURE 4.3 Estimated powers as functions of the number of equiprobable cells r
when testing H0: Exp against semi-normal alternative for NRR (Y 1ˆ2),DN(U ˆ2),
S2

n (θ̂n)(Y 1ˆ2 − U ˆ2), Pearson-Fisher (PF), and Anderson–Darling (Aˆ2) tests, based
on the number of runs N = 10,000, sample size n = 200, and level α = 0.05.

is presented in Figure 4.3. We see from Figure 4.3 that in this case both
the NRR test and S2

n (θ̂n) test possess the highest power for small number
of equiprobable random cells. Analogous behavior of powers for these tests
has also been observed for the triangular alternative with pdf f (x,μ,θ) =
2(θ − x)/(θ − μ)2,μ � x � θ,θ > μ,μ ∈ R1, and uniform alternative
with pdf f (x,μ,θ) = 1/(

√
12θ),μ � x � μ + √

12θ,θ > 0,μ ∈ R1. From
Figure 4.3, we observe that the DN and PF tests use much larger part of the
Fisher sample information compared to the normal null hypothesis, and that
their power are comparable with that of the NRR test when r � 15. We also see
that the S2

n (θ̂n) test possesses less power than the Y 12
n(θ̂n) test for any r > 3.

4.4.2 Moment-type estimators

In some cases like the logistic family of distributions, the computation of the
MLEs is not simple, and in these cases the implementation of the NRR test
becomes difficult; see Aguirre and Nikulin (1994a,b). In such cases, it may
then be convenient to use MMEs instead though they are not as efficient as
the MLEs. To illustrate the applicability of the HRM test Y 22

n(θn) (see Eqs.
(4.9)–(4.11)) based on the MMEs, consider the logistic distribution as the null
hypothesis. Since the regularity conditions of Hsuan and Robson (1976) are
satisfied for the logistic distribution, the statistic in (4.9) can be used for testing
the validity of this null hypothesis. The behavior of the power of different chi-
squared type statistics in this case is similar to that for the normal null hypothesis
(see Figure 4.4). The most powerful test is the statistic S12

n(θ) in (4.13) that
recovers and uses a large part of the Fisher information lost while grouping the
data by equiprobable intervals.
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FIGURE 4.4 Estimated powers as functions of the number of equiprobable cells r
when testing H0: Logistic against normal alternative for HRM (Y 2ˆ2), DN (U ˆ2),
S12

n(θn)(Y 2ˆ2 − U ˆ2), Dahiya and Gurland (X Rˆ2), Pearson-Fisher (P-F), and
Anderson–Darling (Aˆ2) tests, based on the number of runs N = 10,000, sample size
n = 100, and level α = 0.05.

Fisher (1952b) (see also Dzhaparidze, 1983 and Paardekooper et al., 1989)
proposed the following iterative procedure of obtaining an asymptotically
efficient estimator based on any

√
n-consistent estimator θ̃n . This approach

describes another way of implementing the NRR test: find θ̃n first, improve it
by using the idea of Fisher, and then use it in the NRR statistic. Fisher’s iterative
formula is

θ̃
i+1
n = θ̃

i
n + 1

n

(
J−1(θ)

)
θ̃

i
n

(
∂Ln

∂θ

)
θ̃

i
n

, i = 0,1, · · · , (4.19)

where Ln = ∑n
i=1 log f (Xi ,θ) and

(
∂Ln/∂θ

) = (
∂Ln/∂θ1, · · · ,∂Ln/∂θs

)T .

Then, Fisher showed that, for any starting value of θ̃
0
n , the result of the very first

iteration θ̃
1
n from (4.19) is an estimator as efficient as the MLE θ̂n asymptotically.

Consider the logistic null hypothesis and the normal distribution as an
alternative. For this case, Figure 4.5 presents the simulated powers of the HRM

test Y 22
n(θn), S12

n(θn) = Y 22
n(θn)−U 2

n (θn) and Y 12
n(θ̂

1
), where θ̂

1
n is obtained

from (4.19) as the first iterate (see Voinov and Pya, 2004). From Figure 4.5, we
observe that for the same number of intervals r = 6 − 14, the implementation
of these improved estimates has resulted in an increase in power as compared
to the HRM test. We also note that the improvement is not as large as the one
produced by the use of S12

n(θn) test which recovers much more information lost
due to data grouping. Incidentally, this serves as a good example to demonstrate
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FIGURE 4.5 Simulated powers of Y 12
n(θ̂

1
n) = Y 2ˆ2,Y 22

n(θn) = Y 1ˆ 2 and S12
n(θn) =

Y 1ˆ2 − U ˆ2 tests based on n = 200 and N = 10,000.

that sometimes tests based on non-efficient MMEs may possess higher power
than tests based on efficient MLEs.

As in Section 3.2, in the case of equiprobable random or fixed intervals,
we see here the uselessness of DN and PF tests and the superiority of the
S12

n(θn) (see also Remark 3.3). It is also of interest to note that the power of
the nonparametric Anderson-Darling test A2 can be lower or higher than that
of S2

n (θ̂n) or S12
n(θn).

4.5 NEYMAN-PEARSON CLASSES

Since Mann and Wald (1942) recommended the use of equiprobable partitioning
of a sample space, it has been used by many researchers. However, some authors
disagree on this; see Ivchenko and Medvedev (1980) and Boero et al. (2004a,b).
The latter have remarked that “The choice of non-equiprobable classes can result
in substantial gains in power.” Using simulations, they have investigated power
of the classical Pearson’s test for non-equiprobable cells, but the partitions used
were rather artificial without proper motivation. Their comment that the power
of the test depends on the closeness of the intersection points of two density
functions to the class boundaries is, as we shall see below, of great importance.
To illustrate this, let us consider Neyman-Pearson classes (Greenwood and
Nikulin, 1996). These classes correspond to the minimal partitioning of a
sample space that increases or even maximizes Pearson’s measure of the
distance between the null and alternative hypotheses (see also Remark 3.3).
It is the case when the class boundaries coincide with points of intersection.
Let f (x) and g(x) be the densities of the null and the alternative hypotheses,
respectively. Then, Greenwood and Nikulin (1996) defined Neyman-Pearson
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classes as follows:

I1 = {x : f (x) < g(x)} and I2 = {x : f (x) � g(x)}. (4.20)

For several points of intersection, it is possible to define more than two classes
with the intersecting points being the class boundaries. We shall refer to such
cells as Neyman-Pearson type classes.

4.5.1 Maximum likelihood estimators

Suppose we are testing the standard normal null hypothesis H0 : X ∼ n(x,0,1)
with pdf

n(x,0,1) = 1√
2π

exp

(
− x2

2

)
, |x | < ∞, (4.21)

against the standard logistic alternative Ha : X ∼ l(x,0,1) with pdf

l(x,0,1) = π√
3

exp
(
− πx√

3

)
{

1 + exp
(
− πx√

3

)}2 , x ∈ R1. (4.22)

To construct Neyman-Pearson classes, we then have to solve the equation
n(x,0,1) = l(x,0,1). Microsoft Excel Solver gives the following four points of
intersection: ±0.682762,± 2.374686 (see Figure 4.6).

The following four Neyman-Pearson type classes can then be considered:

�1 = (− ∞,− 2.374686] ∪ [2.374686,+ ∞),

�2 = [−2.374686,− 0.682762],
�3 = [−0.682762,0.682762],
�4 = [0.682762,2.374686]. (4.23)

FIGURE 4.6 Probability density functions of n(x,0,1) and l(x,0,1).
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TABLE 4.1 Simulated power of Y 1
2
n (θ̂n) test for two Neyman-Pearson type

classes, and powers of NRR Y 1
2
n (θ̂n), DNU

2
n (θ̂n), S

2
n (θ̂n), and Pearson-

Fisher (PF) tests for four Neyman-Pearson type classes, and of Anderson-

Darling A2 test, based on N = 10,000 simulations, sample size n = 200 ,
and level α = 0.05.

Y 12
n(θ̂n)(r = 2 ) Y 12

n(θ̂n) U2
n (θ̂n) S2

n (θ̂n) PF A2

Logist. 0.393 0.290 0.374 0.088 0.374 0.394

Triang. 0.451 0.414 0.623 0.049 0.657 0.173

Laplace 0.977 0.948 0.969 0.242 0.972 0.982

One may also consider the following two Neyman-Pearson classes:

�1 = (− ∞,− 2.374686] ∪ [−0.682762,0.682762] ∪ [2.374686,+ ∞),

�2 = [−2.374686,− 0.682762] ∪ [0.682762,2.374686]. (4.24)

Let us now consider the triangular distribution with pdf

t(x,0,1) = 1√
6

− |x |
6
, − √

6 � x �
√

6,

and the double-exponential (Laplace) distribution with pdf

d(x,0,1) = 1√
2

exp (− √
2|x |), − ∞ < x < ∞.

The four Neyman-Pearson classes for these two distributions can also be readily
determined.

Considering the parameters of the considered distributions to be unknown,
powers of different tests for the logistic, triangular, and Laplace alternatives
were all estimated by simulation, and these results are presented in Table 4.1.

4.5.2 Moment-type estimators

Suppose we are testing the standard logistic null hypothesis H0 : X ∼ l(x,0,1)
against standard normal, triangular t(x,0,1), and Laplace d(x,0,1) alternatives
with the parameter θ being estimated by the MME θn . Considering the model
parameters to be unknown, powers of different tests for the normal, triangular
and Laplace alternatives were all estimated by simulation, and these results are
presented in Table 4.2.

Comparing the results displayed in Figures 4.1, 4.2, and 4.4 with those in
Tables 4.1 and 4.2, we see a dramatic difference between the two sets of results.
For equiprobable cells, the DN and PF statistics possess no or very low power
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�

�

�

TABLE 4.2 Simulated power of Y 2
2
n (θn) test for two Neyman-Pearson type

classes, and powers of HRM Y 2
2
n (θn), DNU

2
n (θn), S1

2
n (θ) and Pearson-

Fisher (PF) tests for four Neyman-Pearson type classes, and of Anderson-

Darling A2 test, based on N = 10,000 simulations, sample size n = 200 ,
and level α = 0.05.

Y 22
n(θ)(r = 2) Y 22

n(θn) U2
n (θn) S2

n (θ̂n) PF A2

Normal 0.334 0.204 0.357 0.034 0.320 0.231

Triang. 0.908 0.912 0.982 0.018 0.979 0.775

Laplace 0.725 0.582 0.656 0.159 0.649 0.659

and the tests S2
n (θ̂n) and S12

n(θn) are observed to be the most powerful ones.
For Neyman-Pearson type classes, we observe the reverse with DN and PF tests
becoming powerful and S2

n (θ̂n) and S12
n(θn) losing their power. The power of

DN and PF tests for four Neyman-Pearson type classes are comparable and in
addition are comparable with those of Y 12

n(θ̂n) and Y 22
n(θ) for two classes.

It is of importance to note that the power of Y 12
n(θ̂n) and Y 22

n(θ) for two NP
classes (see Tables 4.1 and 4.2) are essentially higher than the maximal power
for equiprobable cells (Figures 4.1 and 4.2). This means that equiprobable
partitioning of a sample space can be recommended if and only if alternative
hypothesis cannot be specified.

Remark 4.1. Comments made earlier in Remark 3.3 hold true for the tests

Y 12
n(θ̂n) and Y 22

n(θ) based on two Neyman-Pearson classes, since their
variances are the smallest possible. Naturally, the stability of these test statistics
is the highest.

4.6 MODIFIED CHI-SQUARED TEST FOR THREE-PARAMETER
WEIBULL DISTRIBUTION

The Weibull distribution plays an important role in the analysis of lifetime or
response data in reliability and survival studies. To extend applications of the
distribution to a wider class of failure rate models, several modifications of
the classical Weibull model have been proposed in the literature. Mudholkar
et al. (1995), Mudholkar et al. (1996) introduced the Exponentiated and
Generalized Weibull families, which include distributions with unimodal and
bathtub failure rates, and in addition possess a broad class of monotone
hazard rates. Furthermore, Bagdonavičius and Nikulin (2002) proposed another
generalization—the Power Generalized Weibull family as described earlier in
Section 3.7.
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In this section, we first consider parameter estimation and modifications
of chi-squared type tests that may be used when testing for the three-
parameter Weibull distribution (Voinov et al., 2008a). Then, we use Monte
Carlo simulation to study the power of these tests for equiprobable random cells
against two modifications of the Weibull family of distributions. An application
of the NP classes is then considered and finally some discussion of the results
and concluding comments are made.

4.6.1 Parameter estimation and modified chi-squared tests

Consider the three-parameter Weibull distribution with pdf

f (x; θ,μ,p)= p

θ

(
x − μ

θ

)p−1

exp

{
−

(
x − μ

θ

)p}
,

x > μ,θ, p > 0, μ ∈ R1. (4.25)

It is well known that there are numerical problems in determining the maximum
likelihood estimates (MLEs) of the distribution in (4.25) if all three parameters
are unknown. Sometimes, there is no local maximum for the likelihood function,
and in some situations the likelihood can be infinite (Lockhart and Stephens,
1994). If we wish to apply the NRR test, then we need the Fisher information
matrix J with its elements as follows:

J11 = 1

p2

[
(C − 1)2 + π2

6

]
, J12 = J21 = C − 1

θ
,

J13 = J31 = −1

θ
	

(
2 − 1

p

)[
ψ

(
1 − 1

p

)
+ 1

]
, J22 = p2

θ2 ,

J23 = J32 = p2

θ2 	

(
2 − 1

p

)
, J33 = (p − 1)2

θ2 	

(
1 − 2

p

)
,

where C = 0.577215665 is the Euler’s constant, andψ(x) is the psi or digamma
function. From the above expression, we see that J does not exist for infinitely
many values of the unknown shape parameter p (for p = 1/(2 + k) and
p = 2/(2+k),k = 0,1,2, · · ·). Because this problem associated with the MLEs,
the NRR test based on MLEs is not easy to apply, and one may instead use the
HRM test based on moment-type estimates (MMEs) θn = (θ1n,θ2n,θ3n)

T of
θ = (θ1,θ2,θ3)

T , where θ1 = μ,θ2 = θ,θ3 = p, which in this case can be
found by solving the following system of equations (see McEwen and Parresol,
1991):

i∑
l=0

(
i

l

)
θ i−lμl	

(
1 + i − l

p

)
= 1

n

n∑
k=1

Xi
k, i = 1,2,3,

by using, say, the Microsoft Excel Solver. The above estimators exist for any
p > 0 (see Figure 4.7). One may also refer to Balakrishnan and Cohen (1991)
for some other forms of moment-type estimators.
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FIGURE 4.7 Simulated average absolute errors of the MMEs μ̄,θ, p̄ against the true
parameter values, as a function of the sample size n.

The simulated average absolute errors of these MMEs are plotted in Figure
4.7 against the true parameter values, as a function of the sample size n. From
Figure 4.7, it can be seen that the MMEs are approximately

√
n-consistent. The

regularity conditions of Hsuan and Robson (1976) needed for implementing the
HRM test based on these MMEs are as follows:

(1) The MMEs are
√

n-consistent;
(2) Matrix K (see Section 9.2) is non-singular;

(3)
∫

x>μ gi (x) f (x; θ)dx,
∫

x>μ gi (x)
∂ f (x;θ)
∂θ j

dx,
∫

x>μ gi (x)
∂2 f (x;θ)
∂θ j ∂θk

dx ,

where gi (x) = xi , all exist and are finite and continuous in θ for i, j,k = 1,2,3,
in a neighborhood of the true value of the parameter θ . It can be verified that
the conditions in (1)–(3) are satisfied for the three-parameter Weibull family in
(4.25) if p > 2 (Voinov et al., 2008a). This allows us to use the HRM test in
(4.9), the DN test in (2.27), and the S12

n(θn) test in (4.13). Explicit expressions
for all the elements of matrices K,B,C, and V needed in the computation of
these statistics are presented in Section 9.2.

4.6.2 Power evaluation

To investigate the power of DNU 2
n (θn), HRM Y 22

n(θn), and S12
n(θn) tests for the

three-parameter Weibull null hypothesis against two useful reliability models
as alternatives, we conducted Monte Carlo simulations with different number of
equiprobable random cells. Figures 4.8 and 4.9 present these simulated power
values.
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FIGURE 4.8 Simulated powers, as functions of the number of equiprobable cells r,

of the tests Y 22
n(θn)(Y 2ˆ2),U2

n (θn)(U ˆ2), and S12
n(θn)(Y 2ˆ2 − U ˆ2) tests for the

Exponentiated Weibull alternative with cdf F(x) = [1−exp (1−(x/α)β)]γ ,x,α,β,γ >
0, based on N = 10,000 simulations, sample size n = 200, and level α = 0.05.

FIGURE 4.9 Simulated powers, as functions of the number of equiprobable cells r,

of the tests Y 22
n(θn)(Y 2ˆ2),U2

n (θn)(U ˆ2), and S12
n(θn)(Y 2ˆ2 − U ˆ2) tests for

the Power Generalized Weibull alternative with cdf F(x) = 1 − exp{1 − [1 +
(x/σ)ν ]1/γ },x,σ,ν,γ > 0, under N = 10,000 simulations, sample size n = 200,
and level α = 0.05.

From these two figures, we observe that the DN U 2
n (θn) test for equiprobable

random cells possesses no power for both Exponentiated and Power Generalized
Weibull alternatives. On the other hand, the S12

n(θn) test is the most powerful
test for both alternatives considered, especially with larger number of cells. The
same behavior between the powers of U 2

n (θn) and S12
n(θn) tests was observed
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when testing the logistic null hypothesis against the normal distribution
alternative (see Section 4.4). The case r > 40 was not considered since
the expected cell probabilities become small in this case and the limiting
distributions of the considered tests may not follow the chi-square distribution.

4.6.3 Neyman-Pearson classes

To maximize a measure of the distance between the null and alternative density
functions, one may use the Neyman-Pearson classes for the partitioning of a
sample space. Let f (x; θ) and g(x;ϕ) be densities of the null and the alternative
hypotheses, respectively. Given the parameters θ and ϕ, define two Neyman-
Pearson classes as follows: I1 = {x : f (x; θ) < g(x;ϕ)} and I2 = {x :
f (x; θ) � g(x;ϕ)}. Suppose the density functions intersect at three points,
say, x1,x2 and x3, then I1 = (0,x1] ∪ [x2,x3] and I2 = (x1,x2) ∪ (x3,+ ∞).

Then, the power of the HRM statistic Y 22
n(θn) was simulated for the three-

parameter Weibull family in (4.25) as the null hypothesis and for the two
alternatives mentioned for the case when the test was applied with equiprobable
cells for the same sample size n and level α = 0.05. The results so obtained
are presented in Table 4.3. The statistical errors shown in Table 4.3 are of one
simulated standard deviation.

4.6.4 Discussion

From Figures 4.8 and 4.9, we may conclude that if an alternative hypothesis
is not specified and we use equiprobable cells, then the DN U 2

n (θn) test is not
satisfactory and the more powerful S12

n(θn) test is recommended in this case.
On the other hand, if the alternative hypothesis is specified, then from Table 4.3,
we see that the HRM test Y 22

n(θn) for two Neyman-Pearson classes possesses
higher power and is therefore the one we would recommend.

Consider the numerical data of Sample 1 from Smith and Naylor, 1987 that
describe the strength of glass fibers of length 1.5 cm. The global maximum of
the likelihood function for the three-parameter continuous Weibull probability
distribution is +∞ and is achieved at μ = X(1). This creates problems in
obtaining the MLEs. To overcome this problem, Smith and Naylor (1987)
proposed to consider observations as being integers, and by adopting this
approach, they estimated the parameters of the hypothesized three-parameter
Weibull distribution as μ̂ = −1.6,θ̂ = 3.216, p̂ = 11.9, by the local maximum

�

�

�

�
TABLE 4.3 Power of the HRM test for two Neyman-Pearson classes.

W-PGW W-ExpW

α = 0.05 0.141 ± 0.025 0.294 ± 0.015
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FIGURE 4.10 The histogram of the data of McEwen and Parresol (1991) and the density
in (4.25) calculated with the MMEs ( f 1(x)) and the MLEs ( f 2(x)).

likelihood estimators. To test the null hypothesis, they then compared the
empirical distribution function (EDF) of the original data with the approximate
95% confidence limits formed from the 19 EDFs based on pseudorandom
samples. The MMEs in this case are quite different and are μ̄ = −4.4,θ̄ =
6.063, p̄ = 22.92, but the density function in (4.25) calculated for these two
sets of estimates do not differ much (see Figure 4.10).

The fit based on the MMEs (χ2
9 = 49.5) is slightly better than that based on

the MLEs (χ2
9 = 58.0). Having calculated the statistics Y 22

n(θn) and S12
n(θn)

with the number of equiprobable cells as r = 12, we obtained the P-values to
be 0.101 and 0.043, respectively. From this, it follows that the null hypothesis
of the three-parameter Weibull distribution is not rejected at level α = 0.05 by
Y 22

n(θn), but is rejected by the more powerful S12
n(θn) test.

4.6.5 Concluding remarks

From the results obtained, it follows that the shapes of the Three-parameter
Weibull, Power Generalized Weibull, and Exponentiated Weibull distributions
are quite close to each other even though their hazard rate functions could be
different. This suggests that it would be useful to develop some goodness of
fit tests which will directly compare the observed and hypothetical failure rate
functions (see Hjort, 1990).
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Chapter 5

Modifications Based
on UMVUEs

5.1 TESTS FOR POISSON, BINOMIAL, AND NEGATIVE
BINOMIAL DISTRIBUTIONS

Bol’shev and Mirvaliev (1978) were possibly the first to construct the modified
chi-squared tests based on Uniformly Minimum Variance Unbiased Estimators
(UMVUEs) of the unknown parameters for Poisson, binomial, and negative
binomial distributions. The probability mass functions of Poisson, binomial,
negative binomial, hypergeometric, and negative hypergeometric distributions
are as follows:

P(X = x,θ)= θ x

x ! exp (−θ), θ > 0,

P1(X = x,n,θ)=
(

n

x

)(
θ

n

)x (
1 − θ

n

)n−x

,

0 ≤ θ ≤ n, n = 1,2, . . . ,

P2(X = x,m,θ)=
(

m + x − 1

m − 1

)(
θ

m + θ

)x

×
(

1 − θ

m + θ

)m

,θ > 0, m > 0,
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P3(X = x,N ,M,n)=

(
n

x

)(
N − n

M − x

)
(

N

M

) ,

M = 0, . . . ,N , n = 1, . . . ,N , N = 1,2, . . . ,

P4(X = x,N ,M,m)=

(
m + x − 1

m − 1

)(
N − m − x

M − m

)
(

N

M

) ,

M = 0, . . . ,N , 0 < m � M, N = 1,2, . . .

Let X be a random variable with its probability mass function as

P(X = x)=wx = wx (a,n,m,θ)

= 1

2
a(a + 1)P1(X = x,n,θ)

+(1 − a2)P(X = x,θ)+ 1

2
a(a − 1)P2(X = x,m,θ), (5.1)

where a ∈ {−1,0,1},n ∈ {1,2, . . .}, and m > 0. The values of a,n,m are
assumed to be known, while θ is a nuisance parameter. If a = 0 or −1, then
θ > 0; otherwise, if a = 1, then 0 � θ � n. Note that if a = 0, then (5.1)
follows the Poisson distribution; if a = 1, it follows the binomial distribution;
if a = −1, it follows the negative binomial distribution; and if a = −1 and
m = 1, then it follows the geometric distribution.

Let X1, . . . ,Xt ,t � 2, be i.i.d. random variables from the distribution in
(5.1). In this case, the sum S = X1 + · · · + Xt is a complete sufficient
statistic for the nuisance parameter θ , and, for s ∈ {0,1, . . .},i ∈ {1, . . . ,t},
and x ∈ {0,1, . . . ,s}, we have

P(S = s)=ws(a,tn,tm,tθ),

P(Xi = x |S = s)= Wx (a,n,m,s,t)

= 1

2
a(a + 1)P3(X = x,tn,s,n)

+(1 − a2)P1(X = x,s,s/t)

+1

2
a(a − 1)P4(X = x,mt + s − 1,mt − 1,m). (5.2)

Since EP(Xi = x |S = s) = P(Xi = x), the distribution in (5.2) is the
UMVUE for (5.1) (see Voinov and Nikulin, 1993). In other words, Wx =
Wx (a,n,m,S,t),x = 0,1, . . . ,S, is the UMVUE of wx (see Eq. (5.1)).
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Let Ni j = 1 if Xi = i , and Ni j = 0 if Xi �= i for i = 0,1, . . . ,
j = 1,2, . . . ,t , and let

Ni = Ni1 + · · · + Nit , i = 0, . . . ,S. (5.3)

Then, the frequencies in (5.3) satisfy the following linear conditions:

N0 + N1 + · · · + NS = t and N1 + 2N2 + · · · + SNS = S.

Let I1,I2, . . . ,Ir be non-empty non-intersecting subsets of the set I =
{0,1, . . . ,S} such that

⋃
Ii = I . Let us assume that S ∈ Ir and r � 2.

Consider the vectors

N(0) = (N (0)
1 , . . . ,N (0)

r )T and W(c) = (W (c)
1 , . . . ,W (c)

r )T

with their components as

N (0)
j =

∑
i∈I j

Ni , W (c)
j =

∑
i∈I j

i cWi , j = 1, . . . ,r , c = 0,1.

Under this setup, Bol’shev and Mirvaliev (1978) established the following
result.

Theorem 5.1. If the sample size t increases unboundedly such that S � t ,
then conditional on S, the distribution of the vector Z = t−1/2(N(0) − tW(0))

is asymptotically normal with zero mean vector, E(Z|S) = 0, and covariance
matrix as E(ZZT |S) = B + o(1) (t → ∞), where

B = D(0) − W(0)W(0)T − 1

β

[
S

t
W(0) − W(1)

] [
S

t
W(0) − W(1)

]T

,

D(0) is a diagonal matrix with elements W (0)
1 , . . . ,W (0)

r on the main diagonal,

β = S

t
+
(

S

t

)2 [
−a(a + 1)

2n
+ a(a − 1)

2m

]
,

and the rank of B equals r − 1.

This theorem generalizes the earlier results of Sevast’yanov and Chistyakov
(1964) and Kolchin (1968) for the Poisson (a = 0) distribution, and the result
of Park (1973) for the geometric distribution (a = −1,m = 1).

Then, by using Wald’s method (see Chapter 3), Bol’shev and Mirvaliev
(1978) showed that the quadratic form

Y 2 =
r∑

j=1

(N (0)
j − tW (0)

j )2

tW (0)
j

+ 1

tγ

⎛
⎝ r∑

j=1

W (1)
j N (0)

j

W (0)
j

− S

⎞
⎠

2

, (5.4)
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where

γ = β +
(

S

t

)2

−
r∑

j=1

(W (1)
j )2

W (0)
j

,

will asymptotically (t → ∞,S � t) follow the chi-square distribution with
r − 1 degrees of freedom.

Remark 5.1. The limiting distributions of the vector Z and the statistic in (5.4)
will not change if Wi will be replaced by w̃i = wi (a,n,m,S/t).

Remark 5.2. The test statistic in (5.4) is useful when the number of grouping
cells r � 2 and an alternative hypothesis is not specified. Suppose we have to
test one of the following three hypotheses: a = −1,0,+1, against an alternative
of the same kind (e.g. a = 0 against a = −1). In this case, the power of the test
can be increased by using the Neyman-Pearson type classes (see Section 2.3).

Using Stirling’s formula, we can show that for the Poisson, binomial, and
negative binomial distributions, we have

2n ln
P(X = x,θ)

P1(X = x,n,θ)
∼ 2m ln

P2(X = x,m,θ)

P(X = x,θ)

∼ 2nm

n + m
ln

P2(X = x,m,θ)

P1(X = x,n,θ)
∼ (x − x1)(x − x2), n,m → ∞,

where

x1 = θ + 0.5 − √
θ + 0.25, x2 = θ + 0.5 + √

θ + 0.25. (5.5)

If x < x1 or x > x2, then

P1(X = x,n,θ) < P(X = x,θ) < P2(X = x,m,θ).

If x1 < x < x2, then

P2(X = x,m,θ) < P(X = x,θ) < P1(X = x,n,θ).

Replacing θ in (5.5) by S/t , we can define two NP type classes

I1 = {k1 + 1, . . . ,k2}, I2 = {0,1, . . . ,k1,k2 + 1,k2 + 2, . . .},
where k1 = [x1] and k2 = [x2]. Then, Bol’shev and Mirvaliev (1978) showed
in this case that the statistic

Y = N (0)
1 − tW (0)

1√
t

[
W (0)

1 (1 − W (0)
1 )− 1

β

(
S
t W (0)

1 − W (1)
1

)2
] , (5.6)
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under H0 when t → ∞ and S � T , will asymptotically follow the standard
normal distribution �( · ). Let us denote the null hypotheses a = −1,0,1 by
symbols b̄ (negative binomial), p (Poisson), and b (binomial), respectively, and
let 〈H0|H1〉 mean that we are testing H0 against H1. Using (5.6), in the cases
of 〈p|b̄〉,〈b|b̄〉,〈b|p〉, and 〈b|b̄ ∪ p〉, we have to reject H0 if Y < −�−1(1−α),
where α is the nominal level of the test. In the cases of 〈p|b〉,〈b̄|b〉,〈b̄|p〉, and
〈b̄|p ∪ b〉, the rejection region becomes Y > �−1(1 − α).

5.2 CHI-SQUARED TESTS FOR ONE-PARAMETER
EXPONENTIAL FAMILY

Consider a continuous random variable X belonging to the one-parameter
exponential distribution with density

f (x,θ) = g(x) exp{V1(θ)T (x)+ V2(θ)}, θ ∈ � ⊂ R1, x ∈ R1, (5.7)

where g(x) and T (x) are known functions, and V1(θ) and V2(θ) are
continuously differentiable functions of a parameter θ . If X1, . . . ,Xn are i.i.d.
from the family in (5.7), then the sum S = ∑n

i=1 T (Xi ) is a complete sufficient
statistic for the parameter θ .

Let us assume the following conditions:

(i) A random variable T (X) possesses finite population moments up to the
fourth order;

(ii) The random variable Z = (S − na)/(b
√

n), where a = E[T (X)] and
b = √

V ar [T (X)], possesses a bounded probability density function;
(iii) The support of the density in (5.7) does not depend on the parameter θ .

Under the conditions in (i)–(iii), the UMVUEs f̂ (x |S) and f̂ (x1,x2|S) of
the densities f (x,θ) and f (x1,x2,θ) are given by (see Voinov and Nikulin,
1993)

f̂ (x |S) = f (x,θ) fn−1(S − T (x),θ)

fn(S,θ)
(5.8)

and

f̂ (x1,x2|S) = f (x1,x2,θ) fn−2(S − T (x1)− T (x2),θ)

fn(S,θ)
, (5.9)

respectively, where fn(S,θ) is the density of S. Let I1,I2, . . . ,Ir be non-
intersecting intervals such that

⋃
I j = R1. Let N (n)

j denote the number of
elements of the sample X1, . . . ,Xn that fall into the interval I j , j = 1, . . . ,r ,
and

A j = a j − aP j

b
, (5.10)
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where P j = P(X ∈ I j ),a j = ∫
I j

T (x) f (x,θ)dx, j = 1, . . . ,r . It is well

known (see Voinov and Nikulin, 1993) that the UMVUEs p̂ j and p̂i j of P j and
Pi j are given by

p̂ j =
∫

x∈I j

f̂ (x |S)dx (5.11)

and

p̂i j =
∫

x1∈Ii

∫
x2∈I j

f̂ (x1,x2|S)dx1,dx2, i, j = 1, . . . ,r , (5.12)

respectively. Under this setting, Chichagov (2006) proved the following result.

Theorem 5.2. Under the regularity conditions in (i)–(iii), the random vector

Y(n) =
(

N (n)
1 − n p̂1√

n
, . . . ,

N (n)
r−1 − n p̂r−1√

n

)T

asymptotically will follow the multivariate normal distribution with zero mean
vector and a non-degenerate covariance matrix � = ||σi j ||, with its elements
as σi j = piδi j − pi p j − Ai A j ,i, j = 1, . . . ,r − 1. Moreover, the UMVUE σ̂i j

of σi j is
σ̂i j = p̂i (δi j − p̂ j )− (n − 1)( p̂i p̂ j − p̂i j ). (5.13)

Corollary 5.1. Let �̂n be the matrix with its elements as in (5.13). Then, the
quadratic form

Y 2
Ch = YT (n)�̂

−1
n Y(n) (5.14)

will asymptotically follow the chi-square distribution with r − 1 degrees of
freedom. The statistic in (5.14) can be written explicitly as (Chichagov, 2006)

Y 2
Ch =

r∑
j=1

(N (n)
j − n p̂ j )

2

n p̂ j
+
⎛
⎝1 −

r∑
j=1

Â2
j

p̂ j

⎞
⎠

−1⎛
⎝ r∑

j=1

N (n)
j Â j√
n p̂ j

⎞
⎠

2

. (5.15)

From (5.15), we see that for implementing this test, we need the MVUEs of
A j and p j , for j = 1, . . . ,r . Chichagov (2006) gave several examples of these
MVUEs in the case when the density function of T (X) is gamma distributed,
with known shape parameter ν and unknown scale parameter σ , of the form

fg(y,σ,ν) = yν−1

σν�(ν)
exp (−y/σ), y > 0. (5.16)

This assumption is satisfied for several known one-parameter continuous
distributions such as normal, inverse Gaussian, Weibull, and Pareto. Chichagov
(2006) proved the following general result.
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Theorem 5.3. Let the positive half-line [0,+∞) be partitioned into intervals
JT ( j) = [JT 1( j),JT 2( j)] such that {x ∈ R1 : T (x) ∈ JT ( j)} = J ( j), and
∪JT ( j) = [0,+ ∞), j = 1, . . . ,r . Then,

A j = 1√
ν
[JT 1( j) fg(JT 1( j),σ,ν)− JT 2( j) fg(JT 2( j),σ,ν)]

and its UMVUE is

Â j = fB
(
JT 1( j)/S,ν + 1,(n − 1)ν

)− fB
(
JT 2( j)/S,ν + 1,(n − 1)ν

)
n
√
ν

,

(5.17)
where

fB(x,ν1,ν1) = �(ν1 + ν2)

�(ν1)�(ν2)
xν1−1(1 − x)ν2−1, 0 < x < 1, ν1 > 0, ν2 > 0.

Similarly, the UMVUE of p j is

p̂ j =
∫

y∈JT ( j)

f̂g(y,σ,ν)dy, (5.18)

where

f̂g(y,σ,ν) = 1

S
fB(y/S,ν,(n − 1)ν).

Example 5.2.1. Assume that a random variable X follows the Pareto
distribution with density

f (x,θ) = θλθ

xθ+1 = θ

x
exp{θ( ln λ− ln x)}, x � λ, θ > 0.

It evidently belongs to the family in (5.7) with V1(θ) = −θ,V2(θ) − ln θ and
g(x) = 1/x .

Suppose the shape parameter λ is known, while the nuisance parameter θ is
unknown. Assume T (X) = ln X − ln λ and σ = 1/θ , then a = 1/θ = σ and
b2 = 1/θ2 = σ 2. For simplicity, let us define grouping intervals as

J ( j)= [λ exp (J j−1),λ exp (J j )),

J0 = 0 < J1 < J2 < · · · < Jr−1 < Jr = ∞, j = 0,1, . . . ,r .

In this case (Chichagov, 2006), we have

p j =
∫

J ( j)

θλθ

xθ+1 dx = exp

(
− J j−1

σ

)
− exp

(
− J j

σ

)
,

A j =
∫

J ( j)

( ln x/λ− 1/θ)

1/θ

θλθ

xθ+1 dx =
J j∫

J j−1

y − σ

σ 2 exp
(−y/σ

)
dy

= J j−1 fg(J j−1,σ,1)− J j fg(J j ,σ,1).
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Using Eqs. (5.17) and (5.18), and the sufficient statistic S1 = ∑n
i=1 ( ln Xi −

ln λ), the UMVUEs of p j and A j can be expressed as

p̂ j =
(

1 − J j−1

S1

)n−1

I (J j−1 < S1)−
(

1 − J j

S1

)n−1

I (J j < S1), (5.19)

Â j = 1

n

[
fB

(
J j−1

S1
,2,n − 1

)
− fB

(
J j

S1
,2,n − 1

)]

= (n − 1)

[
J j−1

S1

(
1 − J j−1

S1

)n−2

I (J j−1 < S1)

− J j

S1

(
1 − J j

S1

n−2
)

I (J j < S1)

]
, (5.20)

where I (A) is the indicator function of the event A. Upon substituting (5.19)
and (5.20) into (5.15), we obtain the needed test statistic.

An alternative test statistic for the Pareto null hypothesis was suggested by
Gulati and Shapiro (2008).

Remark 5.3. Under conditions (i)–(iii), the above result is valid for discrete
distributions as well.

Remark 5.4. Numerous chi-squared tests based on UMVUEs have been
proposed for Modified Power Series Distributions, Discrete Multivariate
Exponential Distributions, General Continuous Exponential Distributions, and
Natural Exponential Families with Power Variance Functions; for pertinent
details, one may refer to the book of Greenwood and Nikulin (1996).

5.3 REVISITING CLARKE’S DATA ON FLYING BOMBS

As an example of the spatial distribution of random points on a plane, consider
the data of hits of flying bombs in the southern part of London during World
War II. The entire territory was divided into t = 576 pieces of land with 1/4 km2

each. Frequencies of hits are then as presented in Table 5.1.
The total number of flying bombs was t = ∑

Nk = 576 and S = ∑
k Nk =

537. For the Poisson null hypothesis P(k) = θk exp ( − θ)/k!,k = 0,1, . . .,
Clarke (see Feller, 1964) used the standard Pearson’s test in (2.3) with the
parameter θ replaced by its MLE based on non-grouped data. He then showed
that this test does not reject the null hypothesis of the Poisson model. The only
error in this analysis is that, when using the MLEs based on non-grouped data,
the statistic in (2.3) does not follow in the limit the chi-squared probability
distribution (Chernoff and Lehmann, 1954; Bol’shev and Mirvaliev, 1978).
Formally, it is possible to use the Pearson-Fisher test in (2.19) with θ̂n being
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an estimator of the parameter θ based on grouped data, but as already pointed
out, this test possesses low power. Let us use the powerful test Y in (5.6) or,
equivalently Y 2, which follows chi-squared distribution with one degree of
freedom.

Consider two null hypotheses for describing these data: the Poisson
distribution P(k) = θk exp (−θ)/k!, k = 0,1, . . ., and the binomial distribution

P1(k) =
(

S

k

)(
θ

S

)x (
1 − θ

S

)S−k

, k = 0, . . . ,S.

Since S is a complete sufficient statistic, the UMVUE of θ will be θ̂ = S/t =
0.9323. From Eq. (5.2), the UMVUEs Wk of P(k) and W 1k of P1(k) will be

Wk =
(

S

k

)(
θ

S

)x (
1 − θ

S

)S−k

, k = 0, . . . ,S,

and

W 1k =

(
S

k

)(
St − S

S − k

)
(

St

S

) , k = 0, . . . ,S,

respectively, and the corresponding results are given in Table 5.1. Consider two
Neyman-Pearson type classes:
1 = {1,2}, where P1(k) is more than P(k), and

2 = {0} ∪ {3, . . .}, where P1(k) is less than P(k). Table 5.2 presents results
for these cases.

Since the P-values of the Y 2 test are large enough (0.566 and 0.548), we
see that both null hypotheses are not rejected and so both of them can be used
for describing the data. This is not surprising since the distributions P1(k) and
P(k) (see columns 3 and 4 of Table 5.1) are close to each other. In other words,

�

�

�

�

TABLE 5.1 The observed frequencies Nk , the MVUEs Wk of the
hypothesized Poisson probabilities, and the MVUEs W 1k of the
hypothesized binomial probabilities for the data on hits of flying bombs.

k Nk tP (k ) tP1(k ) Wk W 1k kWk kW 1k

0 229 226.74 226.56 0.393 0.393 0 0

1 211 211.39 211.59 0.367 0.368 0.367 0.368

2 93 98.54 98.62 0.171 0.171 0.342 0.343

3 35 30.62 30.59 0.053 0.053 0.159 0.159

4 7 7.14 7.10 0.012 0.012 0.049 0.049

>4 1 1.57 1.55 0.003 0.003 0.013 0.013
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�

�

�

TABLE 5.2 Values of N
(0 )
1

= N1 + N2 ,W
(0 )
1

= W1 + W2 , W
(1 )
1

=
W1 + 2 W2 , β = S/t for P (k ), and β = S/t − S/t2 for P1(k ), for the data

on hits of flying bombs.

Under H0

P (k ) P1(k )

N(0)
1 304 304

W (0)
1 0.5386 0.5390

tW (0)
1 310.205 310.480

W (1)
1 0.7091 0.7104

β 0.9323 0.9307

Y 2 0.3301 0.3607

P-value 0.566 0.548

the sample size in Clarke’s data is high enough that for a small parameter θ/S,
the binomial distribution P1(k) almost attains its limiting Poisson distribution
P(k). This is also in conformance with Clarke’s finding that the data on flying
bombs can be well described by the Poisson model.



Chapter 6

Vector-Valued Tests

6.1 INTRODUCTION

Different ways of improving goodness of fit tests have been discussed in the
literature. For obtaining more powerful and suitable tests, Cochran (1954)
proposed to use single degree of freedom, or groups of degrees from the total
chi-squared sum. This has been materialized for different classical and modified
chi-squared statistics, for which independent chi-squared components with one
degree of freedom in the limit have been developed; see Anderson (1994),
Rayner (2002), Voinov et al. (2007), Voinov (2010), and also Section 2.3.
Lemeshko and Postovalov (1998) and Lemeshko (1998) succeeded in increasing
the power of the PF test by a special data grouping method. Their idea was
to construct grouping cells in such a way that the determinant of the Fisher
information matrix would be maximized.

Sometimes, one may combine test statistics to obtain a more powerful test,
or a test that is sensitive to a specific alternative, or even a test for checking
the consensus of a set of tests. Combined test statistics can be either dependent
or independent. Many results are available regarding the combination of inde-
pendent test statistics based on the probability integral transformation; see, for
example, Van Zwet and Oosterhoff (1967), Wilk and Shapiro (1968), Littell
and Folks (1971), Koziol and Perlman (1978), Marden (1982), Rice (1990),
Mathew et al. (1993), and Sarkar and Chang (1997). Combining independent
tests in linear models was considered by Zhou and Mathew (1993). Brown
(1975) considered the same problem when the combined tests are not indepen-
dent, and developed a method for combining non-independent one-sided tests
about a location parameter.

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00006-5
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To combine information from several sources, the above-mentioned works,
incidentally, did not use vector-valued statistics which may also be useful for
obtaining more powerful tests.

Zhakharov et al. (1969) proposed a sequential m-dimensional chi-squared
vector-valued test

X2
n = (X2

n1
,X2

n2
, . . . ,X2

nm
)T

based on m subsamples, embedded into each other, of a sample of size n such
that n1 < n2 < · · · < nm � n, where X2

ni
,i = 1, . . . ,m, are standard Pearson

sums. The null hypothesis is accepted if one of the events Ak,k = 1, . . . ,m,
occurs, where

Ak = {X2
n1
> x1,α, . . . ,X

2
nk−1

> xk−1,α,X
2
nk

� xk,α}
and xi,α (i = 1, . . . ,m) are the critical values. If, for all k = 1, . . . ,m,X2

nk
>

xk,α , then the null hypothesis is rejected.
Mason and Schuenemeyer (1983) proposed a vector-valued test statistic of

the form
(ω1Ln,1,ω2 Ln,2,Kn,ω3Un,1,ω4Un,2)

T ,

where Kn is the Kolmogorov-Smirnov test, Ln,1,Ln,2,Un,1,Un,2 are Rényi-
type tests, ω1, . . . ,ω4 are non-negative weights, and 0 < c < ∞ is a constant
that depends on the level of significance α. The null hypothesis is rejected if

max{ω1Ln,1,ω2 Ln,2,Kn,ω3Un,1,ω4Un,2} > c.

Note here that all components of the proposed statistic are based on the same
sample.

Voinov and Grebenyk (1989) used a two-dimensional vector-valued test
Vn = (Kn,Rn)

T , where Kn is the Kolmogorov-Smirnov statistic and Rn is the
signed rank statistic. In spite of the correlation between Kn and Rn , the test
based on a rejection region, which is the intersection of corresponding rejection
regions of the two components of Vn , enabled well the recognition of a pattern
of an image with signal/noise ratio less than one.

6.2 VECTOR-VALUED TESTS: AN ARTIFICIAL EXAMPLE

Consider the following artificial example of testing a simple null hypothesis
about a probability distribution against a simple alternative:

H0 : P(X � x) = F(x) vs. Ha : P(X � x) = G(x). (6.1)

Let Y 2
1n and Y 2

2n be two independent statistics such that

lim
n→∞ P(Y 2

1n � y|H0)= lim
n→∞ P(Y 2

2n � y|H0) = P(χ2
4 � y), (6.2)

lim
n→∞ P(Y 2

1n � y|Ha)= lim
n→∞ P(Y 2

2n � y|Ha) = P(χ2
4 (3.5) � y), (6.3)
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FIGURE 6.1 Probability density functions of Y 2
in,i = 1,2, under H0 (thin solid line)

and under Ha (bold solid line). The density function under Ha was calculated by using
formula (1) of Cohen (1988).

where χ2
4 is the central chi-square random variable with 4 degrees of freedom,

and χ2
4 (3.5) is the non-central chi-square random variable with 4 degrees of

freedom and non-centrality parameter 3.5. For brevity, the sign of the limit will
be omitted in the sequel.

Consider a two-dimensional vector-valued test Un = (Y 2
1n,Y

2
2n)

T with
rejection region S1 of the intersection-type, i.e. S1 = (Y 2

1n > y1)∩ (Y 2
2n > y1).

Since Y 2
1n and Y 2

2n are independent and identical, the probability of falling into
S1 under H0 (or the level of significance of the test) will be (see Figure 6.1)

P{(Y 2
1n > y1|H0) ∩ (Y 2

2n > y1|H0)} = P(Y 2
1n > y1|H0)P(Y

2
2n > y1|H0)

= α2
1 = α,

where α1 is the level of significance of any component Y 2
in, i = 1,2, and α is the

level of significance of the vector statistic Un . Suppose we wish to set α = 0.05,
then α1 = 0.2236, in which case the critical value y1 of χ2

4 variable will be
y1 = 5.69. In this case, the power of the vector-valued test Un is determined as

P(Un ∈ S1|Ha) = P(Y 2
1n > y1|Ha)P(Y

2
2n > y1|Ha) = (0.586)2 = 0.343.

The values of the probabilities P(Y 2
in > y1|Ha),i = 1,2, were calculated by

using formula (1) of Ding (1992). At the same time, power of each component
of Un for the same level of significance α = 0.05 is

P(Y 2
1n > y2|Ha) = P(Y 2

2n > y2|Ha) = 0.282,

where y2 = 9.49. Thus, we observe that the power of the components Y 2
in,

i = 1,2, implemented independently, is 1.216 times less than the power of Un .
Consider the vector-valued test Un = (Y 2

1n,Y
2
2n)

T with the rejection region
S2 of the union-type, i.e. S2 = (Y 2

1n > y3) ∪ (Y 2
2n > y3). Suppose we set



130 Chi-Squared Goodness of Fit Tests with Applications

α = 0.05 once again. Then,

P(Un ∈ S2|H0)= P{(Y 2
1n > y3|H0) ∪ (Y 2

2n > y3|H0)}
= P(Y 2

1n > y3|H0)+ P(Y 2
2n > y3|H0)

− P(Y 2
1n > y3|H0)P(Y

2
2n > y3|H0)

= 0.05,

which means P(Y 2
1n > y3|H0) = 0.02532, and so y3 = 11.1132. Since

P(Y 2
in > 11.1132|Ha) = 0.19525, the power of Un for this rejection region of

union-type is

P(Un ∈ S2|Ha)= P{(Y 2
1n > y3|Ha) ∪ (Y 2

2n > y3|Ha)}
= P(Y 2

1n > y3|Ha)+ P(Y 2
21n > y3|Ha)

− P(Y 2
1n > y3|Ha)P(Y

2
2n > y3|Ha)

= 0.352,

which is 1.25 times more powerful than Y 2
in,i = 1,2, implemented individually.

This simple artificial example shows that the use of two-dimensional vector-
valued tests may result in an increase in power as compared to the powers of
individual components of the vector-valued statistic.

Consider now the three-dimensional vector-valued test

Tn = (Y 2
1n,Y

2
2n,Y

2
3n)

T ,

where Y 2
in,i = 1,2,3, are three identical independent statistics with the same

limiting distributions as in (6.2) and (6.3), for testing the hypotheses in (6.1).
Let S3 be an intersection-type rejection region of the form

S3 = (Y 2
1n > y4) ∩ (Y 2

2n > y4) ∩ (Y 2
3n > y4).

The probability of Tn falling into S3 under H0 (or the level of significance of
the test) will be

P(Tn ∈ S3|H0)= P(Y 2
1n > y4|H0)P(Y

2
2n > y4|H0)P(Y

2
3n > y4|H0)

= α3
1 = α,

where α1 is the level of significance for any component Y 2
in,i = 1,2,3, and α

is the level of significance of the vector statistic Tn . Suppose we set α = 0.05,
then α1 = 0.3684, in which case the critical value y4 of χ2

4 variable will be
y4 = 4.288. Since P(Y 2

in > 4.288|Ha) = 0.723, the power of the vector-valued
test Tn is determined as

P(Tn ∈ S3|Ha)= P(Y 2
1n > y4|Ha)P(Y

2
2n > y4|Ha)P(Y

2
3n > y4|Ha)

= 0.7233 = 0.378.
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Thus, we observe that the power of the components Y 2
in,i = 1,2,3, imple-

mented individually is 1.34 times less than the power of Tn .
Now, let us consider the vector-valued test Tn = (Y 2

1n,Y
2
2n,Y

2
3n)

T with the
rejection region S4 of the union-type, i.e. S4 = (Y 2

1n > y5) ∪ (Y 2
2n > y5) ∪

(Y 2
3n > y5). If we set α = 0.05, then from

P(Tn ∈ S4|H0)= P(Y 2
1n > y5|H0)+ P(Y 2

2n > y5|H0)+ P(Y 2
3n > y5|H0)

− P(Y 2
1n > y5|H0)P(Y

2
2n > y5|H0)

− P(Y 2
1n > y5|H0)P(Y

2
3n > y5|H0)

− P(Y 2
2n > y5|H0)P(Y

2
3n > y5|H0)

+ P(Y 2
1n > y5|H0)P(Y

2
2n > y5|H0)P(Y

2
3n > y5|H0)

= 0.05,

it follows that P(Y 2
in > y3|H0) = 0.016952, and so y5 = 12.0543. Since

P(Y 2
in > 12.0543|Ha) = 0.15601, the power of Tn for the rejection region of

union-type is given by

P(Tn ∈ S4|Ha)= P(Y 2
1n > y5|Ha)+ P(Y 2

2n > y5|Ha)+ P(Y 2
3n > y5|Ha)

− P(Y 2
1n > y5|Ha)P(Y

2
2n > y5|Ha)

− P(Y 2
1n > y5|Ha)P(Y

2
3n > y5|Ha)

− P(Y 2
2n > y5|Ha)P(Y

2
3n > y5|Ha)

+ P(Y 2
1n > y5|Ha)P(Y

2
2n > y5|Ha)P(Y

2
3n > y5|Ha)

= 0.399,

which is 1.415 times more powerful than Y 2
in,i = 1,2,3, implemented

individually.
The results of the above two artificial examples are summarized in Table 6.1.

From Table 6.1, we observe that the power of the vector-valued test depends not
only on the structure of the rejection region, but also on the dimensionality of
the vector. We see that the gain in power, measured as the ratio of corresponding
powers, is higher for the union-type rejection regions, and is also higher for the

�

�

�

�

TABLE 6.1 Gain in power for two- and three-dimensional tests for two types
of rejection region (with α = 0.05).

Type of the Gain in power Gain in power
rejection region with two components with three components

∩ 0.343/0.282 = 1.216 0.378/0.282 = 1.340

∪ 0.352/0.282 = 1.248 0.399/0.282 = 1.415
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three-dimensional vector compared to the two-dimensional one. Of course, the
situation can be quite different for other forms of alternatives. Voinov and Pya
(2010) showed that if the alternative hypothesis (under the same assumptions
as above) is the central χ2

6 distribution, then the gain in power is less for the
union-type rejection regions, but is still higher for the three-dimensional vector
test as compared to the two-dimensional one.

6.3 EXAMPLE OF SECTION 2.3 REVISITED

Using the notation of Section 2.3, consider the vector-valued test U =
(U1,U2)

T , where U1 = X2
n is defined for the four Neyman-Pearson type intervals

in (2.18), and U2 = δ2
1 + δ2

3 is defined for another variant of four Neyman-
Pearson type intervals

�13 = (− ∞; −2.28121) ∪ (2.28121; +∞),

�14 = (− 0.827723; 0.827723), �23 = (− 2.28121; −0.827723),

�24 = (0.827723; 2.28121).

Over the intervals �13 and �14, we have t(x,0,1) < l(x,0,1), while over the
intervals �23 and �24,t(x,0,1) � l(x,0,1). The statistic U1 is distributed in
limit as χ2

3 with power 0.851, and the statistic U2 is distributed in limit as χ2
2

with power 0.729. Note that both U1 and U2 are based on the same sample.
Since the components of the vector U = (U1,U2)

T are evidently correlated, we
have to use simulation for assessing the power of the vector statistic U. Since
U = (U1,U2)

T is two-dimensional, it is possible to construct and consider
infinitely many different rejection regions. For example, let us consider the
rejection region of the test U = (U1,U2)

T to be the intersection of two sets
S = (U1 > U1cr) ∩ (U2 > U2cr) displayed in Figure 6.2. Such a rejection
region seems to be reasonable because scalar tests U1 and U2 take into account

FIGURE 6.2 A sketch of the rejection region S of U = (U1,U2)
T (dashed area).
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different distributional characteristics of the hypotheses under test, and so one
can expect that, under suitable conditions, the vector-valued test U will possess
larger power than its components.

Since the level α = 0.05 of the vector-valued test U can be achieved for
different combinations of U1cr and U2cr, on which the power will depend, we
produced by simulation the power values for six pairs of critical values for U1
and U2 (n = 200 and the number of runs N = 5000). For each pair, the power
(probability of falling into the rejection region under the triangular alternative)
so determined are presented in Table 6.2.

We observe that the power of the vector-valued test U depends on the
choice of critical values of U1 and U2, and is maximized for U1cr = 7.4
and U2cr = 2.147 (being equal to 0.882) which is larger than those of the
components U1 and U2 (being 0.851 and 0.729, respectively). Note that the
simulated correlation coefficient between U1 and U2 is ρ = 0.75 for H0, and
ρ = 0.94 for Ha , both being significant at level 0.01.

Consider another vector-valued test U1 = (U1,U21)
T , where U1 = X2

n
(the same as for U = (U1,U2)

T ) but U21 = X2
n for two Neyman-Pearson

classes defined in Section 2.3. The power of U21 in this case is 0.855. Through
simulation, we produced for five pairs of critical values for U1 and U2 (n = 200
and the number of runs N = 5000), and for each pair the power of U1 was
determined, and these results are presented in Table 6.3.

Here again, we see that the power of the vector-valued test U1
depends on the choice of critical values U1cr and U21cr, and gets
maximized for U1cr = 6.4 and U21cr = 1.95 (being equal to 0.922)
which is larger than that of the components U1 and U21 (being 0.851
and 0.855, respectively). This power is almost two times more than

�

�

�

�

TABLE 6.2 Critical values of the test U = (U1 ,U2 )
T with α = 0.05, and

corresponding powers.

U1cr 7.2 7.3 7.4 7.5 7.6 7.7

U2cr 3.232 2.824 2.147 1.938 1.354 0.865

Power of U 0.864 0.869 0.882 0.881 0.880 0.876

�

�

�

�

TABLE 6.3 Critical values of the test U1 = (U1,U21)
T with α = 0.05,

and corresponding powers.

U1cr 6.2 6.4 6.6 6.8 7.0

U2cr 2.30 1.950 1.627 1.242 1.155

Power of U1 0.915 0.922 0.915 0.913 0.909
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TABLE 6.4 A comparison of power values of different test statistics.

Test statistic Partitioning of the sample space Power

X2
n of Pearson 4 equiprobable cells 0.320

δ22 of Anderson (1994) 4 equiprobable cells 0.470

δ21 + δ23 4 NP type classes 0.729

X2
n 2 NP classes 0.855

U= (U1,U2)
T 4 different NP type classes 0.882

U1 = (U1,U21)
T 2 and 4 NP type classes 0.922

the power of Anderson’s δ2
2 (which is 0.47) for equiprobable cells.

Note that the simulated correlation coefficient between U1 and U21 is ρ = 0.57
for H0 and is ρ = 0.94 for Ha , both significant at level 0.01. It is of interest to
note also that the power of U1 is larger than that of U. All the above results and
also those from Section 2.3 are summarized in Table 6.4.

From this table, we see how much improvement can be achieved in the
power of a test by using different approaches. We do not insist that the test U1
for the example considered is the best one, because many other possibilities
exist for the construction of a test. For example, one may use different kinds of
rejection regions, different dimensionality for vector-valued tests, different test
statistics as individual components, and so on.

6.4 COMBINING NONPARAMETRIC AND
PARAMETRIC TESTS

Consider a two-dimensional vector-valued test with correlated components
comprising the modified chi-squared and the nonparametric statistics as its
components (Voinov and Pya, 2010):

Vn = (S12
n(θ̄n),A

2
n)

T = (Y 22
n(θ̄n)− U 2

n (θ̄n),A
2
n)

T , (6.4)

where Y 22
n(θ̄n) is the HRM statistic (see Section 4.1), U 2

n (θ̄n) is the DN test in
(2.21), θ̄n is the MME of the true parameter θ , and A2

n is the Anderson-Darling
test statistic (Anderson and Darling, 1954).

Under some regularity conditions, the HRM test Y 22
n(θ̄n) possesses in the

limit χ2
r−1 distribution under the null hypothesis, with r being the number

of grouping intervals. For any
√

n-consistent estimator θ̃n of the parameter
θ including the MME θ̄n , the DN test U 2

n (θ̃n) follows in the limit χ2
r−s−1

distribution, where s is the number of unknown parameters. The modified chi-
squared test S12

n(θ̄n) is distributed in the limit as χ2
s . It is known (Voinov et

al., 2009) that, for equiprobable intervals of grouping, the latter test is more
powerful than Y 22

n(θ̄n).
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FIGURE 6.3 Power values of Vn(V ), Y 22
n(θ̄n)(Y 2), U2

n (θ̄n)(U2), S12
n(θ̄n)=

Y 22
n(θ̄n)− U2

n (θ̄n)(Y 2 − U2), and A2
n as functions of the number of cells r.

Suppose we wish to test a composite null hypothesis about the logistic
probability distribution against a normal alternative distribution. To compare
the power of Vn test with that of the scalar tests Y 22

n(θn), U 2
n (θn), Y 22

n(θn)−
U 2

n (θn), and the Anderson-Darling test A2
n , Monte Carlo simulations were used.

The statistic A2
n was calculated with the use of the MME θn . Since theoretical

and simulated critical values corresponding to a given level of significance α
do not differ significantly, we used the theoretical ones (except for the A2

n test).
We used the simulated critical values for the A2

n test since the corresponding
theoretical results are fairly limited (see Sinclair and Spurr, 1988). The rejection
region for Vn was the intersection of rejection regions of the components of
Vn (like in Figure 6.2). Since we can select a rejection region of a given level
α in infinitely many ways, we tried several possible variants to choose one that
gives the highest power.

The results of a simulation study based on random samples of size n = 200
andα = 0.05 are shown in Figure 6.3. All modified chi-squared tests considered
were calculated for r equiprobable fixed intervals (number of runs was 10,000).

From Figure 6.3, we observe that, despite the correlation between the
components, the vector-valued statistic for testing the logistic null distribution
against the normal alternative distribution possesses not too much power but,
nevertheless, higher power than the scalar tests based on individual components
under consideration. It should also be noted that the power of Dzhaparidze-
Nikulin test U 2

n (θn) is quite low when equiprobable cells are used. More details
on the power of U 2

n (θn) can be found in Voinov et al. (2009).

6.5 COMBINING NONPARAMETRIC TESTS

In this section, we consider a combination of two correlated nonparametric
goodness of fit tests based on the empirical distribution function, viz., the
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TABLE 6.5 Power values of Kn ,W
2
n , and Rn against triangular alternative

distribution for the rejection region of Rn taken as a union. The statistical
error shown corresponds to one standard deviation.

S1U S2U

Kn 0.155 0.155

W 2
n 0.141 0.141

Rn 0.143 0.161±0.004

Kolmogorov-Smirnov test Kn and the Cramer-von Mises test W 2
n :

Rn = (Kn,W
2
n )

T . (6.5)

Consider the problem of testing the simple null hypothesis of the logistic
distribution with mean zero and variance one against the triangular alternative
distribution with the same mean and variance. In this case, the power of both
Kn and W 2

n , implemented individually, is nearly the same.
To compare the power of vector-valued test in (6.5) with union- and

intersection-type of rejection regions of its components, we carried out a
simulation study. Table 6.5 shows the results of the power for two different
rejection regions of the same significance level taken as a union of rejection
regions of the components (n = 200,α = 0.05, number of runs was 10,000):

S1U = (Kn > 0.1206) ∪ (W 2
n > 0.4634),

S2U = (Kn > 0.1044) ∪ (W 2
n > 0.6884).

Numerical values in above formulas were selected in such a way that the power
of the vector-valued test Rn is approximately maximal for the overall level
α = 0.05.

From Table 6.5, we see that, in the above considered case, the vector-valued
test Rn in (6.5) may have higher power than the scalar tests based on the
components of the vector Rn . It is also evident that the power of Rn definitely
depends on the structure of the rejection region used.

Consider the following two rejection regions for the vector-valued test
in (6.5):

S1I = (Kn > 0.1044) ∩ (W 2
n > 0.2269),

S2I = (Kn > 0.0883) ∩ (W 2
n > 0.4420).

The numerical values in the above S1I and S2I were selected such that the power
of the vector-valued test Rn is nearly maximal for the overall level α = 0.05.

The results of the Monte Carlo study with random samples of size n = 200
for this case are presented in Table 6.6. From this table, we once again observe
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TABLE 6.6 Power values of Kn ,W
2
n , and Rn against triangular alternative

distribution for the rejection region of Rn taken as an intersection. The
statistical error shown corresponds to one standard deviation.

S1I S2I

Kn 0.155 0.162±0.004

W 2
n 0.141 0.146

Rn 0.160 0.155

that the power of the vector-valued test may be more or less than that of scalar
components depending on the structure of a rejection region. Note that the power
has been considered here only for very simple rejection regions (intersection
and union). Of course, more complicated regions can also be considered in this
regard and their power properties may also vary depending on their form and
structure.

6.6 CONCLUDING COMMENTS

Several examples of vector-valued goodness of fit tests have been discussed
in the preceding sections. Simulation studies carried out have revealed that,
when combining either correlated or uncorrelated nonparametric or parametric
tests with approximately the same power, vector-valued tests may gain power
when compared with the components of the vector-valued statistic. Examples
considered show that the power of vector-valued goodness of fit tests depends
on the structure of the rejection region, correlation between the components of
the test, and the dimensionality of the vector. A more detailed and thorough
examination of these issues in the consideration of vector-valued goodness of
fit tests is warranted both theoretically and empirically.
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Chapter 7

Applications of Modified
Chi-Squared Tests

7.1 POISSON VERSUS BINOMIAL: APPOINTMENT OF
JUDGES TO THE US SUPREME COURT

The problem of discriminating between Poisson and binomial probability
distributions is a very difficult one due to the close similarity between these two
models; see Bol’shev (1963), Vu and Maller (1996), and Voinov and Voinov
(2008, 2010). In this regard, we consider here a detailed statistical analysis of
the number of US Supreme Court justices’ appointments from 1789 to 2004
(Voinov et al., 2010). Proposed modified chi-squared type tests, the likelihood
ratio test of Vu and Maller (1996) and some other well-known tests are all
examined with these data. The analysis shows that both simple Poisson and
simple binomial models are equally appropriate for describing these data. No
firm statistical evidence in favor of an exponential Poisson regression model
is found. Two important observations made from a simulation study in this
connection are that Vu and Maller (1996) test is the most powerful test among
those considered when testing for the Poisson versus binomial, and that the
classical variance test with an upper tail critical region is a biased test.

7.1.1 Introduction

The problem of describing the frequency with which Presidents of the US
were able to appoint the US Supreme Court justices has been addressed by a
number of authors including Wallis (1936), Callen and Leidecker (1971), Ulmer
(1982), and King (1987, 1988). They made use of the Poisson distribution and
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an exponential Poisson regression model to describe the process of judges’
appointments. As Wallis (1936) noted, this description is of importance “to
estimate how often a President will be called upon to appoint judges of the
Supreme Court during the 4 years of an administration.” The problem, in
addition to being of political interest, is of great interest from a statistical
viewpoint as well. It is well known that the Poisson distribution is a limiting
form of the binomial distribution as the number of trials tends to infinity. The
question that is of interest in this case is “whether the data on the US Supreme
Court judges’ appointments follow a Poisson or a binomial distribution?”

In Section 7.1.2, the pertinent data are presented. Section 7.1.3 is devoted
to a thorough statistical analysis of these data. Some new tests as well as some
well-known statistical tests, including the most powerful test of Vu and Maller
(1996), are used to test the hypotheses of interest. In Section 7.1.4, the results
of Wallis (1936) and Ulmer (1982) are revisited. Some remarks concerning
the exponential Poisson regression model of King (1987, 1988) are made in
Section 7.1.5. Finally, some concluding comments are made in Section 7.1.6.

7.1.2 Data to be analyzed

Data on the number of judges appointed during the period 1789–2004 are
presented in Table 7.1. These are available on the website of Members of the
Supreme Court of the United States (2008).

The mean value of the number of judges appointed per year and the
standard error of the mean are found to be 0.5231 and 0.0512, respectively.
Before applying our statistical techniques, we first examine whether the data in
Table 7.1 can be regarded as a set of realizations of independent and identically
distributed random variables. The nonparametric runs test for randomness has
a P-value of 0.764, thus providing a strong evidence toward the hypothesis that
they form a random set. The sample autocorrelation function (ACF) for the
number of appointments per year for the period 1789–2004 in Figure 7.1 looks
like the autocorrelation function from a white noise process and, this together
with randomness, provides a weak confirmation of independence.

Next, we check for the equality of probabilities of occurrences of events of
interest. For this purpose, we divided the period 1789–2004 into six parts (five
of 36 years and the last one of 38 years, so as to use the central limit theorem)
and produced the two-sample t-statistics for the difference of means for all 15
pairs. The P-values of the tests varied from 0.178 to 1.000, thus confirming the
hypothesis of equality of probabilities of occurrence of events at a level of 0.10.

Dividing the period 1789–2004 into parts of 4 years based on the President’s
governance, the data in Table 7.1 can be summarized as in Table 7.2. The symbol
Ni here denotes the number of appointments during the ith 4-year of presidency.

In creating this table, we have omitted the data for the Presidents Taylor
(1849–1950), Garfield (1881), Harding (1921–1922), and Kennedy (1961–
1963), who served for less than 4 years. For the data in Table 7.2, the runs
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TABLE 7.1 Number ni of appointments in each year during the period
1789–2004.

Year ni Year ni Year ni Year ni Year ni Year ni

1789 2 1825 0 1861 0 1897 0 1933 0 1969 1

1790 4 1826 1 1862 3 1898 1 1934 0 1970 1

1791 0 1827 0 1863 1 1899 0 1935 0 1971 0

1792 1 1828 0 1864 1 1900 0 1936 0 1972 2

1793 1 1829 0 1865 0 1901 0 1937 1 1973 0

1794 0 1830 2 1866 0 1902 1 1938 1 1974 0

1795 1 1831 0 1867 0 1903 1 1939 2 1975 1

1796 2 1832 0 1868 0 1904 0 1940 1 1976 0

1797 0 1833 0 1869 0 1905 0 1941 3 1977 0

1798 0 1834 0 1870 2 1906 1 1942 0 1978 0

1799 1 1835 1 1871 0 1907 0 1943 1 1979 0

1800 1 1836 2 1872 0 1908 0 1944 0 1980 0

1801 1 1837 1 1873 1 1909 0 1945 1 1981 1

1802 0 1838 1 1874 1 1910 3 1946 1 1982 0

1803 0 1839 0 1875 0 1911 2 1947 0 1983 0

1804 1 1840 0 1876 0 1912 1 1948 0 1984 0

1805 0 1841 0 1877 1 1913 0 1949 2 1985 0

1806 0 1842 1 1878 0 1914 1 1950 0 1986 2

1807 2 1843 0 1879 0 1915 0 1951 0 1987 0

1808 0 1844 0 1880 0 1916 2 1952 0 1988 1

1809 0 1845 2 1881 2 1917 0 1953 1 1989 0

1810 0 1846 1 1882 2 1918 0 1954 0 1990 1

1811 1 1847 0 1883 0 1919 0 1955 1 1991 1

1812 1 1848 0 1884 0 1920 0 1956 1 1992 0

1813 0 1849 0 1885 0 1921 1 1957 1 1993 1

1814 0 1850 0 1886 0 1922 1 1958 1 1994 1

1815 0 1851 1 1887 0 1923 2 1959 0 1995 0

1816 0 1852 0 1888 2 1924 0 1960 0 1996 0

1817 0 1853 1 1889 0 1925 1 1961 0 1997 0

1818 0 1854 0 1890 1 1926 0 1962 2 1998 0

1819 0 1855 0 1891 1 1927 0 1963 0 1999 0

1820 0 1856 0 1892 1 1928 0 1964 0 2000 0

1821 0 1857 0 1893 1 1929 0 1965 1 2001 0

1922 0 1858 1 1894 1 1930 2 1966 0 2002 0

1923 1 1859 0 1895 0 1931 0 1967 1 2003 0

1924 0 1860 0 1896 1 1932 1 1968 0 2004 0
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FIGURE 7.1 The sample autocorrelation function (ACF) for the number of appointments
per year during the period 1789–2004 (the 95% confidence interval of the absence of
the significant correlation is shown as well).

test has a P-value of 0.284, providing evidence for randomness of the data.
Next, the sample ACF of the data does not provide evidence for significant
correlation between the observations.

7.1.3 Statistical analysis of the data

Let us consider the problem from the viewpoint of discriminating between the
Poisson and binomial distributions. To date, many papers have been published
using the Poisson model as a base model for inference. We analyze here the
data in Table 7.2 by using various chi-squared type tests and the likelihood ratio
test of Vu and Maller (1996).

Testing for the Poisson null hypothesis
In this section, we take the null hypothesis as that the data are from a Poisson
distribution, and test it against a binomial alternative.

(a) First, the data in Table 7.2 are summarized in Table 7.3 in a frequency count
form.

For the Poisson null hypothesis and r = 5 intervals in Table 7.3, the
values of the test statistics Y 12

n(θ̂n),U 2
n (θ̂n), and S2

n (θ̂n), defined by the
formulas in (9.2), (3.23), and (3.24), are 3.44, 2.76, and 0.68, respectively.
Since critical values of the corresponding chi-squared limiting distributions
with 4, 3, and 1 degrees of freedom, for α = 0.05 level, are 9.49, 7.81,
and 3.84, we conclude that the data are consistent with the Poisson null
hypothesis. The simulated power of the tests Y 12

n(θ̂n),U 2
n (θ̂n), and S2

n (θ̂n)

with respect to the binomial alternative are 0.052 ± 0.002,0.051 ± 0.002,
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TABLE 7.2 Number Ni of appointments during the ith 4-year of presidency
for the period 1789–2004.

i Years President Ni i Years President Ni

1 1789–1792 Washington 7 27 1893–1896 Cleveland 2

2 1793–1796 Washington 4 28 1897–1900 McKinley 1

3 1797–1801 Adams 3 29 1901–1904 Roosevelt 2

4 1801–1804 Jefferson 1 30 1905–1908 Roosevelt 1

5 1805–1808 Jefferson 2 31 1900–1912 Taft 6

6 1809–1812 Madison 2 32 1913–1916 Wilson 3

7 1813–1816 Madison 0 33 1917–1920 Wilson 0

8 1817–1820 Monroe 0 34 1923–1929 Coolidge 1

9 1821–1824 Monroe 1 35 1929–1932 Hoover 3

10 1825–1828 Adams 1 36 1933–1936 Roosevelt 0

11 1829–1832 Jackson 2 37 1937–1940 Roosevelt 5

12 1833–1836 Jackson 3 38 1941–1944 Roosevelt 4

13 1837–1841 Van Buren 2 39 1945–1948 Truman 2

14 1841–1845 Tyler 1 40 1949–1952 Truman 2

15 1845–1848 Polk 2 41 1953–1956 Eisenhower 3

16 1850–1853 Fillmore 1 42 1957–1960 Eisenhower 2

17 1853–1856 Pierce 1 43 1966–1969 Johnson 2

18 1857–1860 Buchanan 1 44 1969–1973 Nixon 4

19 1861–1864 Lincoln 4 45 1974–1977 Ford 1

20 1865–1868 Johnson 0 46 1977–1980 Carter 0

21 1869–1872 Grant 2 47 1981–1984 Reagan 1

22 1873–1876 Grant 2 48 1985–1988 Reagan 3

23 1877–1881 Hayes 2 49 1989–1992 Bush, G.H.W. 2

24 1881–1884 Arthur 2 50 1993–1996 Clinton 2

25 1881–1884 Cleveland 2 51 1997–2000 Clinton 0

26 1889–1892 Harrison 4 52 2001–2004 Bush, G.W. 0

and 0.052 ± 0.002, respectively. These values reveal that these tests are
unbiased, but their power for the binomial alternative is very low.

It is known that some tests of continuous models based on two Neyman-
Pearson classes possess larger power (Voinov et al., 2009). Let us now
apply this idea for the case of discrete Poisson null hypothesis. Define the
following two Neyman-Pearson classes: �1 = {x : P1(X = x) < P(X =
x)} and �2 = {x : P1(X = x) � P(X = x)}, where the probabilities
P(X = x) and P1(X = x) are given by formulas (9.1) and (9.3). In our
case, �1 = {0,1} ∪ {5, . . . ,41} and �2 = {2,3,4}. When the number of
intervals r equals two, statistics Y 12

n(θ̂n) and U 2
n (θ̂n) are not defined and

only S2
n (θ̂n) can be used. For the data in Table 7.3, the value 0.0244 of
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TABLE 7.3 A summary of the data in Table 7.2.

k Interval Frequency, νk

0 1 8

1 2 12

2 3 18

3 4 6

> 3 5 8

�

�

�

�

TABLE 7.4 Number of years in which specified number of vacancies in the
Supreme Court were filled during the period 1789–2004.

Number of vacancies Total during 1789–2004

0 131

1 64

2 19

3 3

Over 3 1

S2
n (θ̂n), possessing the simulated power of 0.054 ± 0.002, does not reject

the null hypothesis.
Next, let us consider the data in a form as in Table 7.4 that was used by

Wallis (1936), Callen and Leidecker (1971), and Ulmer (1982). Since the
expected frequencies for the number of vacancies being at least 3 are less
than 5, the last three totals were combined into one interval, thus leaving
r = 3 intervals. For the Poisson null hypothesis and r = 3 intervals in
Table 7.4, the values of Y 12

n(θ̂n),U 2
n (θ̂n), and S2

n (θ̂n), defined by formulas
(9.2), (3.23), and (3.24), are 0.443, 0.363, and 0.08, respectively. Since
the critical values of the corresponding chi-squared limiting distributions
with 2 and 1 degrees of freedom, for α = 0.05, are 5.991 and 3.841, the
conclusion once again is that the data are consistent with the Poisson null
hypothesis.

(b) Vu and Maller (1996) presented a likelihood ratio statistic for testing the
Poisson null hypothesis against the binomial alternative. For the data in
Table 7.3, the value of the test statistic dn(Nmax = 13) of Vu and Maller
(1996) (formula 4) is 1.19, which is less than the simulated critical value
of 2.833 for α = 0.05, and so the null hypothesis of a Poisson distribution
is not rejected. For the data in Table 7.4, the value of dn(Nmax = ∞)

is 0, which also supports the null hypothesis of a Poisson distribution at
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level α = 0.05. It is of importance to note that the simulated power of the
test dn in the first case is 0.10 ± 0.01 and 0.08 ± 0.01 in the second case
(the number of runs used was 1000 in the simulation study). The power
of the likelihood ratio test is slightly higher than that of the previous tests.
This can be explained by the fact that the test of Vu and Maller (1996) is
based on the essential difference between the finite support of a binomial
distribution and the infinite support of the Poisson model. Yet, this power
is not sufficient to discriminate between the two models with confidence.

(c) A simple test based on Fisher’s index of dispersion or variance test (see
Berkson, 1940; Cochran, 1954; Selby, 1965; Gbur, 1981) for the Poisson
distribution is sometimes suggested (Greenwood and Nikulin, 1996, p.
199). The test statistic in this case is

χ2 =
n∑

i=1

(xi − x̄)2

x̄
, (7.1)

where xi ,i = 1, . . . ,n, are realizations of n i.i.d. random variables. For
the Poisson null hypothesis, this statistic approximately follows χ2

n−1, the
central chi-square distribution with n −1 degrees of freedom. This test was
previously used to test the Poisson distribution against compound Poisson,
double Poisson, Neyman type A, and negative binomial distributions; see
Selby (1965). Berkson (1940) noted that the variance test χ2 in (7.1) could
“distinguish correctly that we are not dealing with a Poisson distribution.”
He compared the ability of χ2 to discriminate between the Poisson and
binomial distributions and, using simulations, showed that the variance
test performs better than the classical Pearson’s test. However, no attempt
was made to evaluate the power of χ2 for the binomial alternative. Using
10,000 replications and parameters (p = 0.11,n = 56) of Berkson (1940,
p. 364), we found the simulated power for the upper tail critical region to
be 0.011 ± 0.001 < 0.05. This shows that the χ2 test for the upper tail
critical region is biased with respect to the binomial alternative. As Gbur
(1981, p. 532) noted, for alternatives like the binomial, when σ 2/μ < 1, a
lower tail critical region “would be appropriate.” Indeed, our simulations
showed that, under the same conditions as above, the power for the lower
rejection region is 0.130 ± 0.003, implying the unbiasedness of the test.

Using the data in Table 7.2, the MLE θ̂n of θ is calculated as θ̂n =
104/52 = 2. The observed value of χ2 = 60 corresponds to a P-value of
0.182. The critical value of χ2

51 at level α = 0.05 is 68.67, and so we do not
reject the null hypothesis. For θ = 2,n = 50, and N = 10,000 replications of
χ2 for the Poisson distribution, the simulated critical value at levelα = 0.05
turns out to be 68.55, which agrees well with the theoretical value of 68.67.
Also, 10,000 Monte Carlo replications of χ2 with θ = 2 and n = 50
gives the probability of falling into the upper tailed rejection region of level
α = 0.05 to be 0.032 ± 0.002 < 0.05 under the binomial alternative.
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This means that this χ2 test is also biased with respect to the binomial
alternative. Further, the probability of falling into the lower tailed rejection
region of level α = 0.05 under the binomial alternative is 0.075 ± 0.003.
From this, it follows that, while the Poisson null hypothesis is not rejected,
the power of the χ2 test is not high enough to discriminate between the two
specified models with reasonable confidence.

(d) The classical Pearson-Fisher (PF) test statistic in (2.19) for analyzing the
data in Table 7.3 with r = 5 intervals is given by

χ2
P F =

3∑
k=0

(νk − npk(θ))
2

npk(θ)
+
[
ν4 − n

(
1 −∑3

k=0 pk(θ)
)]2

n
(

1 −∑3
k=0 pk(θ)

) , (7.2)

where pk(θ) = θke−θ /k!,ν4 is the frequency for the fifth interval, and the
unknown parameter θ can be replaced by the estimate θ̃n that minimizes
the sum χ2

P F in (7.2). For the data in Table 7.3, the Microsoft Excel Solver
gives θ̃n = 1.973 and χ2

P F = 2.777. Since, at level α = 0.05, the critical
value of the chi-squared distribution with r − 2 = 3 degrees of freedom
is 7.815, the Poisson null hypothesis is not rejected. 5000 Monte Carlo
simulations of χ2

P F with θ = 2 and n = 50 gave the probability of falling
into the rejection region of level α = 0.05 under the binomial alternative
to be 0.047 ± 0.003. Low power means that the PF test is very weak in
distinguishing between the Poisson and binomial distributions.

The simulated powers of the modified chi-squared test S2
n (θ̂n) for two

Neyman-Pearson (NP) classes, Vu and Maller’s test, the variance test, and the
classical PF test against the binomial alternative are all presented in Table 7.5
along with the estimates of the parameter θ . From this table, it is seen that Vu and
Maller’s test possesses power that is not very high, but still the highest among
all considered tests. Moreover, we observe that the classical Pearson-Fisher test
is not applicable.

Testing for the binomial null hypothesis
In this section, we consider the binomial distribution as the null and test it
against the Poisson alternative.

(a) In this case, the classical PF test for analyzing the data in Table 7.3 for
r = 5 intervals is given by (7.2), where

pk(θ) =
(

n

k

)(
θ

n

)k (
1 − θ

n

)n−k

,

and the unknown parameter θ can be replaced by the estimate θ̃n that
minimizes the sum χ2

P F . For the data in Table 7.3, the Microsoft Excel
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TABLE 7.5 Simulated power values of the modified chi-squared test S
2
n (θ̂n),

Vu and Maller’s test, variance test, and the classical Pearson-Fisher test
against the binomial alternative. Estimates of the parameter θ used are given
in Column 3. The estimate of the power is shown with the corresponding
simulated standard error.

Test statistics Power Estimates of θ

S2
n (θ̂n) (NP classes) 0.054 ± 0.002 θ̂n = 2

Vu and Maller 0.100 ± 0.010 θ̂n = 2

Variance 0.075 ± 0.003 θ̂n = 2

Pearson-Fisher 0.047 ± 0.003 θ̂n = 1.973

Solver gives θ̃n = 1.969 and χ2
P F = 2.839. Since the critical value of the

chi-squared distribution with r − 2 = 3 degrees of freedom is 7.815 at
level α = 0.05, the binomial null hypothesis is not rejected. To examine
the power of this test against the Poisson alternative, 5,000 Monte Carlo
replications of χ2

P F with θ = 2 and n = 50 gave the probability of falling
into the rejection region of level α = 0.05 under the Poisson alternative
to be 0.054 ± 0.003. The very low power means that, as in the case of
the Poisson null hypothesis, the PF test is very weak for discriminating
between the binomial and Poisson distributions.

(b) Consider the modified chi-squared tests for the binomial model. For the

binomial null hypothesis, the values of Y 12
n(θ̂n),U 2

n (θ̂n), and S2
n (θ̂n),

computed from the formulas in (9.4), (3.23), and (3.25), are 3.851, 2.822,
and 1.029, respectively. We conclude that there is enough evidence for the
binomial null hypothesis. It is of importance to note that the simulated power
of these tests is not higher than 0.052 ± 0.002 which is very low compared
to the level α = 0.05. For the same two Neyman-Pearson classes used
before (see Section 7.1.3), but for the binomial null hypothesis, the value
of S2

n (θ̂n) is 0.0005 with a simulated power of 0.058 ± 0.002. Similarly,
for the approaches of Section 7.1.4, but for the binomial null hypothesis,
the values of Y 1(θ̂n),U (θ̂n), and S2

n (θ̂n), computed from the formulas in
(9.4), (3.23), and (3.25), are 0.477, 0.385, and 0.092, respectively. So, once
again, the hypothesis of the binomial distribution is not rejected. As before,
the powers of these tests are only slightly higher than the nominal level of
α = 0.05.

(c) Consider the data in Table 7.6. The original data were grouped mainly
by periods of 34 years (136 quarters), with the exception of 14 years
(1925–1938) before World War II, 8 years (1939–1946) during World War
II, and the last 24 years (1981–2004). These data can be presented in the
form of proportions pi = xi/ni ,i = 1,2, . . . ,M (M = 8). Assume that xi

are realizations of independent binomial random variables. To test for the
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TABLE 7.6 The number of judges appointed during the corresponding
number of quarters for specified periods.

i Years Number of quarters, ni Number of judges, xi

1 1789–1822 136 19

2 1823–1856 136 15

3 1857–1890 136 18

4 1891–1924 136 22

5 1925–1938 56 6

6 1939–1946 32 9

7 1947–1980 136 16

8 1981–2004 96 8

binomial null hypothesis, Tarone (1979) suggested the binomial variance
test X2

ν for homogeneity and two Pitman asymptotically efficient tests, viz.,
X2

c , against a correlated binomial alternative, and X2
m , against alternatives

given by the multiplicative generalizations of the binomial model. X2
ν is

asymptotically chi-square distributed with M − 1 degrees of freedom, and
both X2

c and X2
m are asymptotically chi-square distributed with one degree

of freedom. For the data in Table 7.6, we have X2
ν = 10.505. At level 0.05,

we do not reject the binomial null hypothesis sinceχ2
7 (0.05) = 14.067. The

same result holds for the other two tests since X2
c = 0.183 and X2

m = 0.393
with χ2

1 (0.05) = 3.841. The fact that the X2
c test against a correlated

binomial alternative does not reject the simple binomial model can also be
considered as an argument against King’s exponential Poisson regression
model (see Section 7.1.5). It is also important to note that the simulated
powers of X2

ν ,X
2
c , and X2

m tests are all negligible.

The very low power of all these tests (see Table 7.7) can be easily explained
by the closeness of the models (Poisson and binomial) under consideration (see
Figure 7.2).

7.1.4 Revisiting the analyses of Wallis and Ulmer

Wallis (1936) (also see Brownlee, 1960) analyzed the number of vacancies filled
each year from 1790 to 1932. Using the classical Pearson’s test, Wallis showed
that the data are consistent with a Poisson distribution with a mean of 0.5. But
this analysis contains two inaccuracies. The first is that Wallis estimated the
population mean by the maximum likelihood estimator based on ungrouped
(raw) data. In this case, Pearson’s sum does not follow in the limit a chi-square
distribution and it depends on the unknown parameter (Chernoff and Lehmann,
1954). The second inaccuracy is that the expected frequency for the fourth
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TABLE 7.7 Simulated power values of the modified chi-squared test S
2
n (θ̂n),

Tarone’s tests X
2
ν , X

2
c , X

2
m , and the classical PF test for the binomial null

hypothesis against the Poisson alternative. Estimates of the parameter θ
used are given in column 3. The estimate of the power is shown with the
corresponding simulated standard error.

Test statistics Power Estimates of θ

S2
n (θ̂n) (NP classes) 0.058 ± 0.002 θ̂n = 2

X2
ν ,X2

c ,X2
m 0.054 ± 0.003 θ̂n = 2

Pearson-Fisher 0.054 ± 0.003 θ̃n = 1.969

FIGURE 7.2 The smoothed curves for the Poisson Pr(X = x) and the binomial
distribution Pr1(X = x) for the same observed value of the parameter θ = 104/52 = 2.

interval (see Table 2 of Wallis, 1936) is 1.383, which is less than the commonly
recommended 5 (Lawal, 1980). To avoid these, we may use the PF test with the
minimum chi-square estimate of the mean from grouped data. For the Poisson
distribution and the data in Table 7.8, obtained from Table 7.2 of Wallis (1936)
by combining the “2” and “over 2” lines, the test would require minimizing the
following sum with respect to the parameter θ :

X2
n = (59 − 96e−θ )2

96e−θ + (27 − 96θe−θ )2

96θe−θ + [(10 − 96(1 − e−θ − θe−θ )]2

96(1 − e−θ − θe−θ )
.

The Microsoft Excel Solver gives θ̃n = 0.4668 as the estimate of θ , and
X2

n = 0.0709 with one degree of freedom. The observed P-value of 0.79 is even
higher than the P-value of 0.713 of the test of Wallis. Let the null hypothesis
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TABLE 7.8 Observed frequencies for the number of vacancies in the
Supreme Court during the period 1837–1932.

Class number Number of vacancies Observed frequency

1 0 59

2 1 27

3 > 1 10

Total 96

be the binomial distribution. Then, for the PF test, we have to minimize

X2
n =

[
59 − 96

(
1 − θ/96

)96
]2

96
(
1 − θ/96

)96 +
[
27 − 96θ

(
1 − θ/96

)95
]2

96θ
(
1 − θ/96

)95

+
{

10 − 96
[
1 − (1 − θ/96

)96 − θ
(
1 − θ/96

)95
]}2

96
[
1 − (1 − θ/96

)96 − θ
(
1 − θ/96

)95
] ,

with respect to θ . The Microsoft Excel Solver gives θ̃n = 0.4647 as the estimate
of θ , and X2

n = 0.07645 with one degree of freedom. The observed P-value
is 0.78, which means that the data of Wallis (1936) do not contradict either
the Poisson or the binomial distributions. Doing the same for the data in Table
7.2 of Ulmer (1982) for the Poisson null hypothesis, we obtain θ̃n = 0.533,
X2

n = 0.0467, and P = 0.83. If the null hypothesis corresponds to the binomial
distribution, then θ̃n = 0.5316,X2

n = 0.0516, and P = 0.82. So, the extended
data of Ulmer (1982) also do not contradict either the Poisson or binomial
distributions. Thus, the use of the correct statistical PF test does not change the
conclusions of Ulmer (1982) and Wallis (1936).

7.1.5 Comments about King’s exponential Poisson
regression model

King (1987) questioned the independence of events as well as the equality of
probabilities of those events, in these data, and thus the validity of the Poisson
model. He proposed an exponential Poisson regression model instead. This
model is of interest, but we may ask the question whether it is needed here.
A methodology like the one used in Section 7.1.2 can be made of use as well.
King used data on the US Supreme Court Judges’ appointment data for the
period 1790–1984, and for these data, the runs test has a P-value of 0.697, thus
supporting the hypothesis of randomness. The sample ACF shown in Figure 7.3
also supports the independence of occurrences. To check for the equality of
probabilities, we divided the period 1790–1984 into six parts (five of 33 years
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FIGURE 7.3 The sample autocorrelation function (ACF) for the number of appointments
per year in the period 1790–1984 (the 95% confidence interval of the absence of the
significant correlation is also shown).

and last one of 30 years) and performed the two-sample t-test for the difference
of means for all 15 pairs. The P-values of the tests varied from 0.36 to 1.00,
which provides strong evidence to the hypothesis of equality of probabilities.
It should be added that binomial goodness of fit tests (see Section 7.1.3) of
Tarone (1979), which are asymptotically optimal against correlated binomial
alternatives and a multiplicative generalization of the binomial model, do not
reject the simple binomial hypothesis as well. Thus, these tests also do not
support the criticisms of King, and they seem to provide support to a simple
Poisson or simple binomial model for describing the data under consideration.

7.1.6 Concluding remarks

The discussion in this section has been on two main aspects. The first one is
purely statistical and it pertains to which test is best to use for discriminating
between Poisson and binomial distributions. Most statistical tests implemented
(including the modified chi-squared tests) cannot discriminate between the two
models with high confidence. This fact does not mean that tests considered are
bad and that one needs to search for a better test. It simply means that the models
are so close to each other that one can hardly develop a test with larger power.

The second aspect is purely applied and it pertains to which statistical
model is best to use for estimating the number of judges of the Supreme
Court appointed by the US President. The detailed statistical analysis of the
number of appointments of US Supreme Court justices during the period 1789–
2004 shows that the binomial model is as appropriate as the Poisson model.
No test used can reject the Poisson model in favor of the binomial model
or vice versa. Our statistical analysis in Section 7.1.5 does not confirm the
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arguments of King that there is no “independence of events and equality of
probabilities of occurrences of those events,” and so there does not seem to be
any necessity for the exponential Poisson regression model. Indeed, taking into
account the closeness of the Poisson and the binomial models, the independence
of events and equality of probabilities are statistically confirmed not only by the
analysis in Section 7.1.5, but also by Tarone’s tests for the binomial distribution
conducted in Section 7.1.3. Thus, the overall conclusion is that there is no firm
statistical need for the exponential Poisson regression model since both Poisson
and binomial models can be equally used for assessing the data on how many
times a President has to appoint judges to the Supreme Court.

7.2 REVISITING RUTHERFORD’S DATA

The data from the classical experiment of Rutherford et al. (1930) on radioac-
tive alpha decay is reanalyzed here (see Voinov and Voinov, 2008, 2010). To
perform this analysis, unified versions of the modified chi-squared NRR tests
and some other tests for the Poisson, binomial and a “binomial” approximation
of the Feller’s distribution (which takes into account the dead time of a counter
under the assumption that it is not random) are used. At this point, it is worth
mentioning that “Feller’s” distribution in (9.7), being actually a “binomial”
approximation of the incomplete gamma-function, can be used as an approx-
imation of traffic counting distribution when a minimum spacing or headway
between units of traffic (cars, airplanes, etc.) is taken into account (see Oliver,
1961). We show that the experimental data of Rutherford et al. (1930) contradict
both Poisson and binomial null hypotheses, but support “Feller’s” distribution.
Modified chi-squared tests for the Poisson, binomial, and “binomial” approxi-
mation of Feller’s distributions are all described in Chapter 9. The next section
is devoted to the reanalysis of the classical Rutherford experimental data, and
the concluding remarks are made in Section 7.2.2.

7.2.1 Analysis of the data

Over the years, several authors have analyzed the data of Rutherford et al.
(1930), trying to show that the data do not contradict the exponential distribution
for mean free paths of alpha particles from a radioactive radium source, from
which one could then support the hypothesis that the number of particles
registered follow the Poisson distribution; see, for example Rutherford et al.
(1930), Cramer (1946), Bol’shev and Mirvaliev (1978), Voinov and Nikulin
(1984), and Mirvaliev (2001). Their results seem to confirm the Poisson model,
but due to some incorrectly implemented statistical tests, they cannot be
considered as a proper statistical confirmation of that now well-known result in
physics. This is why, we reanalyze these data here with the methods seen thus
far in our discussion.
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TABLE 7.9 Rutherford et al. (1930) experimental data in the form of a
frequency table.

i Ni c , class number Nc

0 57 1 57

1 203 2 203

2 383 3 383

3 525 4 525

4 532 5 532

5 408 6 408

6 273 7 273

7 139 8 139

8 45 9 45

9 27 10 27

10 10 11 (i ≥10) 16

11 4

12 0

13 1

14 1

≥15 0∑
= 2608

∑
= 2608

In the experiment of Rutherford et al. (1930), the number of flashes produced
by alpha particles from a radioactive radium source, which hit the screen made of
sulfide of zinc during non-overlapping time intervals of 7.5 s, were registered.
The total number of such intervals was n = 2608. Let X1,X2, . . . ,Xn be a
sample from the probability distribution P(X = i),i = 1,2, . . ., representing
the number of scintillations during 7.5 s. Observed frequencies Ni of events
(X j = i), j = 1,2, . . . ,n, as recorded by Rutherford et al. (1930), are presented
in Table 7.9.

If the exponential law of radioactive decay is true, the random variable X
must follow the Poisson distribution. To test this hypothesis, Cramer (1946) used
Pearson’s sum X2

n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n) with the MLE θ̂n of θ obtained
from the raw data. The conclusion drawn by Cramer was that the data do
not contradict the Poisson distribution. Later, Chernoff and Lehmann (1954)
showed that, for fixed grouping intervals, this test is incorrect since the limiting
distribution of X2

n(θ̂n) = V(n)T (θ̂n)V(n)(θ̂n) will not follow χ2
r−1 and may

depend on the unknown parameters (see Section 2.5).
Bol’shev and Mirvaliev (1978) developed a distribution-free modified chi-

squared test for the Poisson distribution based on minimum variance unbiased
estimators of the hypothesized probabilities. Using r = 11 grouping classes
shown in 3rd and 4th columns of Table 7.9 and their modified chi-squared test,
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they showed that the data do not contradict the Poisson distribution. Since the
power of such a test is very low, Bol’shev and Mirvaliev (1978) implemented
their test for two Neyman-Pearson classes (Greenwood and Nikulin, 1996),
which maximizes Pearson’s measure of distance between the null and alternative
hypotheses thus resulting in a more powerful test. These classes are defined as
I1 = {c : f (c) � f1(c)} and I2 = {c : f (c) < f1(c)}. For the data in Table
7.9, c ∈ {3,4,5,6} for I1, and c ∈ {0,1,2} ∪ {7,8,9,10,11} for I2. For these
intervals, Bol’shev and Mirvaliev (1978) test Y (see formula (5.6)) based on
the UMVUEs of hypothetical probabilities follows asymptotically the standard
normal distribution. Since the calculated Y = 2.3723, the null hypothesis of
Poisson distribution is rejected at level α = 0.05.

By using the MLE θ̂n of θ , intervals I1 and I2, and the test statistic in
(3.24), Mirvaliev (2001) found S2

n (θ̂n) = 5.6773. Since the critical value of
χ2

1 is 3.841 at α = 0.05, S2
n (θ̂n) = 5.6773 results in rejection of the Poisson

null hypothesis. Vu and Maller (1931) developed the likelihood ratio test for
the Poisson against binomial distributions, as mentioned earlier. For the data in
Table 7.9, the “deviance” statistic dn = 2.81 (N̂n = 83) which is larger than
the critical value cα = 2.71, and so the Poisson null hypothesis is rejected once
again at α = 0.05. Spinelli and Stephens (1997) suggested using the statistic
A2 for the Poisson null hypothesis. Strictly speaking, this test, which is not
distribution-free, cannot be used in principle for this problem. However, for the
data in Table 7.9, the statistic A2 = 1.248. Since all critical values at α = 0.05,
regardless of the unknown value of θ (see Table 1 of (Spinelli and Stephens,
1997) and Figure 7.4) are less than 1.248, the Poisson null hypothesis is rejected
here as well. Greenwood and Nikulin (1996, p. 203) applied Fisher’s test based
on the index of dispersion in (7.1) and showed that, at level α = 0.05, the
Poisson null hypothesis is rejected once again.

It is important to mention here that Cramer (1946), Bol’shev and Mirvaliev
(1978), Mirvaliev (2001), Cramer (1946), Voinov and Nikulin (1984), and
Greenwood and Nikulin (1996) did not control the power of the tests they
implemented. As remarked in the preceding section, the simulated power of all
these tests against the binomial alternative is only slightly more than the nominal
level α = 0.05 of the test. This is not surprising since the Poisson and the
binomial models are very close to each other (Figure 7.5). Since all considered
tests reject the Poisson hypothesis, which is so close to the binomial model,
we may naturally expect the binomial alternative to be rejected as well. Basing
on their results, Bol’shev and Mirvaliev (1978) and Mirvaliev (2001), however,
erroneously concluded that “the binomial approximation can be preferred over
the Poisson approximation" (see also Von Mises, 1972). This conclusion is
incorrect since the binomial distribution was used only to construct the two
Neyman-Pearson grouping intervals and it does not mean that the data do not
contradict the binomial null hypothesis. Actually, to do this, we need to test
the binomial null hypothesis (using, for example, their own test in (5.6)) to see
whether or not the data support the binomial model.



155Chapter | 7 Applications of Modified Chi-Squared Tests

FIGURE 7.4 Asymptotic percentage points for the statistic A2 as a function of the
unknown parameter θ , for α = 0.05, constructed by using Table 1 of Spinelli and
Stephens (1997).

FIGURE 7.5 Smoothed curves of Poisson and binomial distributions with θ replaced

by θ̂n coincide, and are presented by dashed line. The smooth curve of the “binomial”
approximation of Feller’s distribution, with ñ and p̃ replaced by estimates ¯̃n and ¯̃p, is
the solid line.

We applied the test in (5.6) for the same data, but for the binomial null
hypothesis with n = S and θ = S/t = 3.87155. The MVUEs Wi ,i =
0,1, . . . ,S (see formula (2) of Bol’shev and Mirvaliev (1978)) of the binomial
probabilities were calculated by formula

Wi =

(
S

i

)(
St − S

S − i

)
(

St

S

) , i = 0, . . . ,S, (7.3)



156 Chi-Squared Goodness of Fit Tests with Applications�

�

�

�

TABLE 7.10 Values of Ni – observed frequencies and of Wi – MVUEs of the
hypothesized binomial probabilities.

i Ni ln Wi Wi iWi

0 57 −3.873034 0.020795 0.000000

1 203 −2.518612 0.080571 0.080571

2 383 −1.857536 0.156057 0.312113

3 525 −1.602123 0.201468 0.604405

4 532 −1.634589 0.195032 0.780130

5 408 −1.890398 0.151012 0.755058

6 273 −2.328727 0.097420 0.584518

7 139 −2.921404 0.053858 0.377006

8 45 −3.647811 0.026048 0.208385

9 27 −4.492199 0.011196 0.100764

10 10 −5.442146 0.004330 0.043302

11 4 −6.487602 0.001522 0.016744

12 0 −7.620267 0.000490 0.005885

13 1 −8.833174 0.000146 0.001896

14 1 −10.120390 0.000040 0.000564

15 0 −11.476790 0.000010 0.000156

where S = 10,097 and t = 2608. The logarithms of factorials in the above
equation were calculated by the well-known approximation

ln (n!) ≈ (n + 1/2) ln n − n + 1/2 ln (2π).

The details of calculations are presented in Table 7.10.
For the same two Neyman-Pearson classes used by Bol’shev and Mirvaliev

(1978) while testing for the Poisson null hypothesis, we obtain

N (0)
1 = N3 + N4 + N5 + N6 = 1738,

W (0)
1 = W3 + W4 + W5 + W6 = 0.644932,

W (1)
1 = 3W3 + 4W4 + 5W5 + 6W6 = 2.724112.

Substituting these values and β = S/t − S/t2 = 3.87 into (5.6), we get
Y = 2.362. This means that the P-value of this test equals 0.009 which leads
to the rejection of the binomial null hypothesis. If the logic of Bol’shev and
Mirvaliev (1978) was correct, we would conclude that the data do not contradict
the Poisson null hypothesis in this case. The apparent contradiction is evident,
and in this case we have to reject both the Poisson and the binomial null
hypotheses.
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Nevertheless, the method of Bol’shev and Mirvaliev (1978) assists us greatly
in having a look at the situation from the other side. Quite interestingly, they
mentioned that data may contradict the Poisson distribution because of the dead
time (“resolving time”) of a human eye (Bol’shev, 1965). If the non-random
parameter that characterizes the dead time is small, then the approximation of
Feller’s model mentioned in (9.6) may be used. Using the MMEs ñ = τ/(2γ )
and p̃ = 2μγ/(1 + μγ ), Bol’shev and Mirvaliev (1978) estimated γ as
γ̂ = 0.044 s. Then, by comparing this estimate with γ̂ = 0.05 s of Von
Mises (1931) from another experiment, they concluded that the binomial
approximation is valid. No attempt has been made, however, to develop tests to
verify whether the data are in conformance with models in (9.5)–(9.7). Voinov
and Nikulin (1984) revisited the problem and analyzed the data with corrections
for frequencies Nc (see Table 7.9) that account for the dead time on average for
each cell c, and then by applying Bol’shev and Mirvaliev’s test, showed that the
data do support Feller’s model. Since such a way of data correction cannot be
justified well, we reanalyze the data here by using the model in (9.7) that takes
into account the dead time individually for each observation.

Using the data in Table 7.9 for the binomial null hypothesis and r = 11
grouping intervals, we obtain Y 12

n(θ̂n) = 13.644,U 2
n (θ̂n) = 12.692, and

S2
n (θ̂n) = 0.952 (see formulas (9.2), (3.23), and (3.24)). With α = 0.05,

the critical values of the limiting chi-squared distributions with 10, 9, and 1
degrees of freedom are 18.307, 16.919, and 3.841, respectively. From these
values, at level 0.05, the null hypothesis is not rejected. The simulated (from
N = 1000 runs) as well as the exact value calculated with the help of non-
central chi-squared distribution (Abdel-Aty, 1954) values of the power of
these tests against the Poisson alternative is only slightly more than the level
0.05. For r = 2 Neyman-Pearson classes I1 and I2, we find the statistic
Y 12

n(θ̂n) = S2
n (θ̂n) = 5.4882, and since 5.4882 > 3.841, the 5% critical value

from the χ2
1 distribution, the hypothesis of the binomial distribution, as well as

of the Poisson distribution, are rejected. The simulated as well as the exact power
of this test for the Poisson alternative is also negligible. However, it is of interest
to mention that the simulated (based on N = 1000 runs) power of S2

n (θ̂n) for
both the Poisson and binomial alternatives for the “Feller’s distribution” in (9.7)
are 0.244 and 0.230, respectively. The corresponding non-centrality parameters
are 1.648 and 1.546, which gives the estimates of exact power as 0.250 and
0.238, respectively, which agree very well with the simulated values. All these
results seem to suggest that Feller’s distribution in (9.7) differs noticeably from
the Poisson and binomial distributions (see Figure 7.5).

Therefore, contrary to the conclusions of Bol’shev and Mirvaliev (1978) and
Mirvaliev (2001), the data of Rutherford et al. (1930) do not conform to either
Poisson or binomial distributions.

Moreover, from the above results, we cannot conclude that the null
hypothesis of the model in (9.7) is acceptable either. For this reason, we carried
out the test Y 22

n(θ̄n)defined in (4.12). It is clear that there is no point in using tests
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with r = 11 intervals due to their low power. For the data in Table 7.9, we find
Y 22

n(θ̄n) = 2.791, and so the null hypothesis of the model in (9.7) is not rejected
at level 0.05. The calculated value of Singh’s test in (3.25) for the same two
Neyman-Pearson classes turns out to be Q2

s (θ̄n) = 2.745, which also does not
lead to the rejection of the null hypothesis at the same 5% level of significance.
To confirm that Rutherford’s data do not contradict “Feller’s” model, we may
assess further the power of the test statistic Y 22

n(θ̄n) against the Poisson and
binomial alternatives which were rejected by the test Y 12

n(θ̂n). For this purpose,
we simulated values of Y 22

n(θ̄n) under these alternatives using N = 500 runs
for each case. For 40% of the simulated samples from the Poisson alternative,
we found negative estimates for p̃ which evidently means that those samples
contradict “Feller’s distribution,” and consequently the power of Y 22

n(θ̄n) is at
least 0.40. The same is observed for the binomial alternative in 41% of the
simulated samples meaning that the power of Y 22

n(θ̄n) is at least 0.41. The
calculated values of the non-centrality parameters are λ = 3.79 for the Poisson
alternative and λ = 2.77 for the binomial alternative. Using the non-central
chi-squared distribution with one degree of freedom at these non-centrality
parameters, we obtain the corresponding estimates of the powers to be 0.49
and 0.38, respectively, which are close to the simulated results. It is clear that
the power of Y 22

n(θ̄n) test is high enough to conclude that Rutherford’s data do
not contradict “Feller’s distribution” which takes into account the counter’s
dead time. These findings may be regarded as a statistical confirmation of
the exponential law of radioactive decay based on the experimental data of
Rutherford et al. (1930).

It is useful to mention that the approximate model in (9.7) and the HRM
statistic in (4.12) based on moment-type estimators may also be used for testing
a traffic counting distribution (Oliver, 1961). This model is quite similar to the
Feller’s distribution in (9.5), and it is expressed in terms of incomplete gamma-
function as well.

7.2.2 Concluding remarks

Contrary to a common belief that only efficient maximum likelihood estimators
need be used in constructing efficient parametric modified chi-squared tests,
one can use modified chi-squared tests based on non-efficient moment-type
estimators as well to produce some efficient goodness of fit tests (see Alloyarova
et al., 2007; Voinov et al., 2008a, 2009). This has been demonstrated in the
preceding sections.

We have used different statistical validation procedures as well as some
formal goodness of fit tests to shed some additional light on statistical analyses
of data from Rutherford’s experiment. The proposed tests perform well in
discriminating between the Poisson, binomial, and the approximate Feller’s
distributions which are all quite close to each other. The power of the tests is
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sufficient to conclude that “Feller’s model” is most appropriate for Rutherford’s
experimental data.

7.3 MODIFIED TESTS FOR THE LOGISTIC DISTRIBUTION

The logistic distribution has found important applications in many different
fields of science. For a comprehensive review of various developments on the
theory, methods and applications of the logistic distribution, one may refer to
the book by Balakrishnan (1992).

Now, let us consider the problem of testing the null hypothesis (H0) that the
distribution function of a random variable X belongs to the family of logistic
distributions

P{X � x |H0} = F(x,θ) = G

(
x − θ1

θ2

)
=
(

1 + exp

{
− π√

3

(
x − θ1

θ2

)})−1

,

where x ∈ R1,θ1 ∈ R1 and θ2 > 0. The corresponding pdf of X is

f (x,θ)= G ′
(

x − θ1

θ2

)
= 1

θ2
g

(
x − θ1

θ2

)

= π√
3θ2

exp
(
− π√

3θ2
(x − θ1)

)
{

1 + exp
(
− π√

3θ2
(x − θ1)

)}2 . (7.4)

Let θ̂n = (θ̂1n,θ̂2n)
T be the MLE of the parameter θ = (θ1,θ2)

T . Since there
is no other sufficient statistic for θ than the trivial one X = (X1, . . . ,Xn)

T in
the case of logistic distribution in (7.4), the maximum likelihood estimates have
no explicit forms. For this reason, Harter and Moore (1967) (see also Harter
and Balakrishnan, 1996) discussed numerical determination of the maximum
likelihood estimate of θ based on complete as well as doubly Type-II censored
samples. However, by using some approximations in the resulting likelihood
equations, Balakrishnan (1990) produced approximate maximum likelihood
estimator of θ which are simple explicit estimators of θ1 and θ2 and are
also nearly as efficient as the maximum likelihood estimators. To present the
expressions of these estimators, let us assume that from the random sample
X1, . . . ,Xn from the logistic density function in (7.4), we observe a doubly
Type-II censored sample of the form Xr+1:n � · · · � Xn−s:n , where the
smallest r and the largest s observations have been censored. Then, from the
corresponding likelihood function

L = n!
r !s!

(
F
(
xr+1:n,θ

))r (1 − F
(
xn−s:n,θ

))s n−s∏
i=r+1

f (xi :n,θ),
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we readily obtain the likelihood equations for θ1 and θ2 as follows:

∂ ln L

∂θ1
= π√

3θ2

[
−r

f ∗(zr+1:n)
F∗(zr+1:n)

+ s
f ∗(zn−s:n)

1 − F∗(zn−s:n)

+(n − r − s)− 2
n−s∑

i=r+1

f ∗(zi :n)
F∗(zi :n)

]

= 0

and

∂ ln L

∂θ2
= 1

σ

[
−(n − r − s)− r zr+1:n

f ∗(zr+1:n)
F∗(zr+1:n)

+ szn−s:n
f ∗(zn−s:n)

1 − F∗(zn−s:n)

+
n−s∑

i=r+1

zi :n − 2
n−s∑

i=r+1

zi :n
f ∗(zi :n)
F∗(zi :n)

]

= 0,

where zi :n = π(xi :n − θ1)/(
√

3θ2),

f ∗(z) = e−z

(1 + e−z)2
and F∗(z) = 1

1 + e−z
for z ∈ R1.

Then, Balakrishnan (1990) suggested expanding the function F∗(zi :n) in a
Taylor series around the point F∗(pi ) = ln (pi/qi ) and then approximating
it by

F∗(zi :n) 
 γi + δi zi :n,

where

pi = 1 − qi = i

n + 1
, γi = pi − pi qi ln (pi/qi ) and δi = pi qi .

Upon using this approximation in the above likelihood equations for θ1 and θ2,
and then solving the resulting simplified equations, the approximate maximum
likelihood estimators of θ1 and θ2 are derived to be

θ̂1 = B −
√

3

π
C θ̂2 and θ̂2 = π√

3

{
D + √

D2 + 4AE

2A

}
,
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where

A = n − r − s,

B = 1

m

{
rδr+1xr+1:n + sδn−s xn−s:n + 2

n−s∑
i=r+1

δi xi :n

}
,

C = 1

m

{
n − s − rγr+1 − sγn−s − 2

n−s∑
i=r+1

γi

}
,

D =
n−s∑

i=r+1

(2γi − 1)xi :n − r(1 − γr+1)xr+1:n + sγn−s xn−s:n + m BC,

E = rδr+1x2
r+1:n + sδn−s x2

n−s:n + 2
n−s∑

i=r+1

δi x2
i :n − m B2,

m = rδr+1 + sδn−s + 2
n−s∑

i=r+1

δi .

As shown by Balakrishnan (1990), these estimators are nearly as efficient as the
maximum likelihood estimators of θ1 and θ2 in the case of complete as well as
censored samples. Of course, the approximate maximum likelihood estimators
of θ1 and θ2 for the complete sample situation are deduced from the above
expressions simply by setting r = s = 0. Note that, in this case, the following
simple expressions are obtained for A,B,C,D,E, and m:

A = n,m = 2
n∑

i=1

δi , B = 2

m

n∑
i=1

δi xi :n, C = 1

m

{
n − 2

n∑
i=1

γi

}
,

D =
n∑

i=1

(2γi − 1)xi :n + m BC, and E = 2
n∑

i=1

δi x2
i :n − m B2.

Based on the above estimators, Aguirre and Nikulin (1994) suggested the
following modified chi-squared test. The limiting covariance matrix of the
random vector

√
n(θ̂n − θ) is J−1, where

J = 1

9θ2
2

[
π2 0

0 π2 + 3

]
.

Let N(n) = (N (n)
1 , . . . ,N (n)

r )T be the frequency vector arising from
grouping X1, . . . ,Xn over the random equiprobable intervals ( − ∞,b1],
(b1,b2], . . . ,(br−1, + ∞), where b j = θ̂1n + √

3θ̂2n ln ( j/(r − j))/π ,
j = 1, . . . ,r − 1. Denote by p = (p1, . . . ,pr )

T the vector of probabilities

p j = ∫ b j
b j−1

f (x,θ)dx , with θ1 and θ2 replaced by θ̂1n and θ̂2n , respectively.
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For the above chosen random intervals, the probabilities of falling into each
interval are p1 = · · · = pr = 1/r . Let y j = ln ( j/(r − j)), for j = 1, . . . ,r −1.
Further, let

a = (a1, . . . ,ar )
T , b = (b1, . . . ,br )

T , WT = − 1

θ2
[a...b],

where, for j = 1,2, . . . ,r ,

a j = g(y j )− g(y j−1) = π

r2
√

3
(r − 2 j + 1),

b j = y j g(y j )− y j−1g(y j−1)

= 1

r2

[
( j − 1)(r − j + 1) ln

(
r − j + 1

j − 1

)
− j(r − j) ln

(
r − j

j

)]
,

α(N(n))= r
r∑

j=1

a j N (n)
j = π

r
√

3

⎡
⎣(r + 1)n − 2

r∑
j=1

j N (n)
j

⎤
⎦ ,

β(N(n))= r
r∑

j=1

b j N (n)
j = 1

r

r−1∑
j=1

(N (n)
j+1 − N (n)

j ) j(r − j) ln

(
r − j

j

)
,

λ1 = J (11)− r
r∑

j=1

a2
j = π2

9r2 , λ2 = J (22)− r
r∑

j=1

b2
j .

Let � = D − ppT − WT J−1W, where D is the diagonal matrix with elements
1/r on the main diagonal. Then, the matrix � does not depend on θ , and its
rank is r − 1, i.e. the matrix � is singular. Consider the matrix �̃ obtained by
deleting the last row and the last column of �, which is not singular and in fact

�̃
−1 = A + AW̃T (J − W̃AW̃T )−1W̃A,

where A = D̃−1 + 11T /pr ,D̃−1 is a diagonal matrix with elements
1/p1, . . . ,1/pr−1 on the main diagonal, 1 = 1r−1 is the r − 1 dimensional
vector with all elements being one, and W̃ is obtained from W by deleting
the last column. The vector Ñ(n) = (N (n)

1 , . . . ,N (n)
r−1)

T is asymptotically

normally distributed with mean vector EÑ(n) = np̃ and covariance matrix
E(Ñ(n) − np̃)T (Ñ(n) − np̃) = nσ̃ , where p̃ = (p1, . . . ,pr−1)

T . Then, we have
the following result.

Theorem 7.1 (Aguirre and Nikulin (1994)) The statistic

Y 12
n = 1

n
(Ñ(n) − np̃)T σ̃−1(Ñ(n) − np̃)

=
r∑

j=1

(N (n)
j − np j )

2

np j
+ λ1β

2(N(n))+ λ2α
2(N(n))

nλ1λ2
(7.5)

follows in the limit the chi-square distribution with r − 1 degrees of freedom.
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Remark 7.1. Consider the alternative hypothesis Hη according to which
the random variables Xi ,i = 1, . . . ,n, follow a probability distribution
G((x − θ1)/θ2,η), where G(x,η) is continuous, |x | < ∞,η ∈ H ∈ R1,
G(x,0) = G(x), and η = 0 is a limit point of H. Assume that ∂

∂x G(x,η) =
g(s,η) and ∂

∂η
g(x,η)|η=0 = ψ(x), where g(x,0) = g(x) = G ′(x). If ∂

2g(x,η)
∂η2

exists and is continuous for all x in the neighborhood of η = 0, then for

b j = θ̂1 +
√

3θ̂2
π

ln
(

j
j−1

)
, j = 1, . . . ,r −1, we have P{b j−1 < X � b j |Hη} =

p j+ηc j+o(η), where c j = ∫ y j
yr−1

ψ(x)dx, j = 1, . . . ,r . In the limit, as n → ∞,
the test statistic in (7.5) will follow the non-central chi-square distribution with
r − 1 degrees of freedom and the non-centrality parameter

λ =
r∑

j=1

c2
j

p j
+ λ2α

2(c)+ λ1β
2(c)

λ1λ2
, with c = (c1, . . . ,cr )

T .

Remark 7.2. Voinov et al. (2003) (see also Voinov et al., 2009) constructed the
HRM test Y 22

n(θ̄n) in (4.9) for logistic distribution as the null hypothesis and
also examined its power properties. Analytical expressions for the elements of
matrices B,C,K,V needed to evaluate the test statistic Y 22

n(θ̄n) are presented
in Section 9.5. As it is difficult to obtain the distribution of the test statistic
Y 22

n(θ̄n) under alternative hypotheses, a Monte Carlo experiment was used to
estimate the power, and the results of this simulation study are all detailed in
Sections 4.4.2 and 4.5.2.

7.4 MODIFIED CHI-SQUARED TESTS FOR THE INVERSE
GAUSSIAN DISTRIBUTION

7.4.1 Introduction

Schrödinger (1915) was the first to derive the probability distribution of the
first passage time in Brownian motion. Tweedie (1957) investigated the basic
characteristics of this distribution and proposed the name inverse Gaussian,
and it is also known as Wald’s distribution. Folks and Chhikara (1978) gave
a review of this distribution (denoted here by IGD) and mentioned numerous
applications of it. An application of the IGD as a life time model is possibly the
most appealing one; see Chhikara and Folks (1989), Gunes et al. (1997), and
Seshadri (1993).

Let X1, . . . ,Xn be i.i.d. random variables that follow the IGD with
probability density function

f (x; θ)=
√

λ

2πx3 exp

{
−λ(x − μ)2

2μ2x

}
, x � 0,

θ = (μ,λ)T ∈ R1+ × R1+ ⊂ R2,
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where μ is the location (in fact, the mean) and λ is the shape parameter. The
hazard rate function of the IGD is

h(x,θ)=
√

λ

2πx3 exp

[
−λ(x − μ)2

2μ2x

]{
�

[
−
√
λ

x

(
x

μ
− 1

)]

− exp
2λ

μ
�

[
−
√
λ

x

(
x

μ
+ 1

)]}−1

, x � 0.

The complete sufficient statistics for parameters μ and λ are (Folks and
Chhikara, 1978, Seshadri, 1993) S = X = 1

n

∑n
i=1 Xi and T =∑n

i=1

(
1
Xi

− 1
X

)
, respectively. Moreover, the MLEs of μ and λ are μ̂ = S

and λ̂ = n/T .
Gunes et al. (1997) (see also Lemeshko et al., 2010) used Monte Carlo

simulations to investigate the power properties of the following EDF tests:
Kolmogorov-Smirnov, Kuiper, Cramer-von Mises, Watson and Anderson-
Darling. Gunes et al. (1997) showed that, among all the non-parametric tests
investigated, the Watson test based on the statistic

W = 1

12n
+

n∑
i=1

[
F(Xi )− 2i − 1

2n

]2

− n

[(
n∑

i=1

F(Xi )

n

)
− 1

2

]2

,

where F(x) is the cumulative distribution function of the IGD, possesses the
highest power.

7.4.2 The NRR, DN and McCulloch tests

The NRR test in (3.8) for IGD has been investigated by Nikulin and Saaidia
(2009), Lemeshko (2010), and Saaidia and Tahir (2012). This test is based on
the MLE of the Fisher information matrix J(θ) for one observation from IGD
given by

J(θ) =
(

λ
μ3 0

0 1
2λ2

)
,

and the matrix

B(θ) =
⎛
⎜⎝b11 b12

· · · · · ·
br1 br2

⎞
⎟⎠ ,

where

bi1 = 1√
pi (θ)

∂ pi (θ)

∂μ
, bi2 = 1√

pi (θ)

∂ pi (θ)

∂λ
, i = 1, . . . ,r ,
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r is the number of grouping cells, and pi (θ) is the probability of falling into the
ith cell.

For r equiprobable grouping intervals with random boundaries (when
pi (θ) = 1/r ), Saaidia and Tahir (2012) investigated the power of the NRR
test in (3.8), the DN test in (3.23), and the McCulloch test in (3.24) with respect
to the following alternatives:

f (x;μ,σ) = 1

xσ
√

2π
exp
{
−( ln x − μ)2/2σ 2

}
, x,σ > 0, μ ∈ R1;

the loglogistic

f (x;α,β) = (β/α)(x/α)β−1

{1 + (x/α)β}2 , x,α,β > 0;

the generalized Weibull

F(x) = 1 − exp
{

1 − [1 + (x/σ)ν
]1/γ }

, x,σ,ν,γ > 0;

and the exponentiated Weibull

F(x) = {1 − exp (1 − x/α)β
}γ
, x,α,β,γ > 0.

They showed that, for equiprobable random cells for a sample of size n = 200
and α = 0.05, the McCulloch test (as in Sections 3.5 and 4.4) is the most
powerful among all modified chi-squared tests considered in their study.
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Chapter 8

Probability Distributions
of Interest

In this chapter, we describe various discrete and continuous probability dis-
tributions that are most pertinent to the discussion in preceding chapters, and
provide details on their forms and key distributional properties. For more elab-
orate discussions on all univariate and multivariate distributions described here,
interested readers may refer to the books by Johnson et al. (1994, 1995, 2005),
Kotz et al. (2000), Balakrishnan and Nevzorov (2003), and Balakrishnan and
Lai (2009).

8.1 DISCRETE PROBABILITY DISTRIBUTIONS

8.1.1 Binomial, geometric, and negative binomial
distributions

Consider a sequence of identical and independent trials indexed by k =1,2, . . . .
Suppose the outcome of each trial is one of two possible events E1 and E2 = E1,
one of which, for example E1, is referred to as a “success” and the other one,
E2, as a “failure.” These independent trials, in which the probability of success
p = P(E1) stays fixed, are called Bernoulli trials. Let q = 1 − p = P(E2) be
the probability of failure. Corresponding to each trial, we define the Bernoulli
random variable Xi (for i = 1, . . . ,n) with parameter p. Then, the random
variables {Xi : i = 1,2, . . .} form a sequence of independent random vari-
ables, following the same law of Bernoulli with parameter p,0 < p < 1.

Chi-Squared Goodness of Fit Tests with Applications. http://dx.doi.org/10.1016/B978-0-12-397194-4.00008-9
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With different stopping rules for these trials in a Bernoulli experiment, differ-
ent probability models are obtained.

Let n (� 2) be a fixed positive integer. Then, consider the statistic

μn =
n∑

i=1

Xi

which represents the number of successes among the first n trials. The statistic
μn follows the binomial law B(n,p) with parameters n and p,0 � p � 1,
which we denote by μn ∼ B(n,p). It is easy to show that

P{μn = k|n,p} =
(

n

k

)
pk(1 − p)n−k, k ∈ {0,1, . . . ,n},

Eμn = np, Varμn = np(1 − p) = npq < Eμn .

The cumulative distribution function of μn is the step function given by the
formula

P{μn � m|n,p}

=
m∑

k=0

(
n

k

)
pk(1 − p)n−k

= P0 + P1 + · · · + Pm

= 1 − Ip(m + 1,n − m) = I1−p(n − m,m + 1), m = 0,1, . . . ,n,

where

Ix (a,b) = 1

B(a,b)

∫ x

0
ua−1(1 − u)b−1du, 0 < u < 1,

is the incomplete beta ratio (a > 0,b > 0), and

B(a,b) =
∫ 1

0
ua−1(1 − u)b−1du

is the complete beta function. Note that

B(a,b) = �(a)�(b)

�(a + b)
,

where

�( f ) =
∫ ∞

0
t f −1e−t dt, f > 0,

is the complete gamma function.
Let Z1 be the number of Bernoulli trials performed until the occurrence of

the first success. Then, the possible values of the statistic Z1 are 1,2,3, . . . .
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In this case, we say that the statistic Z1 follows the geometric distribution with
parameter p,0 < p < 1, and its probability mass function is

P{Z1 = k|p} = p(1 − p)k−1, k = 1,2, . . .

We shall denote it by Z1 ∼ G(p). In this case, it can be easily shown that

EZ1 =
∞∑

k=1

kp(1 − p)k−1 = 1

p

and

VarZ1 = EZ1
2 − (E(Z1))

2 = 1 − p

p2 .

Note that
VarZ1 < EZ1

if and only if p ∈ ( 1
2 ,1
]
. The distribution function of Z1 is

F(x) = P{Z1 � x |p} =
[x]∑

k=1

p(1 − p)k−1 = 1 − (1 − p)[x], x � 1.

Next, let Zr be the number of Bernoulli trials performed until the r-th
success. Then, the possible values of Zr are r ,r + 1, . . . The event Zr = k
would occur if and only if during the first k − 1 trials r − 1 successes were
observed, and in the kth trial a success is observed, which readily yields

P(Zr = k|p) =
(

k − 1

r − 1

)
pr−1(1 − p)k−1−(r−1) p =

(
k − 1

r − 1

)
pr (1 − p)k−r .

The probability distribution of the statistic Zr is called the negative binomial
distribution with parameters r and p,r ∈ {1,2, . . .},0 < p < 1, and we shall
denote it by Zr ∼ N B(r ,p). We then observe the following:

1. If r = 1, then we have the geometric distribution with parameter p, that is,
N B(1,p) = G(p);

2. Consider r is independent and identically distributed random variables
Z1,1,Z1,2, . . . ,Z1,r , where Z1,i ∼ G(p). Then, from the definition of the
negative binomial distribution, it follows that

Zr
d=

r∑
i=1

Z1,i ,

where Zr ∼ N B(r ,p). So, we immediately have

EZr = r

p
and VarZr = r(1 − p)

p2 ;
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3. In a similar manner, we can show that if Zr1 ,Zr2 , . . . ,Zrn are independent
random variables such that Zri ∼ N B(ri ,p), then the statistic

Un =
n∑

i=1

Zri

follows the negative binomial distribution with parameters r = ∑n
i=1 ri

and p, that is, Un ∼ N B(r ,p);
4. VarZr < EZr if and only if p ∈ ( 1

2 ,1
]
.

Note that P(Zr > n) = P(μn < r), from which it follows that

P{Zr � n|p} = 1 − P{Zr > n|p} = 1 − P{μn < r |r + n − 1,p}
= 1 − P{μn � r − 1|r + n − 1,p} = Ip(r ,n − r + 1)

= 1 − I1−p(n − r + 1,r)

and so the distribution function of the statistic Zr is

FZr (x) = Ip(r ,[x] − r + 1) = 1 − I1−p([x] − r + 1,r), x � r . (8.1)

Suppose the Bernoulli trials are continued until the rth success. Then, the
statistic Tr = Zr − r shows the number of failures observed in these trials.
Then, the statistic Tr takes on values 0,1, . . . , and

P{Tr = k|p} = P{Zr = k + r |p} =
(

k + r − 1

r − 1

)
pr (1 − p)k .

We say that the statistic Tr follows the Pascal distribution with parameters
r and p.

The mean and variance of the statistic Tr are evidently

ETr = r(1 − p)

p
, VarTr = r(1 − p)

p2 ,

and its distribution function is

FTr (x) = FZr (x + r) = Ip(r ,[x]+ 1) = 1 − I1−p([x]+ 1,r), x � 0. (8.2)

From (8.1) and (8.2), it follows that

P{Tr � n|p} = P{μn � r − 1|r + n − 1,p} = 1 − Ip(r ,n) = I1−p(n,r).

Note that
VarTr

ETr
= 1

p
> 1

for p ∈ [0,1].
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8.1.2 Multinomial distribution

Consider a sequence of n independent trials, and suppose the outcome of
each trial is one of k mutually exclusive events E1,E2, . . . ,Ek with positive
probabilities

p1 = P(E1),p2 = P(E2), . . . ,pk = P(Ek),

where p1 + · · · + pk = 1.
Let p = (p1, . . . ,pk)

T and ν = (ν1, . . . ,νk)
T , where νi is the frequency of

the event Ei in the sequence of trials (i = 1, . . . ,k). It is then evident that the
possible values of νi are non-negative integers ni ,0 � ni � n, and

n1 + n2 + · · · + nk = n. (8.3)

The statistic ν follows the multinomial probability distribution with parameters
n and p, and its probability mass function is

P {ν1 = n1, . . . ,νk = nk} = n!
n1! . . . nk ! pn1

1 pn2
2 . . . pnk

k ,

for any integers n1, . . . ,nk satisfying (8.3). We shall denote it by ν ∼ Mk(n,p).
By direct computation, one can see that the mean vector and the variance–

covariance matrix of ν are given by

Eν = np and E(ν − np)(ν − np)T = n� = n(P − ppT ),

where P is the diagonal matrix with p1, . . . ,pk on its main diagonal. It can be
shown that, due to the condition in (8.3), the rank of �= k − 1.

8.1.3 Poisson distribution

The discrete random variable X follows the Poisson distribution with parameter
λ > 0, if

P{X = k} = λk

k! e−λ, k = 0,1, . . . ,

and we shall denote it by X ∼ P(λ). It is easy to show that

EX = VarX = λ,

and so
VarX

EX
= 1.

The distribution function of X is

P{X � m} =
m∑

k=0

λk

k! e−λ = 1 − Iλ(m + 1), (8.4)
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where

Ix ( f ) = 1

�( f )

∫ x

0
t f −1e−t dt, x > 0

is the incomplete gamma function. Often, for large values of λ, to compute
(8.4), we can use a normal approximation

P{X � m} = �

(
m + 0.5 − λ√

λ

)
+ O

(
1√
λ

)
, λ → ∞.

Let {Xn}∞n=1 be a sequence of independent and identically distributed
random variables following the same Bernoulli distribution with parameter
p,0 < p < 1, with

P{Xi = 1} = p, P{Xi = 0} = q = 1 − p.

Let

μn = X1 + · · · + Xn, Fn(x) = P
{
μn − np√

npq
� x

}
, x ∈ R1.

Then, uniformly for x ∈ R1, we have

Fn(x) → �(x) = 1√
2π

∫ x

−∞
e−t2/2dt, n → ∞.

From this result, it follows that for large values of n,

P
{
μn − np√

npq
� x

}
≈ �(x).

Often this approximation is used with the so-called continuity correction given by

P
{
μn − np + 0.5√

npq
� x

}
≈ �(x).

We shall now describe the Poisson approximation to the binomial
distribution. Let {μn} be a sequence of binomial random variables, μn ∼
B(n,pn), 0 < pn < 1, such that

npn → λ if n → ∞ and λ > 0.

Then,

lim
n→∞ P{μn = m|n,pn} = λm

m! e−λ.

In practice, this means that for “large” values of n and “small” values of p, we
may approximate the binomial distribution B(n,p) by the Poisson distribution
with parameter λ = np, that is,

P{μn = m|n,p} ≈ λm

m! e−λ.
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It is of interest to note that (Hodges and Le Cam, 1960)

sup
x

∣∣∣∣∣
x∑

m=0

(
n

m

)
pm(1 − p)n−m −

x∑
m=0

λm

m! e−λ
∣∣∣∣∣ � C√

n
, where C � 3

√
λ.

Hence, if the probability of success in Bernoulli trials is small, and the number
of trials is large, then the number of observed successes in the trials can be
regarded as a random variable following the Poisson distribution.

8.2 CONTINUOUS PROBABILITY DISTRIBUTIONS

A random variable X is said to be continuous if its distribution function

F(x) = P(X � x), x ∈ R1

is absolutely continuous, i.e., it can be presented as an integral of a probability
density function f (x) in the form

F(x) =
∫ x

−∞
f (y)dy, x ∈ R1.

The probability that X takes a value x ∈ R1 is equal to 0, i.e., P(X = x) = 0.
But, we may speak about the probability that X takes a value in an interval, and
it is given by

P(X ∈ [a,b]) =
∫ b

a
f (x)dx .

If the distribution function is differentiable at the point x, then

f (x) = lim
h↓0

P(x < X � x + h)

h
= F ′(x).

The quantity

x p = inf{x : F(x) � p}, 0 < p < 1

is called the p-quantile of the random variable X.
If the support X = {x : f (x) > 0} of the density (the set on which

the density is strictly positive) is an interval, then the distribution function is
continuous and strictly increasing on this interval, and consequently

x p = F−1(p), 0 < p < 1,

where F−1 is the inverse function of F( · ).
In the case when a random variable is continuous and positive, it can be

regarded as a lifetime variable. In this case, we often denote it by T. The value
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of this random variable can be considered as the failure time of a system or
a unit. The law of a lifetime T is often specified in terms of the survival or
reliability function, given by

S(t) = P{T > t} = 1 − F(t), t � 0.

For any t > 0,S(t) = 1 − F(t) gives the probability that the lifetime of the
considered system (unit) will exceed t, or the probability not to have the failure
of the system during the time interval [0,t]. It is evident that F(t) is then the
probability of failure of the system in the interval [0,t].

The value f (t) of the density f ( · ) represents the probability of failure in
a small interval after the moment t.

In survival analysis and reliability theory, it is more natural to formulate
models in terms of failure rate function or hazard function of the lifetime T
defined by

λ(t) = lim
h↓0

P(t < T � t + h|T > t)

h
= f (t)

S(t)
.

For any positive t, the value λ(t) represents the probability of failure in a small
interval after the moment t given that the system is still functioning at the
moment t. Thus, it is the instantaneous failure rate of a system which has
survived t units of time. Next, we introduce the important notion of Mean Time
to Failure (MTTF). It is the average length of time until failure of a system, and
is given by

ET =
∫ ∞

0
t f (t)dt =

∫ ∞

0
td F(t) = −

∫ ∞

0
td[1 − F(t)]

= − lim
t→∞ t[1 − F(t)] +

∫ ∞

0
[1 − F(t)]dt =

∫ +∞

0
S(t)dt,

provided it exists. In the same way, we can see that if VarT exists, then it can
be expressed as

VarT = 2
∫ ∞

0
t S(t)dt − (ET )2.

8.2.1 Exponential distribution

Let X = (X1, . . . ,Xn)
T be a sample from an exponential distribution E(μ,σ ),

i.e.

Xi ∼ f (x; θ), θ ∈ � = {θ = (μ,σ )T : |μ| < ∞,σ > 0},
where

f (x; θ) =
{

1
σ

exp
(− x−μ

σ

)
, x � μ,

0, otherwise.
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We can alternatively write

f (x; θ) = 1

σ
exp

(
− x − μ

σ

)
H(x − μ), (8.5)

where

H(x) =
{

1, if x � 0,

0, if x < 0.

It is easy to show that

EXi = μ+ σ and VarXi = σ 2. (8.6)

Let X (n) = (X(1),X(2), . . . ,X(n))T denote the vector of order statistics
obtained by arranging the vector of observations X , with

P{X(1) < X(2) < · · · < X(n)} = 1. (8.7)

Then, it can be shown that T = (X(1),S)T is the minimal sufficient statistic for
the parameter θ , where

X(1) = min (X1,X2, . . . ,Xn) and S =
n∑

i=2

(X(i) − X(1)). (8.8)

Indeed, the likelihood function of X is

L(X; θ) =
n∏

i=1

f (Xi ; θ) = 1

σ n
exp

{
− 1

σ

n∑
i=1

(Xi − μ)

}
H(X(1) − μ)

= 1

σ n
exp

{
− 1

σ

n∑
i=1

(X(i) − μ)

}
H(X(1) − μ). (8.9)

Since

n∑
i=1

Xi =
n∑

i=1

X(i) =
n∑

i=2

(X(i) − X(1))+ nX(1) =
n∑

i=2

(X(i) − X(1))+ nX(1),

we readily have T = (X(1),S)T to be the minimal sufficient statistic for
θ = (μ,σ )T . Then, the statistic vector

U =
(

X(1),
n∑

i=2

X(i)

)T

is also minimal sufficient for θ . It is easy to show that the density of X(1) is
given by

n

σ
exp
{
− n

σ
(x(1) − μ)

}
H(x(1) − μ), (8.10)
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i.e. X(1) follows the exponential law E(μ,σ/n), and consequently

EX(1) = μ+ σ

n
and VarX(1) = σ 2

n2 . (8.11)

Thus, we see that nX(1) ∼ E(nμ,σ), and so from (8.11) it readily follows that

E{nX(1)} = nμ+ σ and Var{nX(1)} = σ 2. (8.12)

Now, we shall show that X(1) and S are independent. First, we note that the
density of X (·) is

g(x(·); θ) = n!
n∏

i=1

f (x(i); θ)

= n!
σ n

exp

{
− 1

σ

n∑
i=1

(x(i) − μ)

}
H(x(1) − μ)

= n

σ
exp
{
− n

σ
(x(1) − μ)

}
H(x(1) − μ)

(n − 1)!
σ n−1

× exp

{
− 1

σ

n∑
i=2

(x(i) − x(1))

}
H(x(2) − x(1)), (8.13)

where

x(·) = (x(1), . . . ,x(n))
T ∈ Bμ

= {x ∈ Rn : μ � x1 � x2 � · · · � xn}. (8.14)

From (8.13), it follows that

(n − 1)!
σ n−1 exp

{
− 1

σ

n∑
i=2

(x(i) − x(1))

}
, x(1) � x(2) � · · · � x(n) (8.15)

represents the conditional joint density function of the vector (X(2),
X(3), . . . ,X(n))T, given X(1) = x(1). One can see that this conditional law
does not depend on μ. Moreover, from (8.8) and (8.13), it follows that for
a given value of the statistic X(1), the vector (X(2),X(3), . . . ,X(n))T represents
the vector of order statistics associated with a sample of dimension n − 1 from
an exponential distribution shifted by x(1) (instead of μ). Also, the elements of
this sample follow the same exponential law

1

σ
exp

{
− x − x(1)

σ

}
H(x − x(1)).

Now, we shall obtain the joint density

q(y; θ), y = (y1, . . . ,yn)
T ∈ Bμ = {x ∈ Rn : μ � y1,0 � y2 � · · · � yn},
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of the statistics

X(1) and (X(2) − X(1), . . . ,X(n) − X(1))
T ,

i.e., the density of the statistic

Y = (Y1,Y2, . . . ,Yn)
T ,

where
Y1 = X(1), Y j = X( j) − X(1), j = 2, . . . ,n. (8.16)

Note that the statistic Y is a linear transformation of the statistic X (n)

expressed as
Y = BX(n),

where

B =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

−1 0 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

and so
X (n) = B−1Y ,

where

B−1 =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 . . . 0

1 1 0 . . . 0

1 0 1 . . . 0
...

1 0 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
.

Since det B = 1, it follows from (8.13) that

q(y; θ) = g(B−1 y; θ)| det B−1| = g(y1,y1 + y2, . . . ,y1 + yn; θ)

= n

σ
exp
{
− n

σ
(y1 − μ)

}
H(y1 − μ)

(n − 1)!
σ n−1

{
− 1

σ

n∑
i=2

yi

}
,

y ∈ Bμ ⊂ Rn . (8.17)

From (8.17), we observe that the joint density of X(1) and (X(2) −
X(1), . . . ,X(n) − X(1))T is the product of two densities of the statistics X(1)
and (X(2) − X(1), . . . ,X(n) − X(1))T , which implies that the statistics X(1) and∑n

i=2 (X(i)− X(1)) are independent. Moreover, from (8.17), it also follows that∑n
i=2 (X(i) − X(1)) follows the gamma distribution with density

1

σ n−1�(n − 1)
yn−2e−y/σ H(y).
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Since
(n − 1)!
σ n−1 exp

{
− 1

σ

n∑
i=2

yi

}
, 0 � y2 � y3 � · · · � yn,

represents the joint density of the (n − 1)-dimensional statistic associated with
the exponential law

1

σ
exp

{
− 1

σ
y

}
H(y),

it follows that the statistic

1

σ

n∑
i=2

Yi = 1

σ

n∑
i=2

(X(i) − X(1)) = γn−1

is distributed as the sum of (n −1) independent random variables following the
standard exponential distribution E(0,1). This means that S follows the gamma
distribution with shape parameter (n − 1) and scale parameter σ , i.e.,

S =
n∑

i=2

Yi =
n∑

i=2

(X(i) − X(1)) = σγn−1, (8.18)

and so

ES = E{σγn−1} = (n − 1)σ, VarS = Var{σγn−1} = σ 2(n − 1). (8.19)

In this case, the statistic

σ̄n = 1

n − 1

n∑
i=2

(X(i) − X(1)) = n

n − 1
(X̄n − X(1)) (8.20)

is the minimum variance unbiased estimator (MVUE) of σ . From (8.19), it then
follows that

Varσ̄n = σ 2

n − 1
.

Note that, by using (8.11) and (8.20), we may construct the MVUE μ̄n of μ as

μ̄n = X(1)− σ̄n

n
= X(1)− 1

n(n − 1)

n∑
i=2

(X(i)−X(1)) = X(1)− 1

n − 1
(X̄n−X(1)).

Since the statistics X(1) and S are independent, the statistics X(1) and σ̄n are
also independent, and so

Varμ̄n = VarX(1) + 1

n2 Varσ̄n = σ 2

n2 + σ 2

(n − 1)n2 = σ 2

n(n − 1)
. (8.21)
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Remark 8.1. Since

n∑
i=2

(X(i) − X(1)) =
n∑

i=2

Yi =
n∑

i=2

(n − i + 1)(X(i) − X(i−1)), (8.22)

from (8.13) and (8.16), it follows that the statistics

n(X(1)−μ),(n−1)(X(2)−X(1)), . . . ,(n−i+1)(X(i)−X(i−1)), . . . ,X(n)−X(n−1)

are independent, and

nX(1) ∼ E(nμ,σ), i .e. n(X(1) − μ) ∼ E(0,σ ), (8.23)

(n − i + 1)(X(i) − X(i−1)) ∼ E(0,σ ), i = 2,3, . . . ,n. (8.24)

It is evident that these nice properties of the exponential distribution are
consequences of the lack of memory of the exponential distribution.

Remark 8.2. From (8.5), it follows that the likelihood function is

L(X; θ) = L(X;μ,σ) = 1

σ n
exp

{
− 1

σ

n∑
i=1

(Xi − μ)

}
H(X(1) − μ),

and so the maximum likelihood estimator of μ is simply

μ̂n = X(1).

Since
∂ ln L(X; θ)

∂σ
= − n

σ
+ 1

σ 2

n∑
i=1

(Xi − μ),

we see that the maximum likelihood estimator of σ (σ̂n) is the solution of the
equation

− n

σ
+ 1

σ 2

n∑
i=1

(Xi − X(1)) = 0,

i.e.

σ̂n = 1

n

n∑
i=1

(Xi − X(1)) = Xn − X(1).

Since
∂2 ln L(X; θ)

∂σ 2

∣∣∣∣
σ̂n ,μ̂n

= − n

(X̄n − X(1))2
< 0,

we have the maximum likelihood estimator (MLE) θ̂n of θ as

θ̂n = (μ̂n,σ̂n)
T = (X(1),Xn − X (1)

)T
.

It is important to mention here that analogous results can be developed for
different forms of censored data as well under the exponential distribution. For
a detailed review of all these results, one may refer to the book by Balakrishnan
and Basu (1995).
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8.2.2 Uniform distribution

Definition 8.1. A random variable U follows the uniform distribution on the
interval [a,b] if the density function of U is given by

f (x; a,b) = 1

b − a
1[a,b](x), x ∈ R1.

The distribution function of U is

F(x; a,b) = P{U � x} = x − a

b − a
1[a,b](x)+ 1]b,+∞[(x), x ∈ R1.

It is easy to verify that

EU = a + b

2
, VarU = (b − a)2

12
.

Remark 8.3. Let X be a continuous random variable, with F(x) as the
distribution function of X. It is then easy to show that the statistic U = F(X)
follows the uniform probability distribution on [0,1]. This transformation is
often referred to as the probability integral transformation.

8.2.3 Triangular distribution

Let X and Y be independent random variables uniformly distributed over the
interval [ a

2 ,
b
2 ]. Consider the statistic Z = X + Y . The probability density func-

tion of Z is given by

f (z; a,b) =
{

2

b − a
− 2|a + b − 2z|

(b − a)2

}
1[a,b](z).

Since this function has the form of a triangle on [a,b] with the maximum value
2/(a + b) at the point a+b

2 , this distribution is known as the triangular distri-
bution. It is known also as Simpson’s distribution. It is easy to verify that

EZ = a + b

2
and VarZ = (b − a)2

24
.

Triangular distribution is a suitable substitute for the beta distribution in
some analyses; see Johnson (1997). The symmetric triangular distribution is
commonly used in audio dithering, for example.

8.2.4 Pareto model

The Pareto model has found key applications in many fields including
economics, actuarial science, and reliability. Its probability distribution function
is given by

F(x,θ) = 1 −
(
θ

x

)α
1[θ,+∞[(x),θ,α > 0,x ∈ R1. (8.25)



181Chapter | 8 Probability Distributions of Interest

Correspondingly, the survival function and the density function are

S(x; θ,α) =
(
θ

x

)α
1[θ,+∞[(x)

and

f (x; θ,α) = αθα

xα+1 , x � θ.

The hazard rate function λ(x) = α/x,x � θ , is clearly a decreasing function.
It is easy to show that the population mean and variance for the model in (8.25)
are

EX = αθ

α − 1
, α > 1, and VarX = θ2α

(α − 1)(α − 2)
, α > 2.

Let X1, . . . ,Xn be i.i.d random variables from the Pareto distribution in (8.25).
Then, the MLEs θ̂n and α̂n of the parameters θ and α are

θ̂n = X(1),α̂n = n/
n∑

i=1

(
ln Xi − ln X(1)

)
.

8.2.5 Normal distribution

Definition 8.2. A random variable Z follows the standard normal distribution,
denoted by N (0,1), if the density function ϕ(x) of Z is

ϕ(x) = 1√
2π

e−x2/2, x ∈ R1. (8.26)

The distribution function � of the standard normal law is well known and
is given by

�(x) = P{Z � x} = 1√
2π

∫ x

−∞
e−z2/2dz, x ∈ R1. (8.27)

From (8.27), it follows that

�(x)+�(− x) ≡ 1, x ∈ R1. (8.28)

Let x be fixed, and
p = �(x), 0 < p < 1. (8.29)

Also, let 
( · ) = �−1( · ) be the inverse function for y = �(x),0 < y < 1.
Then, from (8.28) and (8.29), it follows that

�[
(p)] ≡ p and �[
(1 − p)] ≡ 1 − p (8.30)

for any p,0 < p < 1. Moreover,

�(− x) = 1 −�(x) = 1 − p and − x = 
(1 − p),
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where x = z p = 
(p) is the p-quantile of the standard normal distribution,
and so


(p)+
(1 − p) ≡ 0, 0 < p < 1, (8.31)

i.e. z p = −z1−p. This also can be noted readily from the symmetry of the
standard normal distribution around 0. It can be verified that

EZ = 0, VarZ = 1.

Let X = σ Z + μ, where Z ∼ N (0,1),|μ| < ∞ and σ > 0. In this
case, we say that X follows the normal distribution, denoted by N (μ,σ 2), with
parameters

μ = EX and σ 2 = VarX . (8.32)

Its density function is

1

σ
ϕ

(
x − μ

σ

)
= 1√

2πσ
exp

{
− (x − μ)2

2σ 2

}
, x ∈ R1, (8.33)

distribution function is

P{X � x} = �

(
x − μ

σ

)
, x ∈ R1, (8.34)

and the p-quantile is

x p = μ+ σ z p = μ+ σ�−1(p).

8.2.6 Multivariate normal distribution

Let X = (X1, . . . ,X p)
T be a p-dimensional random vector. If, for any vector

z ∈ R p with z �= 0, the scalar random variable

zT X =
p∑

i=1

zi Xi

has a normal distribution, then we say that the vector X has a p-dimensional
normal distribution Np(a,�) in R p with parameters a and �, where

a = EX and � = VarX = E(X − a)(X − a)T ,

where a ∈ R p,� = |σi j |p×p; we shall denote it by X ∼ Np(a,�).
Let k = rank�. If p = k, then there exists the inverse matrix �−1, and in

this case we say that the distribution of X is non-degenerate, and X then has
its density function as

fX (x) = (2π)−p/2 (det�
)−1/2 exp

{
−1

2
(x − a)T�−1(x − a)

}
(8.35)

for any x ∈ R p.
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Consider one particular and important case when

a = 0p and � = Ip,

where Ip is the identity matrix of rank p. Let Z = (Z1, . . . ,Z p)
T be a random

vector with
Z ∼ Np(0p,Ip).

Then, we say that the random vector Z follows the p-dimensional standard
normal distribution in R p. Since the components Zi of Z are independent and
follow marginally the same standard normal distribution N (0,1), the density
function of Z is

fZ(z) = 1

(2π)p/2 e− 1
2

∑p
i=1 z2

i = 1

(2π)p/2 e− 1
2 zT z, (8.36)

for any z = (z1,z2, . . . ,z p)
T ∈ R p, where

zT z =
p∑

i=1

z2
i .

Now, consider a linear transformation Y = AZ + a of the vector Z ∼
Np(0p,Ip), where A is a matrix of order p, the rank A = p, and a ∈ R p. Then,
the mean and covariance matrix of Y are

EY = E(AZ + a) = AEZ + a = a

and

E(Y − a)(Y − a)T = EAZ(AZ)T = AEZZT AT = AAT = �.

Evidently, we have Y ∼ Np(a,�), and so the density of the vector
Y = AZ + a is

fY (y) = (2π)−p/2 (det�
)−1/2 exp

{
−1

2
(y − a)T�−1(y − a)

}
, y ∈ R p,

where
� = AAT .

Note that

| det A−1| = ( det�)−1/2 and (A−1)T A−1 = �−1.

Remark 8.4. In the special case of p = 2, i.e., the bivariate case, let us denote

σ 2
i = Var(Xi ), i = 1,2, and ρ = Cov(X1,X2)

σ1σ2
,
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where ρ is the correlation coefficient. We then have

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
, det� = σ 2

1 σ
2
2 (1 − ρ2),

�−1 = 1

1 − ρ2

⎛
⎝ 1

σ 2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ 2

2

⎞
⎠ ,

(y − a)T�−1(y − a) = 1

1 − ρ2

{
(y1 − a1)

2

σ 2
1

−2ρ(y1 − a1)(y2 − a2)

σ1σ2
+ (y2 − a2)

2

σ 2
2

}
,

using which we find the density function as

fY1,Y2(y1,y2) = 1

2πσ1σ2
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

[
(y1 − a1)

2

σ 2
1

−2ρ(y1 − a1)(y2 − a2)

σ1σ2
+ (y2 − a2)

2

σ 2
2

]}

for any (y1,y2) ∈ R2.

If k < p, then we say that X has a degenerate p-dimensional normal
distribution, which is concentrated on a k-dimensional subspace Rk of R p.

Consider a k-dimensional vector of frequencies ν = (ν1, . . . ,νk)
T that

follows the multinomial probability distribution Mk(n,p) with parameters n
and p and probability mass function

P {ν1 = n1, . . . ,νk = nk} = n!
n1! · · · nk ! pn1

1 pn2
2 · · · pnk

k ,

for all n1, . . . ,nk such that ni = 0,1, . . . ,n and n1 +n2 = · · · = nk = n. Then,
as mentioned earlier in Section 8.1.2, we have

Eν = np and E(ν − np)(ν − np)T = n� = n(P − ppT ),

where
� = �k = P − ppT ,

P = Pk is the diagonal matrix with elements p1, . . . ,pk on the main diagonal,
and p = pk = (p1, . . . ,pk)

T . It is easy to verify that rank � = k − 1. Then,
the central limit theorem implies that, as n → ∞, we have

1√
n
(ν − np) ∼ ANk(0k,�).
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Since the matrix � is degenerate, we also obtain the k-dimensional
asymptotic normal distribution Nk(0k,�) to be degenerate and so, with
probability 1, it is concentrated in (k − 1)-dimensional subspace Rk−1 ⊂ Rk .
We need to find the inverse of the matrix �. Since � is degenerate, it does not
have the ordinary inverse and for this reason we shall construct the so-called
generalized inverse �− of �. For this, we shall use the following definition of
the generalized inverse.

Let A = |ai j |n×m be an arbitrary matrix, rank A = f , and f � min (m,n).
We shall say that the matrix A− = A−

m×n is a generalized inverse of A if

AA−A = A.

Note that the matrix A− is not unique in general.
Let us construct a generalized inverse�− of�, for example, in the following

way (see Rao, 1965). Consider the square matrix (k−1)×(k−1)of the following
form:

�̃ = �k−1 =

⎛
⎜⎜⎜⎝

p1(1 − p1) −p1 p2 · · · −p1 pk−1

−p2 p1 p2(1 − p2) · · · −p2 pk−1

· · · · · · · · · · · ·
−pk−1 p1 −pk−1 p2 · · · pk−1(1 − pk−1)

⎞
⎟⎟⎟⎠
(k−1)×(k−1)

= Pk−1 − pk−1pT
k−1 = P̃ − p̃p̃T ,

which is obtained from � simply by deleting the last row and the last column.
Evidently, we have

Eν̃ = np̃ and E(ν̃ − np̃)(ν̃ − np̃)T = n�̃ = n(P̃ − p̃p̃T ),

�̃ = �k−1 is the covariance matrix of the statistic ν̃ = (ν1, . . . ,νk−1)
T , and

p̃ = (p1, . . . ,pk−1)
T . Since rank �̃ = k − 1, then there exists the inverse �̃

−1
.

It is easy to verify that

�̃
−1 =

⎛
⎜⎜⎜⎜⎝

1
p1

+ 1
pk

1
pk

· · · 1
pk

1
pk

1
p2

+ 1
pk

· · · 1
pk

· · · · · · · · · · · ·
1
pk

1
pk

· · · 1
pk−1

+ 1
pk

⎞
⎟⎟⎟⎟⎠
(k−1)×(k−1)

= P−1
k−1 + 1

pk
1k−11T

k−1 = P̃−1 + 1

pk
1̃1̃T .

It can be verified that
�̃�̃

−1 = Ik−1,

where Ik−1 is the identity matrix of order k − 1. It is also easy to check that

�− = (P − ppT )− = P−1 + 1

pk
11T
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is the generalized inverse of� , where 1 = 1k is the unit vector (1,1, . . . ,1)T ∈
Rk (Nikulin, 1973a). Another suitable way of calculating generalized inverse
was also suggested by Rao (1965). Indeed,

�− =
(
�̃

−1
0

0 0

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
p1

+ 1
pk

1
pk

· · · 1
pk

0
1
pk

1
p2

+ 1
pk

· · · 1
pk

0

· · · · · · · · · · · · 0
1
pk

1
pk

· · · 1
pk−1

+ 1
pk

0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

k×k

.

This generalized inverse was used by Hsuan and Robson (1976), Moore (1977),
and Mirvaliev (2001) in the development of their test statistics.

Lemma 8.1. Let

Z ∼ Nr (a,A) wi th rank A = r ,and a ∈ Rr ,

be a r-dimensional normal random vector with a non-degenerate matrix A, so
that A−1 exists. In this case, for any vector a0 ∈ Rr , the quadratic form

(Z − a0)
T A−1(Z − a0) = χ2

r (λ)

is a random variable that follows a non-central chi-square distribution, χ2
r (λ),

with r degrees of freedom and non-centrality parameter as

λ = (a − a0)
T A−1(a − a0).

Consider now the case of degenerate distributions, which we often encounter
while constructing the modified chi-square tests. In particular, let us consider
the vector of frequencies ν that possesses the asymptotic property

1√
n
(ν − np) ∼ ANk(0k,�), with rank � = k − 1.

Since the distribution of the vector ν is degenerate, its limiting distribution will
also be degenerate. But at the same time, we know that the distribution of its
subvector ν̃ is not degenerate in Rk−1, and that

1√
n
(ν̃ − np̃) ∼ ANk−1(0k−1,�̃), with rank�̃ = k − 1.

This implies that, for any vector p0 ∈ Rk such that pT
0 1k = 1, we have

1√
n
(ν̃ − np̃0) ∼ ANk−1(

√
n(p̃ − p̃0),�̃), with rank�̃ = k − 1.
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Hence, from Lemma 8.1, it follows that the quadratic form

X2
n = 1

n
(ν̃ − np̃0)

T
(

P̃−1 + 1

pk
1̃1̃T
)
(ν̃ − np̃0)

is asymptotically distributed as χ2
k−1(λ), where

λ = n(p̃ − p̃0)
T
(

P̃−1 + 1

pk
1̃1̃T
)
(p̃ − p̃0).

Theorem 8.1. Let

Z ∼ Nr (0r ,A), wi th rank A = f , f � r ,

i.e. the distribution of the vector Z may be degenerate, and let B = |bi j |r×r be
an arbitrary square matrix of order r. Then:

1. The statistic ZT BZ follows the chi-square distribution if and only if

BAB = B;
2. The statistic ZT BZ follows the chi-square distribution with f degrees of

freedom, i.e.,
ZT BZ = χ2

f ,

if and only if
B = A−;

3. The statistic ZT A−Z is invariant with respect to the choice of the generalized
inverse A− (Moore, 1977).

For a detailed discussion on the parameter estimation for the multivariate
normal distribution, interested readers may refer to Voinov and Nikulin (1996)
and Kotz et al. (2000).

8.2.7 Chi-square distribution

Definition 8.3. We say that a random variable χ2
f follows the chi-square

distribution with f ( > 0) degrees of freedom if its density is given by

q f (x) = 1

2
f
2 �
(

f
2

) x
f
2 −1e−x/21]0,∞[(x), x ∈ R1, (8.37)

where

�(a) =
∫ ∞

0
ta−1e−t dt, a > 0,

is the complete gamma function.
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Let Q f (x) = P{χ2
f � x} denote the distribution function of χ2

f . It can be
easily shown

Eχ2
f = f and Varχ2

f = 2 f . (8.38)

This definition of the chi-square law in not constructive. To construct a
random variable χ2

n ,n ∈ N∗, one may take n independent random variables
Z1, . . . ,Zn , following the same standard normal N (0,1) distribution, and then
consider the statistic

Z2
1 + · · · + Z2

n, for n = 1,2, . . .

It is easily seen that P{Z2
1 + · · · + Z2

n � x} = Qn(x), i.e.

Z2
1 + · · · + Z2

n ∼ χ2
n . (8.39)

Quite often, (8.39) is used for the definition of a chi-square random variable
χ2

n , and here we shall also follow this tradition.
From the central limit theorem, it follows that if n is sufficiently large, then

the following normal approximation is valid:

P
{
χ2

n − n√
2n

� x

}
= �(x)+ O

(
1√
n

)
.

This approximation implies the so-called Fisher’s approximation, according to
which

P
{√

2χ2
n − √

2n − 1 � x

}
= �(x)+ O

(
1√
n

)
, n → ∞.

The best normal approximation of the chi-square distribution is the Wilson–
Hilferty approximation given by

P{χ2
n � x} = �

[(
3

√
x

n
− 1 + 2

9n

)√
9n

2

]
+ O

(
1

n

)
, n → ∞.

8.2.8 Non-central chi-square distribution

Let X1, . . . ,Xn be independent random variables, with Xi ∼ N (μi ,1),i =
1, . . . ,n. Then, the distribution of the statistic

χ2
n (δ) = X2

1 + · · · + X2
n

depends on two parameters, n and δ = ∑n
i=1 μ

2
i . The probability distribution

P[χ2
n (δ)�x] of the statistic χ2

n (δ) is known as the non-central chi-square
distribution with n degrees of freedom and the parameter of non-centrality
δ. The mean and the variance of χ2

n (δ) can be shown to be

Eχ2
n (δ) = n + δ and Varχ2

n (δ) = 2(n + 2δ).
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If μ1 = · · · = μk = 0, then δ = 0, and in this case we have χ2
n (0) = χ2

n . One
can verify that

χ2
n (δ) = χ2

n + ρ(δ),

where ρ(δ) is independent of χ2
n , and

Eeitρ(δ) = eitδ/(1−2i t),

from which it follows that

Eρ(δ) = δ and Varρ(δ) = 4δ.

A random variable γ f = γ1, f follows the gamma distribution with f degrees
of freedom ( f > 0) if, for any x > 0, we have

P{γ f � x} = Ix ( f ),

where

Ix ( f ) = 1

�( f )

∫ x

0
t f −1e−t dt

is the incomplete gamma ratio. Then, it is easy to verify that

1

2
χ2

2 f
d= γ f . (8.40)

Indeed, ∀x > 0, we have

P
{

1

2
χ2

2 f � x

}
= P{χ2

2 f � 2x} = Q2 f (2x) = 1

2 f �( f )

∫ 2x

0
t f −1e−t/2dt .

By performing the change of variable t = 2u, we find

P
{

1

2
χ2

2 f � x

}
= 1

�( f )

∫ x

0
u f −1e−udu = Ix ( f ) = P{γ f � x},

where γ f is a random variable having the gamma distribution with f degrees of
freedom. Using the relation in (8.40), we readily obtain

Eγ f = E
(

1

2
χ2

2 f

)
= f , Varγ f = Var

(
1

2
χ2

2 f

)
= 1

4
Varχ2

2 f = f .

The random variable γ = γθ,ν follows the gamma distribution �(θ,ν), with
parameters θ > 0 and ν > 0, if its density function is

f (t; θ,ν) = 1

θν�(ν)
tν−1e− t

θ , t � 0.

One can see that if θ = 1, then γ1,ν = γν . Note that G(θ,1) = E(θ), i.e. the
exponential distribution is a particular case of the gamma distribution.
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The distribution function of γθ,ν can be presented in terms of the incomplete
gamma ratio as

F(t; θ,ν) = 1

�(ν)

∫ t/θ

0
uν−1e−udu = It/θ (ν).

Remark 8.5. It can be easily shown that

1

2
χ2

2ν
d= γ1,ν .

Indeed, for any x > 0, we have

P
{

1

2
χ2

2ν � x

}
= P{χ2

2ν � 2x} = 1

2ν�(ν)

∫ 2x

0
tν−1e−t/2dt .

By changing the variable t = 2u, we find that

P
{

1

2
χ2

2ν � x

}
= 1

�(ν)

∫ x

0
uν−1e−udu = Ix (ν) = P{γ1,ν � x}.

If X1, . . . ,Xn are independent random variables following the same
exponential distribution, i.e., Xi ∼ E(θ), then the statistic

Sn = X1 + · · · + Xn

follows the gamma distribution �(θ,n). If f = 1, then

P{γ1 � x} =
∫ x

0
e−t dt = 1 − e−x , x > 0, (8.41)

i.e. the random variable γ1 follows the standard exponential distribution. From
this result and from the relation in (8.40), it follows that 1

2χ
2
2 also follows the

standard exponential distribution.

Theorem 8.2. If independent random variables X1, . . . ,Xn follow the
exponential distribution in (8.41), then their sum follows the gamma distribution

with shape parameter n, i.e. X1 + · · · + Xn
d= γn.

Remark 8.6. Let X be a random variable that follows the Poisson distribution
P(λ) with parameter λ > 0. It is easy to show that, for any m ∈ N,

P{X � m} = P{γm+1 � λ} = P{χ2
2m+2 � 2λ}

= 1 − P{χ2
2m+2 � 2λ}.
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Remark 8.7. Several approximations for the non-central χ2 cumulative
distribution P[χ2

n (δ) � x] are known; see, for example, Johnson et al. (1995).
However, we can easily produce codes (for example, in Microsoft Excel) by using
the following well-known approximation (Abdel-Aty, 1954, Cohen, 1988, Ding,
1992):

P[χ2
n (δ) � x] =

∞∑
i=0

exp (− δ/2)(δ/2)i

i ! P(χ2
n+2i � x), (8.42)

where χ2
n+2i are central chi-square random variables.

8.2.9 Weibull distribution

Let a random variable X follow the Weibull probability distribution

W (x; θ,ν) = 1 − exp
{

1 −
( x

θ

)ν}
, x > 0,

with parameters θ > 0 and ν > 0. The corresponding density function is

f (x; θ,ν) = ν

θν
xν−1e−(x/θ)ν , x � 0.

The applicability of the Weibull family can be justified in many cases by the
following fact.

Remark 8.8. Let X1, . . . ,Xn be a set of i.i.d. random variables such that

P(Xi � x) = G(x; θ,ν), i = 1,2, . . . ,n, θ,ν,x > 0,

where G(x; θ,ν) is a distribution function such that limx↓0 G(x; θ,ν) = θ−νxν

and G(x; θ,ν) = 0 if x � 0 for all fixed θ and ν. Then, n1/νX(1), where
X(1) = min (X1, . . . ,Xn) is the first-order statistic, converges in probability to
W (x; θ,ν).

The Weibull probability distribution and its generalized forms are often
used as lifetime models; see Barlow and Proshan (1991), Harter (1991), and
Bagdonavičius and Nikulin (2002).

The survival function and the hazard rate of this distribution are S(x; θ,ν) =
e−(x/θ)ν ,x � 0 and λ(x; θ,ν) = νxν−1/θν , respectively. Note that W (θ,1) =
E(θ), i.e., the exponential distribution is a particular case of the Weibull
distribution if ν = 1

The expected value and the variance of X can be easily shown to be

EX = θ�(1 + 1/ν) and VarX = θ2
{
�(1 + 2/ν)− �2(1 + 1/ν)

}
.
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Note that the coefficient of variation of X is

√
VarX

EX
=
√√√√ �

(
1 + 2

ν

)
�2
(
1 + 1

ν

) − 1 = π

ν
√

6
+ O

(
1

ν2

)
, ν → ∞.

Remark 8.9. Following Efron (1988), we can consider the so-called
Exponentiated Weibull distribution as its hazard rate function possesses very
interesting properties. These properties were studied in detail by Mudholkar et
al. (1995).

The random variable X follows the Exponentiated Weibull distribution
EW (θ,ν,γ ) with parameters θ > 0,ν > 0, and γ > 0 if

FEW (x) =
{

1 − exp

[
−
( x

α

)β]}γ
, x,α,β,γ > 0. (8.43)

All the moments of this distribution are finite. Its survival function is

SEW (t) = S(t;α,β,γ ) = 1 −
{

1 − exp

[
−
(

t

α

)β]}γ
, t � 0.

Evidently, EW (α,β,1) = W (α,β) and EW (α,1,1) = E(α).
Depending on the values of the parameters, the hazard rate can be

constant, monotone (increasing or decreasing),
⋂

-shaped, and
⋃

-shaped. More
specifically, the hazard rate

λ(t;α,β,γ ) =
βγ
{

1 − exp
[
− ( t

α

)β]}γ−1
exp
[
− ( t

α

)β] ( t
α

)β−1

α
{

1 −
(

1 − exp
[
− ( t

α

)β] )γ }
possesses the following properties:

If β > 1,β � 1/γ , then the hazard rate is increasing from 0 to ∞;
If β = 1,γ � 1, then the hazard rate is increasing from (α/γ )−1 to ∞;
If 0 < β < 1,β < 1/γ , then the hazard rate is decreasing from ∞ to 0;
If 0 < β < 1,β = 1/γ , then the hazard rate is decreasing from α−1 to 0;
If 1/γ < β < 1, then the hazard rate is increasing from 0 to its maximum
value and then is decreasing to 0, i.e. it is ∩-shaped;
If 1/γ > β > 1, then the hazard rate decreases from ∞ to its minimum
value and then it increases to ∞, i.e. it is

⋃
-shaped.

The p-quantile is seen to be

tp = α[− ln (1 − p1/γ )]1/β, 0 < p < 1.
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Remark 8.10. The three-parameter Weibull distribution has the following
probability density function:

f (x; θ,μ,p) = p

θ

(
x − μ

θ

)p−1

exp

{
−
(

x − μ

θ

)p}
,

x > μ,θ,p > 0,μ ∈ R1. (8.44)

The population mean, median, mode, and variance of this distribution are as
follows:

EX = μ+ θ�

(
1

p
+ 1

)
,

μ+ θ( ln 2)1/2,

μ+ θ

(
1 − 1

p

)1/p

,

VarX = θ2
[
�

(
2

p
+ 1

)
− �2

(
1

p
+ 1

)]
,

respectively. The failure rate function of the distribution in (8.44) is

λ(x) = p

θ

(
x − μ

θ

)p−1

.

The corresponding parameter esitmation has been discussed in Section 4.6.1.

Remark 8.11. Mudholkar et al. (1996) presented an extension of the Weibull
family called “generalized Weibull” that contains distributions with unimodal
and bathtub hazard rates and yields a broader class of monotone failure rates.
The probability distribution function of this model is given by

FGW (x) = 1 −
{

1 − λ
( x

σ

)1/α
}1/λ

. (8.45)

The range of the generalized Weibull random variable X is (0,∞) for λ � 0
and (0,σ/λα) for λ > 0. Evidently, the hazard function for the family in (8.45)
is

h(x) = (x/σ)(1/α)−1

ασ(1 − λ(x/σ)1/α)
.

This hazard function is bathtub shaped if α > 1 and λ > 0, monotone
decreasing if α � 1 and λ � 0, unimodal if α < 1 and λ < 0, monotone
increasing if α � 1 and λ � 0, and is constant if α = 1 and λ = 0.
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8.2.10 Generalized Power Weibull distribution

In accelerated life studies, the Generalized Power Weibull (GPW) family with
distribution function

F(t; θ,ν,γ ) = 1 − exp

{
1 −

[
1 +

(
t

θ

)ν]1/γ
}
, t,θ,ν,γ > 0 (8.46)

proves to be very useful; see Bagdonavičius and Nikulin (2002). All moments
of this distribution are finite. The corresponding probability density function is

f (t; θ,ν,γ ) = ν

θγ

(
t

θ

)ν−1 [
1 +

(
t

θ

)ν] 1
γ

−1

exp

{
1 −

[
1 +

(
t

θ

)ν]1/γ
}
.

The survival function and the hazard rate function are given by

S(t; θ,ν,γ ) = exp

{
1 −

(
1 +

(
t

θ

)ν)1/γ
}
, t � 0,

λ(t; θ,ν,γ ) = ν

γ θν
tν−1

{
1 +

(
t

θ

)ν}1/γ−1

, t � 0.

Here again, depending on the values of the parameters, the hazard rate can be
constant, monotone increasing and decreasing, cap-shaped, and cup-shaped.
More specifically, we have the following behaviors in this case:

If ν > 1,ν > γ , then the hazard rate is increasing from 0 to ∞;
If ν = 1,γ < 1, then the hazard rate is increasing from (γ θ)−1 to ∞;
If 0 < ν < 1,ν < γ , then the hazard rate is decreasing from ∞ to 0;
If 0 < ν < 1,ν = γ , then the hazards rate is decreasing from ∞ to θ−1;
If γ > ν > 1, then the hazard rate is increasing from 0 to its maximum
value and then is decreasing to 0, i.e. it is ∩-shaped;
If 0 < γ < ν < 1, then the hazard rate decreases from ∞ to its minimal
value and then it decreases to ∞, i.e. it is

⋃
-shaped.

8.2.11 Birnbaum-Saunders distribution

The Birnbaum-Saunders (BS) family of distributions was proposed by
Birnbaum and Saunders (1969a) to model the length of cracks on surfaces.
In fact, it is a two-parameter distribution for a fatigue life with unimodal hazard
rate function. Considerable amount of work has been done on this distribution.
The cumulative distribution function of the two-parameter Birnbaum–Saunders
distribution, denoted by BS(α,β), is

F(t;α,β) = �

[
1

α

{(
t

β

) 1
2 −

(
β

t

) 1
2
}]

, 0 < t < ∞, α,β > 0,
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whereα is the shape parameter,β is the scale parameter, and�(x) is the standard
normal distribution function. The corresponding probability density function is

f (t;α,β) = 1

2
√

2παβ

{(
β

t

) 1
2 +

(
β

t

) 3
2
}

exp

[
− 1

2α2

(
t

β
+ β

t
− 2

)]
,

0 < t < ∞, α,β > 0.

It is easy to show that

E(T ) = β

(
1 + α2

2

)
and Var(T ) = (αβ)2

(
1 + 5

4
α2
)
.

The hazard function is

λ(t,α,β) = f (t,α,β)

1 − F(t,α,β)
,

which increases from 0 to its maximum value and then decreases to 1/2αβ2, i.e.
it is ∩-shaped; see Kundu et al. (2008). For comprehensive reviews on various
developments concerning the BS distribution, one may refer to Johnson et al.
(2005), Leiva et al. (2008), and Sanhueza et al. (2008).

8.2.12 Logistic distribution

Let Z be a random variable with probability density function

f (z) = e−z

(1 + e−z)2
, z ∈ R1,

and cumulative distribution function

F(z) = 1

1 + e−z
, z ∈ R1.

In this case, Z is said to have a logistic distribution. From the above two
expressions, it is readily seen that the hazard rate

f (z)

1 − F(Z)
= 1

1 + e−z
, z ∈ R1,

is a monotone increasing function. Furthermore, it can be shown that the moment
generating function of Z is

Eetz = B(1 + t,1 − t) = �(1 + t)�(1 − t) for t < 1,

where B( · , · ) is the complete beta function. From this expression, it can be
shown that

EZ = 0 and VarZ = 2
{
�′′(1)− (�′(1))2

}
= π2/3.
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For this reason, one can consider the following standardized logistic distribution,
denoted by L(0,1), with probability density function

f (z) = π√
3

e−π z/
√

3

(1 + e−π z/
√

3)2
, z ∈ R1,

and cumulative distribution function

F(z) = 1

1 + e−π z/
√

3
, z ∈ R1.

Evidently, the mean and variance of this form are 0 and 1, respectively.
Now, by using the linear transformation X = μ+σ Z , we can introduce the

logistic L(μ,σ ) distribution with probability density function

π√
3σ

e
− π(x−μ)√

3σ(
1 + e

− π(x−μ)√
3σ

)2 , x ∈ R1,

where μ ∈ R1 is the mean and σ > 0 is the standard deviation. For elaborate
discussion on properties, various inferential methods and diverse applications
of the logistic distribution, one may refer to the book by Balakrishnan (1992).



Chapter 9

Chi-Squared Tests for Specific
Distributions

9.1 TESTS FOR POISSON, BINOMIAL, AND “BINOMIAL”
APPROXIMATION OF FELLER’S DISTRIBUTION

Let X1,X2, . . . ,Xn be independent and identically distributed random variables.
Consider the problem of testing the composite hypothesis H0 according to which
the distribution of Xi is a member of a parametric family with the Poisson
distribution

P(X = x) = f (x; θ) = θ x

x ! e−θ , x = 0,1, . . . ,θ > 0. (9.1)

Let N (n)
j be the observed frequencies meaning the number of realized values of

Xi that fall into a specific class or interval � j ,p j (θ) = ∑
x∈� j

f (x; θ), j =
1, . . . ,r , where the fixed integer grouping classes � j are such that �1 ∪ · · · ∪
�r = {0,1, . . .}. As before, let V(n)(θ) be a column vector of standardized
grouped frequencies with its components as

v
(n)
j (θ) = [np j (θ)]− 1

2 (N (n)
j − np j (θ)), j = 1, . . . ,r .

If the nuisance parameter θ is estimated effectively from grouped data by θ̃n ,
then the standard Pearson’s sum X2

n(θ̃n) = V(n)T (θ̃n)V(n)(θ̃n)will follow in the
limit the chi-square distribution with r − 2 degrees of freedom. If, on the other
hand, the parameter θ is estimated from raw (ungrouped) data, for example, by
the maximum likelihood estimate (MLE), then the standard Pearson test must
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be modified. Let B be a r ×s (s being the dimensionality of the parameter space)
matrix with its elements as

1√
p j (θ)

∑
x∈� j

∂ f (x; θ)
∂θk

, j = 1, . . . ,r , k = 1, . . . ,s.

For the null hypothesis in (9.1), the r × 1 matrix B possesses its elements as

B j = 1√
p j (θ)

∑
x∈� j

f (x; θ)
( x

θ
− 1

)
, j = 1, . . . ,r .

Let θ̂n be the MLE of θ based on the raw data. Then, the well-known Nikulin-
Rao–Robson (NRR) modified chi-squared test statistic, distributed in the limit
as χ2

r−1, can be expressed as

Y 12
n(θ̂n) = V(n)T (θ̂n)(I − BnJ−1

n BT
n )

−1V(n)(θ̂n), (9.2)

where Jn = 1/θ̂n and Bn = B(θ̂n) are the estimators of the Fisher information
matrix (scalar) and of the column vector B, respectively.

Next, let us consider the binomial null hypothesis. Let the probability mass
function be specified as

P1(X = x) = f1(x; θ) =
(

n

x

)(
θ

n

)x (
1 − θ

n

)n−x

, (9.3)

where x = 0,1, . . . ,n and θ > 0. In this case, the Fisher information matrix
(scalar) is J1 = n/{θ(n − θ)} and the elements of the matrix B1 are

B1 j = 1√
p j (θ)

∑
x∈� j

f1(x; θ)
(

n(x − θ)

θ(n − θ)

)
, j = 1,2, . . . ,r .

Let θ̂n be the MLE estimator of θ . Then, the modified chi-squared test statistic,
distributed in the limit as χ2

r−1, can be expressed as

Y 12
n(θ̂n) = V(n)T (θ̂n)(I − B1nJ−1

1n BT
1n)

−1V(n)(θ̂n), (9.4)

where B1n = B1(θ̂ ) and J1n = J1(θ̂ ).
Now, let the probability distribution of the null hypothesis follow Feller’s

(1948, pp. 105–115) discrete distribution with cumulative distribution function

P2(X � x) = �(x + 1,μ(τ − xγ ))

�(x + 1)

=
x∑

k=0

[μ(τ − xγ )]k

k! e−μ(τ−xγ ), τ > γ, 0 � x <
τ

γ
, (9.5)

where �(a,b) is the complement gamma function.
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If the parameter τ = const. and γ → 0, then the distribution function in
(9.5) can be approximated as

P2(X � x) =
x∑

k=0

(μτ)k

k! e−μτ + O(γ ).

Using the results of Bol’shev (1963) a more accurate approximation of (9.5)
can be obtained as

P2(X � x) =
x∑

k=0

�(ñ + 1)

k!�(ñ − k + 1)
p̃k(1 − p̃)ñ−k + O(γ 2), (9.6)

where ñ = τ/(2γ ), p̃ = 2μγ/(1 + μγ ) and x = 0,1, . . . ,[ñ]. Note that
(9.6) looks like the binomial distribution function with the exception that the
parameter ñ can be any real positive number. Consider the probability mass
function of (9.6) given by

P2(X = x) = f2(x; θ) = �(ñ + 1)

x !�(ñ − x + 1)
p̃x (1 − p̃)ñ−x , x = 0,1, . . . ,[ñ],

(9.7)
where the parameter θ = (ñ, p̃)T . In this case, there are three possibilities to
construct a modified chi-squared test for testing a composite null hypothesis
about the distribution in (9.6). First one is to use MLEs of ñ and p̃ and the
NRR statistic Y 12

n(θ̂n). Since the MLEs of ñ and p̃ cannot be derived easily, the
modified test Y 22

n(θ̄n) based on MMEs (see Eq. (4.9)) or Singh’s Q2
s (θ̃n) (see

Eq. (3.25)) can be used.
For the model in (9.7) and r > 2, the DN statistic U 2

n (θ̄n) will follow in the
limit χ2

r−3 and S12
n(θ̄n) ∼ χ2

2 . If r = 2, then, as before (see Eq. (4.12)), we
will have

Y 22
n(θ̄n) = U 2

n (θ̄n)+ S12
n(θ̄n)

= U 2
n (θ̄n)+ W 2

n (θ̄n)+ R2
n(θ̄n)− Q2

n(θ̄n)

= X2
n(θ̄n)+ R2

n(θ̄n)− Q2
n(θ̄n).

In this case, Bn(BT
n Bn)

−1BT
n = I,W 2

n (θ̄n) = X2
n(θ̄n), U 2

n (θ̄n) = 0, and

Y 22
n(θ̄n) = S12

n(θ̄n) ∼ χ2
r−1 = χ2

1 .

To specify the above tests, we of course will need explicit expressions of all
the matrices involved.
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The elements of the Fisher information matrix J for the model in (9.7) are

J11 =
[ñ]∑

x=0

f2(x,θ)[ψ(ñ + 1)− ψ(ñ − x + 1)+ ln (1 − p̃)]2,

J12 = J21 =
[ñ]∑

x=0

f2(x,θ)
(x − ñ p̃)

p̃(1 − p̃)
[ψ(ñ + 1)− ψ(ñ − x + 1)+ ln (1 − p̃)],

J22 =
[ñ]∑

x=0

f2(x,θ)
(x − ñ p̃)2

p̃2(1 − p̃)2
,

where [ñ] is the largest integer contained in ñ and ψ(x) is the psi-function. It
is known that series expansions for the psi-function converge very slowly. But,
for integer values of x, a recurrence ψ(z − x) = ψ(z)−∑x

k=1 1/(ñ − k + 1)
can be used, from which it follows that

ψ(ñ + 1)− ψ(ñ − x + 1) =
x∑

k=1

1

ñ − k + 1
.

This result permits us to calculate all expressions containing ψ(ñ + 1) −
ψ(ñ − x + 1) with a very high accuracy.

The elements of the matrix B are

B j1 = 1√
p j (θ)

∑
x∈� j

f2(x,θ)[ψ(ñ + 1)− ψ(ñ − x + 1)+ ln (1 − p̃)],

B j2 = 1√
p j (θ)

∑
x∈� j

f2(x,θ)

(
x − ñ p̃

p̃(1 − p̃)

)
, j = 1, . . . ,r .

The elements of the matrix V are

V11 = ñ p̃(1 − p̃),

V12 = V21 = ñ p̃ + ñ(2ñ − 3) p̃2 − 2ñ(ñ − 1) p̃3,

V22 = ñ p̃ + ñ(6ñ − 7) p̃2 − 4ñ(ñ − 1)(ñ − 3) p̃3 + 2ñ(ñ − 1)(3 − 2ñ) p̃4.

The elements of the matrix K are

K11 =
[ñ]∑

x=0

x f2(x,θ)[ψ(ñ + 1)− ψ(ñ − x + 1)+ ln (1 − p̃)],

K12 =
[ñ]∑

x=0

x2 f2(x,θ)

(
x − ñ p̃

p̃(1 − p̃)

)
,

K21 =
[ñ]∑

x=0

x2 f2(x,θ)[ψ(ñ + 1)− ψ(ñ − x + 1)+ ln (1 − p̃)],
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K22 =
[ñ]∑

x=0

x2 f2(x,θ)

(
x − ñ p̃

p̃(1 − p̃)

)
.

The components W1(θ̄n) and W2(θ̄n) of the vector Wn(θ̄n) = (W1(θ̄n),

W2(θ̄n))
T for Singh’s test Q2

s (θ̃n) for the model in (9.7) are

W1(θ̃n) = 1√
n

n∑
i=1

[ψ(ñ + 1)+ ψ(ñ − Xi + 1)+ ln (1 − p̃)]

and

W2(θ̃n) = 1√
n

n∑
i=1

(Xi − ñ p̃)

p̃(1 − p̃)
.

It has to be noted that the test in (3.25) is computationally much more
complicated than the statistic Y 22

n(θ̃n) for large samples.
For the model in (9.7), Eθ X = ñ p̃ and Eθ X2 = ñ p̃ + ñ(ñ −1) p̃2. Denoting

the first two sample moments 1
n

∑n
i=1 Xi = a and 1

n

∑n
i=1 X2

i = b and then
equating them to population moments, the MMEs of ñ and p̃ are obtained as

¯̃n = a2

a2 − b + a
and ¯̃p = a

¯̃n . (9.8)

From (9.8), we see that negative values of ¯̃n and ¯̃p are possible, but the
proportion of such estimates will be almost negligible for samples of size
n > 1000. It seems that Y 22

n(θ̄n) test can be used for analyzing Rutherford’s
data, but the question about

√
n-consistency of the MMEs in (9.8) is still open.

To examine the rate of convergence of estimators ¯̃n and ¯̃p for sample sizes
n = 1000(500)3500, we simulated 3,000 estimates of ¯̃n and ¯̃p assuming that
ñ = 84.79045 and p̃ = 0.04566, values that correspond to Rutherford’s data.
The power curve fit of 〈 ¯̃n〉, the average value of estimates ¯̃n for 3000 runs,
in Figure 9.1 shows that 〈 ¯̃n〉 ∼ n−1.039 and R2 = 0.978. The power curve
fit of 〈 ¯̃p〉 in Figure 9.2 gives 〈 ¯̃p〉 ∼ n−0.403 and R2 = 0.997. To check for
the distribution of the statistic S12

n(θ̄n) under the null “Feller’s” distribution
(ñ = 84.79045 and p̃ = 0.04566), we simulated N = 1000 values of S12

n(θ̄n).
The histogram of these values is well described by theχ2

1 distribution (see Figure
9.3). The average value 〈S12

n(θ̄n)〉 = 1.016 ± 0.051 also does not contradict
the assumption that the statistic S12

n(θ̄n) follows in the limit the chi-squared
distribution with one degree of freedom. Another important property of any
test statistic is its independence from the unknown parameters. To check for
this feature of the test S12

n(θ̄n), we simulated N = 1000 values of S12
n(θ̄n)

assuming that ñ = 42.3952 (two times less than for the null hypothesis H0) and
p̃ = 0.091132 (two times more than for the null hypothesis H0). The results
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FIGURE 9.1 Simulated average value of 〈 ¯̃n〉 (circles) and the power function fit (solid
line) as function of the sample size n.

FIGURE 9.2 Simulated average value of 〈 ¯̃p〉 (circles) and the power function fit (solid
line) as function of the sample size n.

(Figure 9.4) show that the simulated values do not contradict the independence,
because the histogram is again well described by χ2

1 distribution.
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FIGURE 9.3 The histogram of the 1000 simulated values of S12
n(θ̄n) for the null

hypothesis (ñ = 84.79045 and p̃ = 0.04566) and the χ2
1 distribution (solid line).

FIGURE 9.4 The histogram of the 1000 simulated values of S12
n(θ̄n) for ñ =

42.3952, p̃ = 0.091132 and the χ2
1 distribution (solid line).

The above results evidently allow us to use the HRM statistic S12
n(θ̄n) for

Rutherford’s data analysis.

9.2 ELEMENTS OF MATRICES K, B, C, AND V FOR THE
THREE-PARAMETER WEIBULL DISTRIBUTION

For r equiprobable cells of the model in (4.25), the borders of equiprobable
intervals are defined as:

x j = μ+ θ

[
− ln

(
1 − j

r

)]1/p

, j = 0,1, . . . ,r .
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Then, the elements of the matrix K are as follows:

K11 = 1, K12 = 1

p
�

(
1

p

)
, K13 = − θ

p2�
′
(

1 + 1

p

)
,

K21 = 2μ+ 2θ�

(
1 + 1

p

)
, K22 = 2μ�

(
1 + 1

p

)
+ 2θ�

(
1 + 1

p

)
,

K23 = −2μθ

p2 �
′
(

1 + 1

p

)
− 2θ2

p2 �
′
(

1 + 2

p

)
,

K31 = 3μ2 + 6μθ�

(
1 + 1

p

)
+ 3θ2�

(
1 + 2

p

)
,

K32 = 3μ2�

(
1 + 1

p

)
+ 6μθ�

(
1 + 2

p

)
+ 3θ2�

(
1 + 3

p

)
,

K33 = −3μ2θ

p2 �′
(

1 + 1

p

)
− 6μθ2

p2 �′
(

1 + 2

p

)
− 3θ3

p2 �
′
(

1 + 3

p

)
,

where �′(x) = �(x)ψ(x) and ψ(x) is the psi-function. For the required
calculation of ψ(x), we used the series expansion

ψ(a) = −C + (a − 1)
∞∑

k=0

1

(k + 1)(k + a)
,

where C = 0.57721566 . . . is the Euler’s constant.
Similarly, the elements of the matrices B and C are as follows:

B j1 = p

θ
√

p j

(
x j−1 − μ

θ

)p−1

exp

{
−
(

x j−1 − μ

θ

)p}

− p

θ
√

p j

(
x j − μ

θ

)p−1

exp

{
−
(

x j − μ

θ

)p}
,

B j2 = p

θ
√

p j

(
x j−1 − μ

θ

)p

exp

{
−
(

x j−1 − μ

θ

)p}

− p

θ
√

p j

(
x j − μ

θ

)p

exp

{
−
(

x j − μ

θ

)p}
,

B j3 = − 1√
p j

(
x j−1 − μ

θ

)p

ln

(
x j−1 − μ

θ

)
exp

{
−
(

x j−1 − μ

θ

)p}

+ 1√
p j

(
x j − μ

θ

)p

ln

(
x j − μ

θ

)

× exp

{
−
(

x j − μ

θ

)p}
, j = 1, . . . ,r .

C j1 = μ√
p j

exp

{
−
(

x j−1 − μ

θ

)p}
− μ√

p j
exp

{
−
(

x j − μ

θ

)p}
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−√
p j m1 + θγ√

p j
γ

[(
1 + 1

p

)
,

(
x j − μ

θ

)p]

− θγ√
p j
γ

[(
1 + 1

p

)
,

(
x j−1 − μ

θ

)p]
,

C j2 = μ2

√
p j

exp

{
−
(

x j−1 − μ

θ

)p}
− μ2

√
p j

exp

{
−
(

x j − μ

θ

)p}

−√
p j m2 + 2μθ√

p j
γ

[(
1 + 1

p

)
,

(
x j − μ

θ

)p]

− 2μθ√
p j
γ

[(
1 + 1

p

)
,

(
x j−1 − μ

θ

)p]

+ θ2

√
p j
γ

[(
1 + 2

p

)
,

(
x j − μ

θ

)p]

− θ2

√
p j
γ

[(
1 + 2

p

)
,

(
x j−1 − μ

θ

)p]
,

C j3 = μ3

√
p j

exp

{
−
(

x j−1 − μ

θ

)p}
− μ3

√
p j

exp

{
−
(

x j − μ

θ

)p}

−√
p j m3 + 3μ2θ√

p j
γ

[(
1 + 1

p

)
,

(
x j − μ

θ

)p]

−3μ2θ√
p j
γ

[(
1 + 1

p

)
,

(
x j−1 − μ

θ

)p]

+3μθ2

√
p j
γ

[(
1 + 2

p

)
,

(
x j − μ

θ

)p]

−3μθ2

√
p j
γ

[(
1 + 2

p

)
,

(
x j−1 − μ

θ

)p]

+ θ3

√
p j
γ

[(
1 + 3

p

)
,

(
x j − μ

θ

)p]

− θ3

√
p j
γ

[(
1 + 3

p

)
,

(
x j−1 − μ

θ

)p]
, j = 1, . . . ,r ,

where the population moments are

mi =
i∑

l=0

(
i

l

)
θ i−lμl�

(
1 + i − l

p

)
, i = 1,2,3,

and γ (a,x) = ∫ x
0 ta−1 e−t dt is the incomplete gamma function. For the

required calculation of γ (a,x), we used the following series expansion
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(Prudnikov et al., 1981, p. 705):

γ (a,x) = xa
∞∑

n=0

(− 1)n xn

n!(a + n)
.

Finally, the elements of the matrix V are as follows:

Vi j = mi+ j (θ)− mi (θ)m j (θ)

=
i+ j∑
n=0

(
i + j

n

)
θ i+ j−nμn�

(
1 + i + j − n

p

)

−
i∑

n=0

(
i

n

)
θ i−nμn�

(
1 + i − n

p

)

×
j∑

n=0

(
j

n

)
θ j−nμn�

(
1 + j − n

p

)
, i, j = 1,2,3.

9.3 ELEMENTS OF MATRICES J AND B FOR THE GENERALIZED
POWER WEIBULL DISTRIBUTION

Elements Ji j of the Fisher information matrix J are as follows:

J11 = ν2

γ 2θ2

∞∫
1

[
(yγ − 1)(y − 1)− γ

yγ

]2

exp (1 − y)dy,

J12 = J21 = ν

γ θ

∞∫
1

[
(yγ − 1)(y − 1)− γ

yγ

]

×
[
(y − 1) ln yγ

γ 2 − 1

γ

]
exp (1 − y)dy,

J13 = J31 = ν

γ θ

∞∫
1

[
(yγ − 1)(y − 1)− γ

yγ

] [
1

ν
+ ln ((yγ − 1)1/ν)

+ (yγ − 1) ln ((yγ − 1)1/ν)(1 − γ − y)

γ yγ

]
exp (1 − y)dy,

J22 =
∫ ∞

1

[
(y − 1) ln (yγ )

γ 2 − 1

γ

]2

exp (1 − y)dy,

J23 = J32 =
∞∫

1

[
(y − 1) ln (yγ )

γ 2 − 1

γ

] [
1

ν
+ ln ((yγ − 1)1/ν)
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+ (yγ − 1) ln ((yγ − 1)1/ν)(1 − y − γ )

γ yγ

]
exp (1 − y)dy,

J33 =
∫ ∞

1

[
1

ν
+ ln ((yγ − 1)1/ν)

+ (y
γ − 1) ln ((yγ − 1)1/ν)(1 − y − γ )

γ yγ

]2

exp (1 − y)dy.

Next, the elements of matrix B are as follows:

B11 = − f (a1(θ))√
p1

{[
1 − ln

(
1 − 1

r

)]γ
− 1

}1/ν

,

B12 = −θ f (a1(θ))√
p1ν

{[
1 − ln

(
1 − 1

r

)]γ
− 1

} 1
ν
−1

×
[

1 − ln

(
1 − 1

r

)]γ
ln

[
1 − ln

(
1 − 1

r

)]
,

B13 = θ f (a1(θ))√
p1ν2

{[
1 − ln

(
1 − 1

r

)]γ
− 1

} 1
ν

ln

{[
1 − ln

(
1 − 1

r

)]γ
−1

}
,

B j1 = 1√
p j

{
− f (a j (θ))

{[
1 − ln

(
1 − j

r

)]γ
− 1

}1/ν

+ f (a j−1(θ))

{[
1 − ln

(
1 − j − 1

r

)]γ
− 1

}1/ν

, j = 2, . . . ,r − 1,

B j2 = θ√
p jν

{
− f (a j (θ))

{[
1 − ln

(
1 − j

r

)]γ
− 1

} 1
ν
−1

×
[

1 − ln

(
1 − j

r

)]γ
ln

[
1 − ln

(
1 − j

r

)]

+ f (a j−1(θ))

{[
1 − ln

(
1 − j − 1

r

)]γ
− 1

} 1
ν
−1

×
[

1 − ln

(
1 − j − 1

r

)]γ

× ln

[
1 − ln

(
1 − j − 1

r

)]}
, j = 2, . . . ,r − 1,

B j3 = θ√
p jν2

{
f (a j (θ))

{[
1 − ln

(
1 − j

r

)]γ
− 1

} 1
ν

× ln

{[
1 − ln

(
1 − j

r

)]γ
− 1

}
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− f (a j−1(θ))

{[
1 − ln

(
1 − j − 1

r

)]γ
− 1

} 1
ν

× ln

{[
1 − ln

(
1 − j − 1

r

)]γ
− 1

}}
, j = 2, . . . ,r − 1,

Br1 = 1√
pr

f (ar−1(θ))

{[
1 − ln

(
1

r

)]γ
− 1

}1/ν

,

Br2 = θ√
prν

f (ar−1(θ))

{[
1 − ln

(
1

r

)]γ
− 1

} 1
ν
−1

×
[

1 − ln

(
1

r

)]γ
ln

[
1 − ln

(
1

r

)]
,

Br3 = − θ√
prν2 f (ar−1(θ))

{[
1 − ln

(
1

r

)]γ
− 1

} 1
ν

× ln

{[
1 − ln

(
1

r

)]γ
− 1

}
.

9.4 ELEMENTS OF MATRICES J AND B FOR THE
TWO-PARAMETER EXPONENTIAL DISTRIBUTION

Consider the two-parameter exponential distribution with cumulative
distribution function

F(x,θ) = 1 − exp

{
− x − μ

θ

}
, x � μ, θ > 0, μ ∈ R1, (9.9)

where the unknown parameter θ = (θ,μ)T . It is easily verified that the matrix
J for the model in (9.9) is

J =
(

1
θ2 0

0 1
θ2

)
. (9.10)

Based on the set of n i.i.d. random variables X1, . . . ,Xn , the MLE θ̂n of the
parameter θ equals θ̂n = (θ̂n,μ̂n)

T , where

θ̂n = 1

n − 1

n∑
i=1

(Xi − X(1)) and μ̂n = X(1). (9.11)

Consider r disjoint equiprobable intervals

� j =
{
μ− θ ln

(
1 − j − 1

r

)
,μ− θ ln

(
1 − j

r

)}
, j = 1, . . . ,r .



209Chapter | 9 Chi-Squared Tests for Specific Distributions

For these intervals, the elements of the matrix B (see Eq. (3.4)) are

B j1 =
√

r

θ

{(
1 − j

r

)
ln

(
1 − j

r

)
−
(

1 − j − 1

r

)
ln

(
1 − j − 1

r

)}
,

B j2 = 1

θ
√

r
, j = 1, . . . ,r .

Using the matrix in (9.10) and the above elements of the matrix B with θ
replaced by the MLE θ̂n in (9.11), the NRR test Y 12

n(θ̂n) (see Eq. (3.8)) can be
used. While using Microsoft Excel, the calculations based on double precision
is recommended.

9.5 ELEMENTS OF MATRICES B, C, K, AND V TO TEST THE
LOGISTIC DISTRIBUTION

Let b0 = −∞,b j = θ̄1n − √
3θ̄2n ln

(
(r − j)/ j

)
/π, j = 1,2, . . . ,r − 1, and

br = +∞, be borders of r equiprobable random grouping intervals. Then, the
probabilities of falling into each interval are pi = 1/r ,i = 1, . . . ,r .

The elements of the r × 2 matrix B, for j = 1, . . . ,r , are as follows:

B j1 = π√
3p jθ2

⎡
⎢⎣ exp

(
−π(b j−1−θ1)√

3θ2

)
{

1 + exp
(
−π(b j−1−θ1)√

3θ2

)}2 −
exp

(
−π(b j −θ1)√

3θ2

)
{

1 + exp
(
−π(b j −θ1)√

3θ2

)}2

⎤
⎥⎦ ,

B j2 = π√
3p jθ

2
2

⎡
⎢⎣ (b j−1 − θ1) exp

(
−π(b j−1−θ1)√

3θ2

)
{

1 + exp
(
−π(b j−1−θ1)√

3θ2

)}2

−
(b j − θ1) exp

(
−π(b j −θ1)√

3θ2

)
{

1 + exp
(
−π(b j −θ1)√

3θ2

)}2

⎤
⎥⎦ .

Next, the elements of the r × 2 matrix C are as follows:

C11 = − (b1 − θ1)

√
p1

{
1 + exp

(
π(b1−θ1)√

3θ2

)} −
√

3θ2√
p1π

ln

{
1 + exp

(
−π(b1 − θ1)√

3θ2

)}
,

C j1 = (b j−1 − θ1)

√
p j

{
1 + exp

(
π(b j−1−θ1)√

3θ2

)} − (b j − θ1)

√
p j

{
1 + exp

(
π(b j −θ1)√

3θ2

)}

+
√

3θ2

π
√

p j
ln

{
1 + exp

(
−π(b j−1−θ1)√

3θ2

)}
{

1 + exp
(
−π(b j −θ1)√

3θ2

)} , j = 2, . . . ,r − 1,
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Cr1 = (br−1 − θ1)

√
pr

{
1 + exp

(
π(br−1−θ1)√

3θ2

)}

+
√

3θ2√
prπ

ln

{
1 + exp

(
−π(br−1 − θ1)√

3θ2

)}
,

C12 = (b2
1 − θ2

1 − θ2
2 )√

p1

{
1 + exp

(
−π(b1−θ1)√

3θ2

)}

−2
√

3θ2b1√
p1π

ln

{
1 + exp

(
π(b1 − θ1)√

3θ2

)}

− 6θ2
2

π2√p1
Li2

(
− exp

(
π(b1 − θ1)√

3θ2

))
,

C j2 = − b2
j − θ2

1
√

p j

{
1 + exp

(
π(b j −θ1)√

3θ2

)} + b2
j−1 − θ2

1
√

p j

{
1 + exp

(
π(b j−1−θ1)√

3θ2

)}

+2
√

3θ2

π
√

p j
ln

⎡
⎢⎣
{

1 + exp
(
−π(b j−1−θ1)√

3θ2

)}b j−1

{
1 + exp

(
−π(b j −θ1)√

3θ2

)}b j

⎤
⎥⎦

+ 6θ2
2

π2√p j
Li2

(
− exp

(
−π(b j − θ1)√

3θ2

))

− 6θ2
2

π2√p j
Li2

(
− exp

(
−π(b j−1 − θ1)√

3θ2

))

+ θ2
2√

p j

{
1 + exp

(
−π(b j−1−θ1)√

3θ2

)}

− θ2
2√

p j

{
1 + exp

(
−π(b j −θ1)√

3θ2

)} , j = 2, . . . ,r − 1,

Cr2 = (b2
r−1 − θ2

1 − θ2
2 )√

pr

{
1 + exp

(
π(br−1−θ1)√

3θ2

)}

−2
√

3θ2br−1

π
√

pr
ln

{
1 + exp

(
−π(br−1 − θ1)√

3θ2

)}

− 6θ2
2

π2√pr
Li2

(
− exp

(
π(br−1 − θ1)√

3θ2

))
,



211Chapter | 9 Chi-Squared Tests for Specific Distributions

where Li2( − x) is Euler’s dilogarithm function that can be computed by the
series expansion

Li2 =
∞∑

k=1

(− x)k

k2 for x � (
√

5 − 1)/2,

and by the expansion

Li2(− x) =
∞∑

k=1

1

k2(1 + x)k
+ 1

2
ln2 (1 + x)− ln x ln (1 + x)− π2

6

for x > (
√

5 − 1)/2 (Prudnikov et al., 1986, p. 763).
Finally, we have the matrices K and V as

K =
(

1 0

2θ1 2θ2

)
and V =

(
θ2

2 2θ1θ
2
2

2θ1θ
2
2 4θ2

1 θ
2
2 + 16

5 θ
4
2

)
.

9.6 TESTING FOR NORMALITY

System requirements for implementing the software of Sections 9.6–9.10 are
Windows XP, Windows 7, MS Office 2003, 2007, 2010.

1. Open file Testing Normality.xls;
2. Enter your sample data in column “I” starting from cell 1;
3. Click the button “Compute,” introduce the sample size and the desired

number of equiprobable intervals (4 � r � 200). The recommended number
of intervals for the NRR test Y 12

n(θ̂n) in (3.8), under close alternatives (such
as the logistic), is 4 � r � n/5. The recommended number of intervals for
the test S2

n (θ̂n) in (3.24) is r = n/5 (see Section 4.4.1). Note that the power
of S2

n (θ̂n) can be more than that of the NRR test;
4. Click OK;

5. Numerical values of Y 12
n(θ̂n) and S2

n (θ̂n) are in cells F2 and G2, respectively.
Cells F3 and G3 contain the corresponding percentage points at level 0.05.
The P-values of Y 12

n(θ̂n) and S2
n (θ̂n) are in cells F4 and G4, respectively.

9.7 TESTING FOR EXPONENTIALITY

9.7.1 Test of Greenwood and Nikulin (see Section 3.6.1)

1. Open file Testing Exp GrNik.xls;
2. Enter your sample data in column “I” starting from cell 1;
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3. Click the button “Compute,” introduce the sample size and desired number of
equiprobable intervals. The recommended number of equiprobable intervals
is 2 � r � 6;

4. Click OK;
5. The numerical value of Y 2

n (see Eq. (3.44)) is in cell F2. The percentage
point at level 0.05 and the P-value are in cells F3 and F4, respectively.

9.7.2 Nikulin-Rao-Robson test (see Eq. (3.8) and Section 9.4)

1. Open file Testing NRR 2-param EXP.xls;
2. Enter your sample data in column “I” starting from cell 1;
3. Click the button “Compute,” introduce the sample size and desired number of

equiprobable intervals. The recommended number of equiprobable intervals
is 4 � r � 6;

4. Click OK;

5. The numerical value of Y 12
n(θ̂n) is in cell F2. The percentage point at level

0.05 and the P-value are in cells F3 and F4, respectively.

9.8 TESTING FOR THE LOGISTIC

1. Open file Testing Logistic.xls;
2. Enter your sample data in column “I” starting from cell 1;
3. Click the button “Compute,” introduce the sample size and desired number

of equiprobable intervals (4 � r � 200). The recommended number of
equiprobable intervals, for close alternatives (such as normal), is n/20 <
r � n/10;

4. Click OK;
5. Numerical values of Y 22

n(θ̄n) in (4.9) and S12
n(θ̄n) in (4.13) are in cells E2

and F2, respectively. Cells E3 and F3 contain the corresponding percentage
points at level 0.05. The P-values of Y 22

n(θ̄n) and S12
n(θ̄n) are in cells E4

and F4, respectively.

9.9 TESTING FOR THE THREE-PARAMETER WEIBULL

1. Open file Testing Weibull3.xls;
2. Enter your sample data in column “I” starting from cell 1;
3. Click the button “Compute,” introduce the sample size and desired number

of equiprobable intervals (5 � r � 200). The recommended number of
equiprobable intervals for the Exponentiated Weibull and Power Generalized
Weibull alternatives is r = n/5;

4. Click OK;
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5. Numerical values of Y 22
n(θ̄n) in (4.9) and S12

n(θ̄n) in (4.14) (see also
Section 9.2) are in cells F2 and G2, respectively. Note that the power of
S12

n(θ̄n) is usually higher than that of Y 22
n(θ̄n). Cells F3 and G3 contain the

corresponding percentage points at level 0.05. The P-values of Y 22
n(θ̄n) and

S12
n(θ̄n) are in cells F4 and G4, respectively.

9.10 TESTING FOR THE POWER GENERALIZED WEIBULL

1. Open file Test for PGW (Left-tailed).xls;
2. Enter your sample data in column “I” starting from cell 1;
3. Click the button “Run,” introduce the sample size and desired number of

equiprobable intervals (5 � r � 200). The recommended number of
equiprobable intervals for the Exponentiated Weibull, Generalized Weibull,
and Three-Parameter Weibull alternatives is r = n/5;

4. Click OK. Note that the power of S2
n (θ̂n) in (3.50) is usually higher than that

of Y 12
n(θ̂n) in (3.48);

5. Numerical values of Y 12
n(θ̂n) and S2

n (θ̂n) (see Eqs. (3.48), (3.50) and Section
9.3) are in cells F2 and G2, respectively. Cells F3 and G3 contain the
corresponding percentage points at level 0.05. The P-values of Y 12

n(θ̂n)

and S2
n (θ̂n) are in cells F4 and G4, respectively.

9.11 TESTING FOR TWO-DIMENSIONAL CIRCULAR
NORMALITY

1. Open file Testing Circular Normality.xls;
2. Enter your sample data in columns “I” and “J” starting from cell 1;
3. Click the button “Compute,” introduce the sample size and the desired

number of equiprobable intervals. The recommended number of intervals
for the two-dimensional logistic alternative is 5 � r � 10, while
the recommended number of intervals for the two-dimensional normal
alternative is 3;

4. Click OK;

5. Numerical values of Y 12
n(θ̂n) and S2

n (θ̂n) (see Section 3.5.3) are in cells F2
and G2, respectively. Cells F3 and G3 contain the corresponding percentage
points at level 0.05. The P-values of Y 12

n(θ̂n) and S2
n (θ̂n) are in cells F4 and

G4, respectively.
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