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PREFACE

These are the confessions of a practicing statistician. They ex-
sexe to public view what I am likely to do with a set of data. 1
nay therefore live to regret setting pencil to paper. Yet there does
¢ seem to be a book that tells a student how to attack a set of
<aza There are books on the analysis of variance, there are books
:c aonparametric statistics, there are books on this and that, but
w=:ch technique should I use on the data? This book attempts to go
~e<ond any specific discipline and consider the variety of techniques
:2at can be brought to bear on a problem. The statistical problem
= :he central focus, not a particular theoretical approach.

This book is written for M.S. and Ph.D. students of statistics
s =c have some knowledge of the analysis of variance, nonparametric
satistics, etc., but who are still unclear on what to do when con-
5~ =ted with data. It is hoped that this book will be useful as well to

=usdogists, social scientists, and engineers who know some statistics
acd want to handle their own data analysis.

It will be immediately apparent that this book in no way covers
z=e complete range of statistical problems and ideas. Designs more
s=mplex than the two-way classification (e.g., three-way classifica-
ze:as and Latin squares) are not included, nor is multiple regression.
TYe hope is that the reader will grasp the basic ideas behind the
smpler analyses and thus understand how to cope with the more
s=mplex situations. Unmentioned are problems where the basic ran-
3=m variables are binary valued or categorical. Also, no attempt has
teen made to incorporate the techniques of multivariate analysis or

tme series analysis.

Since the statistical techniques based on normal theory have
teen so central to the development and teaching of statistics, the
scructure of each chapter (or subchapter) is to first present the nor-
nal theory methods and then investigate what happens when the
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vl  Preface

normality assumption and other assumptions break down. In most
chapters, this leads to sections on nonnormality, unequal variances,
and dependence.

Exercises are included at the end of each chapter. Some are
theoretical, and others involve data analysis. The latter were se-
lected for their relevance and interest from my files of projects at the
Stanford Medical Center.

Rupert G. Miller, Jr.
London, England
Stanford, California
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Chapter 1

ONE SAMPLE

The simplest problem is that of a sample from a single population
where the aim of the statistical analysis is to estimate, or test a
hypothesis about, the location of the population. Many of the tech-
niques for detecting and correcting departures from assumptions are
illustrated in this basic setting.

1.1. Normal Theory.

Let y1, ..., yn be independently distributed as N (#,0%).* For hypoth-
esis testing the null hypothesis is Hj : # = po and the alternative
could be either one-sided H, : u > ko or two-sided H; : p # p,.
From the estimation point of view the problem is to estimate x and
construct a confidence interval for it.

The variables y; may themselves be combinations of other vari-
ables. For instance, when observations u and v are taken on subjects
paired to eliminate the effect of nuisance variables, y; may be the
paired difference u; — v; for the ith pair, and the null hypothesis
of no difference has py = 0. Or, in a different setting, the ratio
¥i = 4;/v; may be the natural variable in which case sy = 1 might
be the null hypothesis.

The likelihood ratio test of Hj : B=po vs. Hy : p# pyleads

* “N(p,0%)" denotes a normal distribution with mean g and variance o7,
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to Student’s (1908) t statistic
¥y— ko
8/\/;; ’ (l'l)

which has a Student’s ¢ distribution with n — 1 df.*** Theoretical
hypothesis testing says reject the null hypothesis if |¢| > t:é 21, where
¢®/% is the upper 100 (a/2) percentile of the ¢ distribution and « is

n—1
the preselected significance level.

t=

A formal hypothesis testing framework is conceptually very use-
ful and has led to great advances in statistical theory. However, I
don’t remember ever having fixed a and having tested a hypothesis.
Instead, I report the P value, which is the probability under the null
hypothesis of obtaining a result equal to, or more extreme than, the
observed. In tkis case P = 2P{t,—; > |t|}, where t,,—; has a ¢t distri-
bution on n — 1 df and ¢ is the observed value of the statistic (1.1).
P is a measure of the credibility of the null hypothesis. The smaller
P is, the less likely one feels the null hypothesis can be true. For
discussion of the P value see Gibbons and Pratt (1975) and Pratt
and Gibbons (1981, Chapter I, Section 4).

Bayesian statisticians would report a different measure of the
credibility of the null hypothesis, namely, the posterior probability
of its being correct. However, this requires knowing the prior proba-
bility of the null hypothesis being true and the probability measure
over the alternative hypotheses. I am never fortunate enough to know
these. DeGroot (1973) has tried to bring the P value and Bayesian
philosophy closer together by giving examples in which the P value
can be interpreted as a posterior probability.

Believers in likelihood would report the entire likelihood func-
tion. I have been involved in situations where calculating the likeli-

c =30 wi/m e = (i -9/ (a —1).

** 43f" denotes degrees of freedom.
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hood function was informative and helpful. It indicates which alter-
natives are compatible with the data and which are not. However, it
involves more work than computing a P value - a function must be
tabled or a graph drawn. Also, it requires the assumption of a para-
metric model. For routine scientific reporting, the P value is simpler
and is more nearly universally understood by scientific investigators.

Some might argue that even with the P value classical hypoth-
esis testing is being practiced because statements such as “P < .05”
or “P < .01” will appear in scientific articles and results are not
published unless P < .05. I would say that the inclusion of state-
ments like “P < .05” is more a result of imprecision or extensive
tables being unavailable rather than hypothesis testing with @ = .05
being practiced. Also, I rarely make a more refined statement like
“P = .001” because, except for certain nonparametric distributions,
the accuracy of such a statement depends on an assumption about
the form of the distribution very far out in the tails. Robustness of
far out tails of a distribution is not easily guaranteed and reports

such as “P = .001” may be overly optimistic.

It cannot be denied that many journal editors and investigators
use P < .05 as a yardstick for the publishability of a result. This
is unfortunate because not only P but also the sample size and the
magnitude of a physically important difference determine the quality
of an expérimental finding. For an experiment the sample size may
be necessarily small due to limitations of time and/or money, and
a finding with P = .10 may be far more striking than a result in
another paper which has P = .05 but much larger sample size. The
larger the sample size the smaller P has to be to warrant attention.
This involves the power of the test and the probability of detecting
small differences of no practical worth. Differences can be highly
statistically significant and yet be of such small magnitude as to have
no practical significance. Also, with large sample sizes the analysis
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may be detecting a small bias in the experiment rather than a true ,

difference.

The ¢t statistic (1.1) can be used as a pivotal statistic to con-
struct a confidence interval on pq:

po€EFE t:{}l s/ \/n. (1.2)

Often in the scientific literature a do-it-yourself confidence interval
is reported. Namely, the mean § and the standard error s/\/n are
presented, sometimes with a “4+” gign between them. Armed with
these, the sample size, and a ¢t table one could construct (1.2), but

most times a rough mental calculation of the mean plus and minus
two standard errors suffices for the reader. Similarly, in graphs the

custom is to plot the mean as a point and a vertical line whose
extent measures plus and minus one standard error (see Figure 1.1).
Unfortunately, I have the feeling that most readers unconsciously
construe the vertical line to be the 90%, 95%, or 99% confidence

interval on po.

Occasionally, when the intent is to convey the variability of .

the data, the vertical line will denote plus and minus one standard
deviation. More sophisticated plots, called box-and-whisker plots,
can be used to describe the variability in the data. For details see
Tukey (1977).

The t statistic (1.1) can also be used to test the one-sided al-
ternative Hy : p > po. In this case the P value is P = P{tn—1 > t}.
The corresponding one-sided confidence interval is

po > § —ta_y2/Vn. (1.3)

However, one should use and report one-sided ¢ tests and P values

only when one is absolutely certain a priori of the direction of the .

difference if it is to occur.

T
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y+snn

Y

¥y = shn

Figure 1.1

1.2. Nonnormality.
1.2.1. Effect

What happens when F(y), the cdf of ¥, is not normal?* For large
samples the ¢ analysis is rescued by the central limit theorem:**

V(g - mo) S N(0,0?), (1.4)

and also
¢ebo, (1.5)

where 02 = Var(y), 50 as n — oo,
t= V(g =~ po)/s S N(0,1). (16)

Since tJ_, — 2z where 2 is the upper 100a percentile of the normal
distribution, the ¢ analysis will be valid in the limit.

* Ycdf” denotes cumulative distribution function.

s «d 2 and ¢ Bn denote convergence in distribution and in probability,
respectively.

-



6 Chaptsr 1: ONE SAMPLE

How large is large? The answer to this is inextricably linked
with how nonnormal F is. To discuss this it is necessary to intro-
duce the two parameters that play a central role in the effects of
nonnormality. They are the skewness
E(y - p)°

e

71 =nly) = (1.7)

and the kurtosis
E(y—p)*

ot

72 =7(y) = 3 (1.8)

of the distribution.

For the normal distribution 4; = 4, = 0. For a distribution with
a right tail heavier than its left 45 will be positive. As an example, the
exponential distribution with F'(y) = f(y) = Aexp(=2Ay), A, y > 0,
has v, = 2. Similarly, for a distribution skewed to the left 4, will be
negative. When the tails of the distribution contain more mass than
the normal, the kurtosis 42 will be positive. For example, the two-
tailed exponential (Laplace) distribution f(y) = (A/2)exp(-Aly|),
A >0, —c0 <y < +o00, has 7, = 3. The t distribution with v df,
which also has heavier tails than the normal, has v, = 6/(v — 4)
for v > 4, whereas the stubbier tailed uniform distribution has v, =
—1.2. For any distribution 42 > —2.

In the numerator of the ¢ statistic (1.1)

02
E(g)=p  Var(p) = — (1.9)
for any distribution F(y), and also
W=7  mE=T (1.10)

where 7;(f), 72(7) are the skewness and kurtosis of the cdf of 7.
From (1.10) one can infer that a kurtosis effect is wiped out rapidly
whereas skewness vanishes more gradually. For most distributions
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the central limit theorem will have had time to weave its magic on §
by n = 10, except possibly for a slightly skewed appearance.

In the denominator of the t statistic
2 72
2 2 2 4
E(s*) = 0*, Var(s*) = o (__n—l+n)’ (1.11)

which transform approximately to
o 2 72
E(s)20—--|—+—),
(o) =0 8 (n—l+ n)

Var(s) & Z:_ (_3_1_ - B) . (1.12)

n n

For v, > 0 the convergence of s to & will be slower than prophesied
by the normal distribution whereas for 7, < 0 it will be faster.

Except in the case of the normal distribution the numerator and
denominator are stochastically dependent. The asymptotic correla-

tion between § and s is
N

V72 +2’

which vanishes only if v, = 0.

(1.13)

Power series expansions for the moments of ¢ appear in the work
of Geary (1936, 1947). The leading terms in the mean and variance

are 1
__m R
E(t) = 2\/.';Jro(w,,/z),

1 or 1
Var(t)=l+;(2+z'h)+0(;.—2-).

This suggests that v, has little effect on ¢ but that 4, may have a

(1.14)

larger effect.

The Monte Carlo sampling work of Pearson (1929) is in accord
with the (later) moment calculations of Geary. Pearson considered
different distributions with 4, ranging between 0 and .7 and 4, be-
tween —.5 and 4 and sample sizes n = 2, 5, 10, 20. For 7; and 75 in

-

¥
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8 Chapter 1: ONE SAMPLE

these ranges their effect on the distribution of |t| is small. For 42 > 0 -

the actual two-sided P values tend to be smaller than the stated P

values based on the ¢ table, and for 7, < 0 the actual P values can be -
larger than the stated ones. Nonzero 4; tends to make the P values

larger than the values calculated from the ¢ tables. Later work by
Gayen (1949) indicates that for values of 4;, 72 outside these ranges
(i.e., 11 > 1, 72 > 4) the robustness of t deteriorates rapidly for small

(B

The situation is worse for one-sided P values based on t rather

than [t|. The skewness of ¢t has the leading term (from Geary, 1936,
1947)

) =-Lro(3;). (1.15)

The skewness is in the opposite direction from the parent population;
this is caused by the correlation (1.13) between § and s. The tail |

probabilities in the skewed direction of ¢ will be underestimated by
the ¢ table and overestimated in the opposite direction. These mis-
calculations cancel each other in obtaining two-sided P values, but
for one-sided values the effect can be worrisome. As an illustration,

Gayen (194C) showed that for n = 10 P{t < —2.262} is .064 for a

distribution with 4; = 42 = 1 rather than the nominally stated .025.

These calculations are confirmed in the Monte Carlo work of
Pearson and Please (1975), who tabulated the fractions of samples
falling above, below, and outside the appropriate @ = .05 and .01
t critical limits for various combinations of n = 10, 20, 25, v, =
0 (.2).8, and 72 in the range —1 to 1.4.

The special case where y; = u; — v; tends to be more robust.
If the u and v distributions are identical except for location, or at
least have approximately the same skewness ;(u) ¢ «;(v), then the
differencing operation on u — v will cancel out the skewness effect so
that 4;(y) = 0, or in the approximate case 7;(y) = 0. The kurtosis

e
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72(y) will most likely be nonzero, but since its effect on the P values
is less than 4;(y), the ¢ test should be more robust for this special

case.

Efron (1969) studied extensively the behavior of the ¢ statistic
under the condition that the y; are symmetrically distributed, which,
of course, implies 7;(y) = 0. His results suggest that under the
symmetry assumption the ¢ test often tends to be conservative; i.c.,
the true P values are less than the nominally stated ones. The effect
is not large except for extreme distributions like the Cauchy.

Although this discussion points out that the user cannot go too
far wrong with the ¢ statistic, the reader should not come away with
the impression that it is the best thing to use. For distributions other
than the normal it is not the most efficient procedure and for some it
can be very inefficient. Inefficiency means that the power of the test
is not as great for alternative distributions as for other procedures
more tailored to the underlying distributions. Correspondingly, the
P values do not tend to be as impressively small when based on the
t statistic as when they are derived from the specially designed tests.
This means that whereas the ¢ test is somewhat robust for validity,
it is not robust for efficiency.

For example, if for a positive random variable it is quite clear
from plotting the tail of the sample cdf (i.e., 1 ~ F(y)) on log paper
(i.e., linear x logarithmic scales) that F is an exponential distribu-
tion, then the most powerful one-sided procedure uses # without s to
compute a P value from the gamma distribution. If the data do not
unequivocally demonstrate an exponential distribution but the dis-
tribution does have a long upper tail, then a transformation like log
or square root (see Section 1.2.3) before the ¢ statistic is computed
will produce sharper results.

Another type of nonnormality that can occur is the appearance
of outliers. These are observed values which are substantially remote
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from the main body of the data but cannot be discarded as being
erroneous measurements, miscalculations, etc. They are judged not
to have come from the distribution governing the rest of the data.

Whether outlying values are outliers or merely extreme obser-
vations from a heavy-tailed distribution is a fuzzy issue in many
cases. Typically, aberrant values are considered outliers if they are
few in number and the rest of the sample looks normally distributed
with them removed. In Monte Carlo studies outliers are frequently
modeled by having 95% of the sample come from a unit normal dis-
tribution and 5% from a normal distribution with p =0 and o = 10.
Mixture distributions where with probability p the observation is dis-
tributed as N(p,0?) and with probability 1 — p as N(p,(ko)?) are
referred to as contaminated normal distributions.

The effect of outliers on the sample mean can be noticeable,
particularly if more cccur in one tail than the other. However, the
dramatic impact is on the sample variance. Because the differences
from the mean are squared in the sample variance, squares from
outliers can constitute a substantial fraction of the sum of squares
even though they are few in number. The result is to inflate the
denominator of the ¢ statistic and consequently to dampen or wipe
out an otherwise significant mean difference. Thus neither the mean
nor the variance, especially the latter, is resistant to outliers.

An excellent treatise on outliers is Barnett and Lewis (1978).
1.2.2. Detection

My recommendation for detecting nonnormality is probit plotting.
Probit plotting is facilitated by probit paper, which is specially con-
structed graph paper available from many companies under the name
probability or normal probability paper. One scale is linear, and the
other scale is designed to transform the cumulative normal distribu-
tion function into a straight line. A piece of probit paper resembles

s
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0.0 99.99

| 99

10 90

50 50

90 10

99 [

99.99 L 0.0l
Figure 1.2

Figure 1.2 with many more lines for scale divisions. Since the cu-
mulative normal distribution would require an infinite linear strip to
reach 0 and 1 the probit scale is cut off, usually at .0001 and .9999.
Note that most papers use a percent scale .01 to 99.99.

The paper is used in the following fashion. Form the ordered
values Vo) S Y@ £ - < Y(n) from the sample y;,---,y,. Above
the abscissa value ¥(s) on the linear scale plot a point at the ordinate
value ¢/(n+1). There is nothing sacred about the choice of i/(n+1);
another simple possibility is (s — 3)/n. The usual choice i/n for
plotting the sample cdf is excluded because it goes off the scale at
i = n. Chernoff and Lieberman (1954) have studied the optimal
selection of the ordinate value from the point of view of estimating
o, but since the graph in this instance is merely intended for visual
inspection of the tails of the distribution, the most computationally
convenient choice suffices. On a computer it doesn’t matter, but for
hand plotting i/(n + 1) is quite easy.

The points can be connected by straight lines if the plotter so
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desires, but this is not necessary. If a y value is repeated in the
sample, then the sequence of points (or line) will proceed straight up
at that value.

The abscissa value at which the sequence of points (or line seg-
ment) crosses the ordinate value 50% is the sample median, and in
the case of the normal distribution this is an estimate of p, though
not the best one. The difference between the 84% and 50% points
on the abscissa (and/or between the 50% and 16% points) is a quick
estimate of o for the normal distribution.

The observer is interested in how well the points (¥(;), ¢ [(n+1)),
; = 1,---,n, conform to a straight line. Deviation in the tails, not
fluctuation in the middle, is what is important for inferences on p. A
sample like that depicted in Figure 1.3 is indicative of a distribution
with 1y > 0. The more it bends at the top the shakier the t test
gets, particularly one-sided P values. Figures 1.4 and 1.5 illustrate
samples from distribuiions with 72 > 0 and 72 < 0, respectively.

Outliers give a slightly different appearance in probit plots, al-
though the difference is unclear at times. Typically, the body of the
data follows a straight line on probit paper, but there are a few values
too far to the right (or left) as in Figure 1.6.

Figure 1.3
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Figure 1.5

I make an effort to obtain a probit plot of the data before using
the ¢ test in any kind of crucial analysis. If the analysis requires many
different ¢ tests on different data sets, I at lcast try to plot some of the
representative sets. Alternatively, one can ask the computer to do
the plotting if it has a graphics routine for displaying &~!(i/(n + 1))
versus y(;.*

The reader should be aware that log-probit paper exists as well.
This has a normal probability scale on one axis and a logarithmic

* ®(-) is the cdf for N(0,1).

h——

=
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A

Figure 1.6

scale (1, 2, or 3 cycles for base 10) on the other. It is useful for exam-
ining whether the data are normally distributed after a logarithmic

transformation.

Probit plotting is a special case of general quantile-quantile or
Q-Q plotting. For further discussion see Wilk and Gnanadesikan
(1968).

If a deviation from normality cannot be spotted by eye on probit
paper, it is not worth worrying about. I never use the Kolmogorov-
Smirnov test (or one of its cousins) or the x?2 test as a preliminary test
of normality. They do not tell you how the sample is differing from
normality, and I have a feeling they are more likely to detect irregu-
larities in the middle of the distribution than in the tails. If plotting
is impractical for large data bases and some normality screening de-
vice is required, I would be inclined to compute either the sample
estimates of 7; and 7, or the Shapiro-Francia test statistic, which
are described next.
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The sample estimates of v; and 42 are

L& 3/2
=l Z(w -9’ / [ Z(v.' = ﬁ)’] ;
(1.16)

=1
A E._l(!h
[ Et—l(y: - y)Z]

These convey information about what type of departure from nor-
mality is occurring, and their values could be compared with the
ranges (see Section 1.2.1) in which the ¢ test is known to be robust.
Mental allowance can be made for the sampling variability in these
estimates. Tables of critical points for testing 734 = O or 72 = 0
appear in Pearson and Hartley (1970), but preliminary testing does
not seem germane.

For testing normality Shapiro and Francia (1972) proposed the

test statistic

; Z biy )2
wr = ik biva) , 117
S (i - 07 it
where y(;) < --- < y(n) and

mg
(Z:ilm—)l/z-, mg; = E(Z(.)) (118)
with z(;) < -++ < 2(,) representing the order statistics from a unit
normal distribution. The idea behind the statistic (1.17) is that if
the y,; are normally distributed, then the correlation between the Vi)
and their expected values under normal theory should be very high.
Rejection of normality should be for low values of W'.

Since the correlation coefficient is location and scale invariant,
the expected values can be taken to be those for order statistics
from a unit normal distribution. Tables of m; are available in Harter
(1961) for n = 2(1)100(25)300(50)400; values for additional n > 100
can be found in Harter (196Sb). A small table of critical values for

COLOMBIA
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W' is given by Shapiro and Francia.

The statistic W' is a simplification of a statistic W proposed
earlier by Shapiro and Wilk (1965). Since the y;) are not indepen-
dent, Shapiro and Wilk take their covariance structure into account

in the statistic

(E?=l a"y(")_)_z_

W = (L=t TV 1.19
Z.-:;(v.- —-§)? ( )
where Ty—1
v oy WMV
a = (al, )an) 5 (mTv—Zm)l/'z’ (120)

m’ = (ma,--- ,Mp),
and V is the covariance matrix of (yay, -~ yY(n))- Currently available
tables of a for W (see Shapiro and Wilk, 1965) are not nearly as
extensive as those for m cited previously.

Shapiro, Wilk, and Chen (1968) have shown the Shapiro-Wilk
test to be the best currently available procedure for testing normality.

There are also tests especially designed for detecting outliers
(see Barnett and Lewis, 1978, Chapters 2 and 3, and Miller, 1981,
Chapter 6). However, 1 am inclined to use only a procedure resistant
to outliers (see Sections 1.2.3, “Nonparametric Techniques” and “Ro-
bust Estimation”) if there is any possibility of their presence rather

than to run a preliminary test.
1.2.3. Correction

Transformations One method of handling data that are suffi-
ciently nonnormal to be worrisome is to seek a transformation that
will convert the data into a sample that looks approximately normally
distributed. With positive data, if they are not approximately sym- |
metrically distributed, they are practically always positively skewed.
For this circumstance the most commonly employed transformations
are the logarithmic transformation z = logy (to the base 10 or ¢)
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and the square root transformation z = ,/y. These are special cases
of the power family

[ | A£0
={ =g (1.21)
logy, A=0.

In practice, one would simply compute z = y* when A # 0, but the
representation (1.21) shows how logy fits into the family. The log
and square root transformations are more frequently used than other
members of the power family because tables for them are readily
available and many electronic calculators now have these routines
programmed into the hardware so that the mere touch of a key will
produce the transformed value. Of course, in large computers any
member of the family is equally good.

Power transformations are mainly used only on positive random
variatles. The family can be generalized to

-1 329
z={ Ay #0, (1.22)

log(y+¢), A=0,

which may be useful in instances where there is a finite negative lower
bound to the possible value of the variable. However, for variables
assuming positive and negative values it is more customary to use
nonparametric methods, which will be described shortly. Addition
(or subtraction) of a small constant may also improve the normality
of the transformed values even for strictly positive variates, particu-
larly those that can take values close to zero.

There are other special purpose transforms useful in data anal-
ysis like sin~!/p for the binomial estimator and tanh™ r for the
sample correlation coefficient from a bivariate normal distribution.
These are designed to make the variance of the estimator relatively
free of the unknown parameter, and at the same time they seem to
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improve the normal approximation. However, they are not particu-
larly pertinent to the current discussion.

Selection of the appropriate transformation depends mostly on
guesswork and experience. There has been theoretical work done
to systematize the search for the best transform, and three notable
articles in this direction are Tukey (1957), Box and Cox (1964), and
Hinkley (1975). However, I would say that at the present day the
most common practice is to let experience suggest a transform and
then to check via a probit plot whether the guess is reasonably suc-
cesful. When there are two or more samples there is an empirical
method for selecting a variance stabilizing transformation. Since sta-
ble variances and normality frequently seem to walk hand in hand,
this method offers a substitute for guesswork in the multisample
problem, discussed in Chapters 2 and 3.

For hypothesis testing the null hypothesis Hy : E(y) = po
transforms under z = g(y) into Hy : E(z) = g(po). Those of
an exact mathematical mind will shudder at such crudity, but the
correspondence is sufficient for practical purposes. Moreover, if z
is more normally distributed than y, the transformed hypothesis
Hy : E(2) = g(po) is probably a better statement of the null sit-
uation than the original null hypothesis. As an illustration, if the
basic variable is a ratio y = u/v, then the log transform z = logy
sometimes produces more Gaussian looking data, in which case the
null hypothesis Hy : E(y) = 1 transforms to Hy : E(z) = 0, i.e.,
E(log u) = E(logv).

If the null hypothesis is stated in terms of medians, then it
transforms exactly under monotone transformations. That is, Hy :
median y = pg is precisely equivalent to Hy : median z = g(uq) for
z = g(y), ¢ monotone.

Transformations seldom are helpful in trying to handle outliers.
An outlier typically remains an outlier after the square root or log-
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arithmic transformations. Transformations strong enough to pull
outliers into proximity with the rest of the data compress the data
too much. Better avenues for handling outliers are through nonpara-
metric methods or robust estimators.

Nonparametric Techniques An alternative approach for handling
nonnormality is to use a nonparametric test statistic in place of the
t statistic. There are many possible nonparametric tests, but I will
mention only the three I consider most useful.

The first and simplest is the sign test. Initially let me asume
the underlying cdf is continuous in order to avoid ties. The null
hypothesis is that the median n of the distribution equals a specified
value ng; ie., Hy : P{y < no} = P{y > no} = 3. No assumption
of normality or even symmetry about 1 is needed in the underlying
model. The test statistic is

n
§= EI{II-' > no}, (1.23)
=1
where
1 if ¥i > No,
I{y; > no} = ] (1.24)
0 if y; < no;

i.e., S is the number of y; which exceed no.

Under Hj the statistic § has a binomial distribution with pa-
rameters n and p = ; The lower one-tailed P value is

P= g (:) (%)" (1.25)

and this can easily be obtained from binomial tables (e.g., Harvard,
1955, or Owen, 1962). An analogous expression holds for an upper
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one-tailed P value, and the two-sided P value for § < 5

(M E T E G0 om

also can be extracted easily from tables. For § > § transpose S and
n— S in (1.26). For large n (viz., n > 25) the normal approximation

~ N(0,1) (1.27)
n

1

2

gives quite accurate P values.* Even for n as small as 10 I don’t hes-
itate to resort to the approximation (1.27) if tables are not available.
For upper tail P values subtraction (addition for lower tail) of 3 in
the numerator as a continuity correction will refine the approxima-
tion.

Whereas the t test is associated with the estimator § for the
location of the population, the sign test is related to the median m
of the sample. Confidence intervals for the population median can
be determined from (1.26) or (1.27) by figuring out the range of n
for which P is greater than a. If 8*/2 is the critical value for S, i.e.,
the largest integcr such that

oo/3

L@ 62,006 = o

k=0 k=n-e2/3

/2 _ 1 41 n—ast/2_n_1
q,(___#.).;.[l_t}( n"’ 2)]5::, (1.29)
£ a

then (y(,e/341)) Y(n—so/3-1)) i8 the (> 100(1—a)%) confidence interval
for the population median n, where y(;) < --- < y(,) are the order
statistics. Tables are available in Owen (1962).

or

* 4y denotes “is approximately distributed as.”
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The sign test is not very efficient for many distributions in com-
parison with the ¢ test or the signed-rank test, which is the next test
to be discussed. It often throws away too much information, although
for some very heavy-tailed distributions it is well to ignore the data
except for their signs. For instance, the sign test is asymptotically
optimal for the two-tailed exponential distribution, and it is better
than the ¢ test or signed-rank test for the Cauchy distribution. The
sign test very effectively obliterates the effect of outliers.

I'tend to use the sign test as a quick test or a screening device.
If the data are clearly statistically significant and the sign test will
prove this, it is a marvelous device for hurriedly getting the client
out of your office. He or she will be happy because the data have
received an official stamp of statistical significance, and you will be
happy because you can get back to your own research. It is also
useful for rapidly scanning data to acquire a feeling as to whether
the data might be statistically significant. If the sign statistic and
approximation (1.27) produce a normal deviate which is near to being
significant, then a more refined analysis may be worthwhile. H, on
the other hand, S is nowhere close to being significant, it is very
unlikely that a significant result can be produced by more elaborate
means.

Until now I have kept the question of ties locked in the closet,
but unfortunately they can, and do, occur. For calculating a P value
the only ties that cause trouble are those in which y equals the null
median 9. For confidence intervals other ties can cause problems,
but the reader is left to extrapolate the null discussion to the broader
case.

If the possible values of u and v are discrete and relatively
few, then in the paired data problem where y = u — v a num-
ber of the observations may equal the null median 0. The condi-
tional approach is to exclude the zeros and to consider the question

B— —
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P{y > Oly # 0} 2 P{y < Oly # 0}. But this may be a worthless
question to answer if y = 0 a high proportion of the time. If u and v
are frequently identical, it may be unimportant which is selected, and
other considerations such as cost or side-effects in medical applica-
tions may be more influential in the selection process. A significance
level attached to the conditional data may be misinterpreted by the
unwary.

For a small proportion of ties the conditional approach is easy
and acceptable. A conservative stance would be to consider the zeros
as having small values in the direction opposite to the shift of the
rest of the data. If the sign test still gives a delightfully small P
value, then one is quite content about the ties, but one may not be
so lucky. A less self-penalizing procedure is to score each zero as
one-half in calculating §. At no time would I use randomization to
break the zero ties.

For a study of handling ties in nonparametric tests the reader
is referred to Putter (1955).

When the analysis requires more than the sign test, my favorite
is the Wilcoxon (1945) signed-rank test. The null hypothesis is that
the underlying cdf is symmetric about a specified value po, usually
zero. Symmetry about g is used in the test procedure so a falsely
significant result can be produced by asymmetry even though the
mean or median equals po.* To avoid ties at the outset assume the

underlying cdf is continuous.

Subtract the hypothesized mean from each observation; i.e., let
z; = yi — po. Take the absolute values |z},:--,|2z,| and order them
|zla) < -+ € |2](n). Identify with each absolute value its rank from 1
up to n. For z; let r; be the rank of its absolute value. The Wilcoxon
sigiied-rank statistic is the sum of the ranks corresponding to positive

* The test is consistent against alternatives for which P{y +y3 > 0} # 1/2.
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observations, i.e.,

n
SRy = Y _ri I{z; > 0}, (1.30)
=1
where
1 ifz>0,
I{z; >0} = (1.31)
0 ifz<0.

Since the sum of all the ranks equals n(n + 1)/2, equivalent statis-
tics are the sum of the negative ranks or the difference between the
positive and the negative ranks.

An alternative representation for the Wilcoxon signed-rank stat-
istic, which the reader can verify with a little thought or mathemat-

ical induction, is

SR; = z":ijz{z.- +2; >0}, (1.32)

=1 §=1

where "
1 ifz+2>0,

I{z; +z; >0} = 1.33
=it 2 } {0 if z;+2; <O0. f1133)

In most instances (1.30) is the easier way to compute SRy, but (1.32)
is theoretically convenient for computing moments and studying dis-
tribution theory. The representation (1.32) is due to Tukey.

The probabilities P{SR; = r} can be generated through recur-
sive schemes, and tables are readily available. Two compendia con-
taining signed-rank tables are Owen (1962) and Pearson and Hartley
(1972). They give cumulative probabilities for values of n up to 20
and 15, respectively. Beyond this the normal approximation

SR+ i n!n‘-l-l!
n]n+l“2n+l|

24

r N(0,1) (1.34)

is sufficient for computing one- or two-tailed P values.
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The estimator associated with the signed-rank statistic is the
Hodges-Lehmann (1963) estimator, which is the median of the n(n+
1)/2 values (y; + y;)/2 where i can equal 5. The connection is sug-
gested by the representation (1.32). This leads into the field of ro-
bust estimators for symmetric distributions, which is discussed next
in Section 1.2.3.

Although it is not found frequently, a confidence interval for the
population median can be constructed from the signed-rank statistic.
The (> 100(1 — a)%) interval consists of all values of p such that
when SR, is computed for z; = yi — i, i=1,---,n, the two-sided P
value is greater than or equal to a. It is a bit tedious to figure out
the interval through guesswork or trial and error, which is probably
the reason for its lack of popularity. However, there is a graphical
procedure due to Tukey which greatly simplifies this process. On a
piece of graph paper plot the n points g, - -, yn 0N the ordinate axis.
Through each point y; draw two lines in the right half-plane, one with
slope +1, the other with slope —1. These lines will intersect at (3)
points in the right half-plane. These intersections and the original n
points give a total of n(n + 1)/2 points whose ordinates constitute
the collection {(y; + yj)/2}. The median of these ordinal values
is the Hodges-Lehmann estimator. If ar:/ 2 is the critical value for
SR, (i.e., the largest integer such that P{SR, < ar:_/ % and SRy >
n— ari/ | Ho } < a), then the arﬂ'_/ Z + 1 smallest ordinate in the
collection is the lower confidence limit and the nin+1)/2 - ar:_/ 2
largest (i.e., ar:/ 2 4 1 from the top) ordinate is the upper limit. For
n =25, ari/ 2 _ 3 the procedure is illustrated in Figure 1.7. Note
that the Hodges-Lehmann estimator need not be tlre midpoint of the
confidence interval.

What should be done about ties? For the signed-rank test ties
between values of z = y — po with the same absolute values but

opposite signs causes problems as well as those for which z = 0. The




Section 1.2: Nonnormality 25

Y\

Is

Y.

4 1,
¥ A

= HHL

- Mt

18

"

Figure 1.7

zeros can be dropped and the test performed conditionally without
them as in the case of the sign test. Pratt (1959) has pointed out that
anomalies can occur with this approach but the circumstances seem
rare. The more major question is whether it is worth investigating
any shift of the conditional distribution if the probability of a zero
value is large. For nonzero ties the successive ranks can be averaged
and the average rank assigned to each observation in the tie. This is
equivalent to expanding the definition (1.33) to

1 ifz+2>0,
Hzi+2z,>01=¢{1 ifz+2z =0, 1.35
§ 2 {]
0 ifz+2z<0.

For a small number of average ranks the usual tables can be used
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with impunity. The variance of SR corrected for ties is

1 1¢
L [n(n +1)(2n+1) - 3 étg(t; - 1)(te + 1)] , (1.36)
where g is the number of tied groups and t; is the size of the kth
group. The square root of (1.36) can be substituted into the de-
nominator of (1.34). However, the number of ties has to become
considerable before the correction term in (1.36) makes much differ-

ence.

Pratt (1959) has the most thorough discussion of ties for the
signed-rank test, and it is an article worth reading. He proposes a
modified procedure for handling zero ties which deletes the ranks
assigned to zeros. Cureton (1967) gives the null mean and variance
for Pratt’s statistic, and Rahe (1974) provides small sample tables.
Conover (1972) gives some theoretical efficiencies for the different

procedures.

As with the sign test, the signed-rank test is good for handling
heavy-tailed distributions and outliers. Also, it is asymptotically
optimal for the logistic distribution. Its asymptotic relative efficiency
with respect to the ¢ test for the normal distribution is 3

There are other nonparametric tests which, like the signed and
signed-rank tests, sum a set of scores for the positive observations.
An important example is the normal scores test (see Lehmann, 1975,
pp. 96-97). This test requires specialized tables even for the com-
putation of the statistic and therefore is inconvenient to use, even
on a large computer. Also, the normal scores test outperforms the
signed-rank test for short-tailed distributions like the uniform, but
these are not as much of a worry as the heavy-tailed distributions
where the signed-rank does better (see Hodges and Lehmann, 1961).
Of the class of linear rank tests the sign and the signed-rank tests
are by far the most important for applications.
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The last nonparametric test to be mentioned is of a different
type. It is the Fisher (1935) permutation test. The null hypothesis
is that the underlying cdf is symmetric about po. The test is linked
with the estimator § since it uses T = S (vi—po) asa test statistic.
Under Hp the values £(yi — jto) are equally likely so the 2" different
values of T with all possible sign changes S0, £(yi— o) are equally
likely.* These T values can be ordered T(;) < - £ Tgn) and the
one-sided P value equals the number of T values equal to or more
extreme than the observed in that tail divided by 2". The two-sided
P value equals the number of T values equal to or more extreme than
the observed in both tails divided by 2".

The test is clumsy to carry out unless the observed T value is
go large positively (or negatively) that only a few easily recogniz-
able cases exceed it. For this reason it is seldom used. However,
the idea behind the test can be extremely useful in situations more
complicated than the one sample problem. In a complex model the
statistician may be able to construct a score function which should
be sensitive to detecting the type of alternatives suspected. Under
the null hypothesis it will usually be random as to which group an
observation belongs so the computer can generate all possible values
of the score function that will be equally likely under randomization
theory. If the total pumber of permutations is too large even for
the computer, the computer can at least generate a large pumber of

random permutations which will give an estimated P value.

There is no reason the permutation test has to use the statistic
§ — po- It could just as well use the trimmed mean, which is to be
mentioned shortly. If the regular mean difference § — o were divided
by 8/\/n to give the ¢ statistic, the ordering of the values would be
undisturbed because the term 2% (vi — po)? in 2oy (yi — §)? =

* If there are k values of yi which equai go, then the problem reduces to
considering 2"~ different possible values of T.
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Yo (v — po)? —n(7 - po)? is constant under sign changes. This
would not be true if the sample was first trimmed so it may be best
to employ a standardized statistic if using the trimmed mean.

The permutation technique can be used to construct a confi-
dence interval for p by calculating the range of pg values which fail
to give a P value less than or equal to . The computations are
usually too cumbersome, however, unless n and a are quite small.

Ties cause no problems for the permutation test. Zeros are
treated in a conditional fashion as though the sample were smaller
and had no zeros although one could replace them by a small number
to see what effect breaking the ties might have on the P value.

The permutation test does not reduce the effect of large obser-
vations as the sign and signed-rank tests do. Not surprisingly, it is
asymptotically equivalent to the ¢ test. However, for small samples
it can give more robust P values than the ¢ ratio.

A variation of the permutation idea is to sample with replace-

ment from the observed values. This is called the bootstrap method.
For details see Efron (1979, 1982).

Robust Estimation The field of robust estimation for the location
of a symmetric distribution has undergone intense investigation since
the late 1960’s. Major works that will permit the reader to enter the
literature of this field are Andrews et al. (1972) and Huber (1977,
1981).

The three principal categories of robust estimators are the L,
M, and R-estimators. An L-estimator is a linear combination of
order statistics. The median, the mean, and the trimmed mean are
the most important examples of L-estimators. An M-estimator is
the root of the equation

Y vl(wi-0)/8) =0, (1.37)
=1
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where the ¢ function and scale estimate S are selected by the statis-
tician. Some maximum likelihood estimators, like § for the normal
distribution, are special cases since the derivative of the log likelihood
(i.e., f'(z)/f(z)) is a ¢ function. The median is also an M-estimator.
Finally, R-estimators are linked to rank tests. The primary example
of an R-estimator is the Hodges-Lehmann estimator.

Besides the median the most important robust estimator for '
applications is the trinmed mean. Let § be some small proportion
such as .10 or .05. The trimmed mean §r discards én (assumed here
to be an integer) observations from each tail and computes the mean
of the remaining observations.* H y(;) < - -+ £ y(n), then

n-én
1
ir = =25 3 v (1.38) ¢
i=6n41

The trimmed mean eliminates the effect of tail observations, be they
from a heavy-tailed distribution or outliers. However, unless the
trimming is used to remove really aberrant values, I have frequently
found that the change from the mean has been only slight and is of !
little interest to the investigator. See Stigler (1977) for comparisons
on real data.

The appropriate variance for use with the trimmed mean is the
winsorized variance. Generally, winsorization (named after C. P.
Winsor) replaces tail order statistics by a smaller (larger) order

* This technique is used in judging diving competitions where the highest and
lowest scores from the judges are discarded before computing the average
score for the dive. This average score is then multiplied by the degree of
difficulty of the dive.



30  Chapter 1: ONE SAMPLE

statistic. Specifically, let

Yén+1, t1=1,---,én,
w@={Ua  i=Sntlon—bn (139)
Y(n-dn)y $=n—0n+1,---n,

where the fraction § is the same as for the trimmed mean. Then

1 n
w = ;ZW(:‘),
=1

] n—bn (1.40)
=~ [5"' Y(sn+1) T Z Y(i) + 67 Y(n—bn)
=én+1
is the winsorized mean, and the winsorized variance is*
oy = - i(uw - gw)?
= 26)2(n -1 =0 ’
(1 L 26)2(1'& l) [Gn(y(hﬂ-l) il W) (141)
n—&n
+ D (y@ — 9w)? + 6n(y(n—sn) — ﬂw)z] .
1=bn+1

For symmetric distributions a consistent estimate of the asymptotic
variance of the trimmed mean is 8%, /n, i.e.,

—— l
AVar(jr) = ;aa,. (1.42)

This is most easily established through the influence function (see
Hampel, 1974).

* Some authors use (1—28)?n or (1— 28)[(1 — 26)n — 1] for the denominator
of s%. Expression (1.41) allows standard programs for the variance to be
applied to the winsorized sample; the calculated variance is then corrected
by the factor (1 —25)~2.

L3



Section 1.2: Nonnormality 81

Asymptotically valid tests and confidence intervals for the mean
u of a symmetric distribution can be constructed from the relation

‘/_(‘"' vrlir - #) 4, -4, N(0,1). (1.43)

For small sample sizes one might want to use a ¢ interval such as

gr —t°/2 <p<371~+t°’/2w

vn vn'
Tukey and McLaughlin (1963) suggested that the degrees of freedom
be taken to be v = n(1 — 2§) — 1, i.e., one less than the number of
observations entering the trimmed mean. Monte Carlo work by Gross
(1976) for n = 10 and 20 substantiates that this is approximately

(1.44)

correct for normal distributions. Further substantiation can be found
in the Monte Carlo study of Yuen and Dixon (1973) on the two
sample problem. For a variety of heavy-tailed distributions Gross
also found that the intervals (1.44) with the suggested degrees of
freedom are conservative; that is, the true coverage i3 higher than the
nominally stated coverage. For example, for the Cauchy distribution
the true coverage is 97.5% when n = 10 and 97% when n = 20 with
a = .05 and § = .10.*

The class of M-estimators has received a great deal of theoret-
ical attention, but AM-estimators are not standardly used in prac-
tice at this time, although this may be changing. A prominant M-
estimator is the Tukey bisquare (or bivieight) estimator, which uses
the ¢ function

z(l - 22)2, |z} <1,
¥(z) = (1.45)
0, lz| > 1,

* For these calculations, Gross (1976) used n instead of n — 1 in the denomi-
nator of (1.41) and his critical constant t,,, instead of t2/2,
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and the scale estimate
S=k-MAD,

. . (1.46)
= k- median{ly; - m|, i=1,---,n},

where m is the sample median and the arbitrary constant k is com-
monly 7.4, 8.2, or 9.0 (see Andrews et al., 1972). This estimator has
good efficiency for the normal distribution and a variety of heavy-
tailed distributions. Other frontrunners are the sine wave estima-
tor of Andrews, the redescending linear segment estimator of Ham-
pel, and the nonredescending linear segment estimator of Huber.
Gross (1976) studies the confidence interval procedures associated
with each of these estimators, with the exception of the last one of
Huber.

The aforementioned robust estimators are predicated on the
assumption that the underlying distribution is symmetric about its
median. Symmetry is fundamentally used in the estimators and their
variance estimators. What does one do if the empirical distribution
appears asymmetric? No corresponding body of theory of robust
estimators exists for asymmetric distributions at the present time.
Some hardy souls recommend continued use of symmetric robust
estimators on the grounds that it is difficult to tell from the sample
whether the true underlying distribution is symmetric, but I cannot
recommend this. I would be more likely to seek a transformation that
symmetrizes the body of the data and then apply a robust estimator
to the transformed data.

1.8. Dependence.

Although anything is possible, there are mainly just two types of
dependence which arise in the applications envisaged in this book.
Often the scientific investigator may be unaware of the importance
to the statistical analysis of factors that can cause these dependen-
cies so it is the responsibility of the statistician to ferret out by

Ld

il
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cross-examination of the investigator and/or examination of the data

whether any effect exists.

The first type of dependence is caused by a blocking effect. The
n data points y1,- - ,¥n may have been collected in subgroups. For
instance, some y may come from experiments on one day, others
from different days. Or some y may be observations on animals in
the same cage or litter whereas other y come from different cages or
litters. The investigator usually will be cognizant of factors built into
the experiment such as days, lab technicians, or litters, but may not
be careful about informing the statistician of the presence of these

nuisance factors.

Maybe a nuisance factor has no effect, but one should not just
asume this. For unbalanced blocking the estimates can be biased,
and the error variance is always distorted. The standard way of
detecting and correcting for block effects is to remodel the problem
into a higher-way classification with fixed and random effects. Since
this solution is fairly universally understood and covered to some
extent in later chapters of this book, it is not discussed in detail

now.

The other type of dependence can come from a sequence effect.
The sequence may be in time or space. The observations may be
taken serially in time in which case observations close together in time
may be stochastically dependent due to slow random variations in the
experimental conditions or instrumentation, or due to an observation
having a direct effect on the next succeeding observation. Similarly,
observations on objects located physically next to each other may be
dependent through greater similarity of local conditions or through
direct interaction between the objects.

We shall examine the simplest possible sequence effect where

S
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there is a serial correlation of lag 1. That is, fors =1,---,n,

yi ~ N(p,0%),

Cov(yi, ¥is1) = P107, (1.47)
Cov(yi, ¥i+j) =0, 7#0,1

The dependence could of course extend to lags greater than 1 (i.e.,
Cov(ys, yi+j) = pjo®, 5 > 1), but this simplest case is an impor-
tant one for data analysis and will illustrate the difficulties. In some
problems the serial correlations pa, ps, - - - may be nonzero but appre-
ciably smaller than p; in magnitude and thus not affect the analysis
as much as p;. However, for general serial dependence one is forced
into time series analysis, which is beyond the scope of this book.

1.3.1. Effect

One can readily compute
E() = Var(g) = 2 [1+2 (1—1)

g)= K y) = - 1 - y

E(s?) = 0 (1 - ?ﬂ) ,

n

(1.48)

and show that Var(s?) — 0 as n — oo. Since § is normally dis-
tributed, this establishes that

_\/_5_(178—‘& 4, N(0, 1+2p1). (1.49)

The convergence (1.49) still holds even if the y; are not normally
distributed by the central limit theorem for m-dependent random
variables (see Fraser, 1957, p. 219) so long as y; and y;4; are inde-
pendent for 5 > 1.

The limiting variance 1+ 2p; can be substantially different from
1 even for moderate values of p;. This will produce discrepancies in
the P value. For instance, if p; = § the limiting standard deviation
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is 1.29 instead of 1 so for a ¢t value equal to 1.96 the actual two-
sided P value is .13 whereas the investgiator unaware of p; would
state P = .05. Clearly, the effect of p; on the P value can be most

unpleasant.

Gastwirth and Rubin (1975) study the effects of serial depen-

dence on robust estimators.
' 1.3.2. Detection

The methods of detection are the same as for examining the associa-
tion between any pair of variables, which in this case are y; and y; ;.
One can plot the pairs (¥, ¥i+1), $ = 1,---,n — 1, and/or compute
the sample serial correlation coefficient

Lyt (vi — 9) Wi — 9)

- =1
=T g (1.50)

It is the size of r; that is important and not whether it is statistically

different from zero. Thus a preliminary test of p; = 0 has little value,
but for those so inclined a good reference is T. W. Anderson (1971).

The distribution theory for serial correlation coefficients is very
difficult. Tables of critical values for the circular serial correlation
coefficient are available in R. L. Anderson (1942), Dixon (1944), and
T. W. Anderson (197i, p. 319). Under the null hypothesis and
normal theory the circular serial correlation coeflicient

o iy — INyis1 —9)
| T L 3 1.51
L= T -0 W
where yn+1 = g1 by definition, is approximately distributed as r —
(1/n) where r is the ordinary Pearson product-moment correlation
coefficient based on n + 3 observations. This approximation is sat-
isfactory for n > 10 and is very good for n > 25. For details see

Hannan (1960, pp. 85-87) or T. W. Anderson (1971, pp. 338-344).
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If there is any possibility of correlation existing for greater lags,
one would also want to examine the pairs (y;,¥i4j), § = 1,--- ,n— 7,
for 7 > 1 and/or compute r, r3, etc.

1.3.8. Correction

The best hope is for n to be large enough to permit substituting
ry for p; in the variance and correcting the denominator of the ¢
statistic. That is, for large n,

l/ﬁig—\/+_2:‘l) ~ N(0,1). (1.52)

With considerable loss in efficiency, one can divide the data into

g consecutive groups with k consecutive observations in each group

(n = g - k) and then use the group averages as g approximately

independent data points. By grouping, the serial correlation has

been reduced to p; /k approximately, but the number of observations
has also been reduced by the factor }.

The sign test and signed-rank test cannot rescue us in this case.
In fact, they are in almost as much trouble as the ¢ test. An excellent
paper on this topic is by Gastwirth and Rubin (1971).

Letting g = 0 for notational simplicity the asymptotic variance
of the sign statistic is

AVar(S)=n (% + 2 Cov(I{y; > 0}, I{yi41 > 0})) , (1.53)
and, similarly, the asymptotic variance of the signed-rank statistic is

AVar(SR) = n"’(fli + 2 Cov(I{y; + y; > 0},
(1.54)
Kyiy1 + e > 0})),

where 7 and k are taken to be far enough removed from 1, ¢ + 1 and
each other 80 as to index uncorrelated observations. Transformation
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of the positive quadrant to a wedge-shaped region for independent
coordinates easily gives

sin~! p,

2r '’

Cov(I{y; > 0}, I{yiy1 > 0}) = (1.55)
and, since Cov(y; + yj, ¥it1 + V&) = p1/2,

Cov(I{y; +y; > 0}, I{yiy1 +yx > 0}) = gm_-l%/z)_ (1.56)

These combine with (1.53) and (1.54) to make

1 sin™! p,
AVar(S) = n (Z + ——-;——) :

. (1.57)
1 | sin~! (p1/2)
= = —_—.
AVar(SR;) = n ( e
Since 4 i
4 . 1 2% sin-t (P2
z sin™" p < - sin (2 ) <2n (1.58)

for p; > 0, the effect of positive p; is the greatest on t and the least
on S, but still the effect on § can be appreciable. For instance, with
= % the limiting standard deviation of the sign test is .6 instead
of .5, so for a reported P value of .025 the actual P value would be
.051, double the reported value. For the signed-rank test the actual
value would be .063.

Gastwirth and Rubin study more general forms of serial corre-
lation for Gaussian processes and for processes with two-tailed ex-
ponential distributions. In all cases studied the sign and signed-rank
statistics are not appreciably better than the ¢ statistic.

Exercises.

1. Show that the normal theory likelihood ratio test of Hy : p = py
vs. Hy : p # po is equivalent to the two-sided ¢ test.
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Usze the result in (1.11) to show that the asymptotic correla-
tion between § and 82 for y,,-- -, yn independently, identically
distributed is
T
(72 +2)1/%’
where 7; and 42 are the population skewness and kurtosis.

Show that the Tukey representation (1.32) and (1.33) for SR,

is correct.

Show that for independently, identically, continuously distri-
buted Vi, " s ¥n

n(n+1)(2n+1) ‘

Var(SR;) = =

For y;,---,yn identically distributed with Var(y;) = o2,

Cov(yi,!lc'ﬂ) = Plaz’ and COV(!I-',!IH:‘) = 0, J # 0,1, show
that for the sample mean § and variance s2

(a) Var(g) = 2 [1+2p; (1 - 1)],

(b) E(s?) = 0 (1~ 221).

In an experiment at Stanford Medical Center, donor blood was
collected into bags containing ACD (an anticoagulant acid cit-
rate dextrose solution) and others containing ACD plus ade-
nine to investigate whether the addition of adenine would better
preserve the cryoprecipitates.* The amounts of AHG (antihe-
mophilic gobulin) in donor paired bags were determined at the

Summary Report RFP NHI-67-14, “Effect of ACD-adenine anticoagulant
on in vitro and in vivo potercy of cryoprecipitates” by J. G. Pool, Division
of Hematology, Stanford University, for the National Heart Institute.
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time of administration to 12 hemophilic patients.
ACD: 58.5 82.6 50.8 16.7 49.5 26.0
ACD+A:63.0 484 582 293 470 27.7

ACD: 56.3 35.7 379 533 382 37.1
ACD+A: 223 430 6533 49.5 411 329

Run a ¢ test for the hypothesis of no adenine effect.

. For the data in Exercise 6 construct a probit plot of differences.
Do you think the normality assumption is satisfied?

. Consider the differences in Exercise 6.
(a) Compute the median and run a sign test.

(b) Compute the Hodges-Lehmann estimator and run a
signed-rank test.

(¢) Compute a trimmed mean and run a ¢ test with win-
sorized standard deviation by trimming two data points !

from each tail. ‘

Which of these estimators and associated tests, or the mean
and ¢ test of Exercise 6, is most appropriate to report for these
data?

. Consider the 16 differences (i.e., —12.7, 18.6, etc.) in the paired
data of Exercise 11 for Chapter 3 to be independent. Test the
hypothesis of no difference in the tritiated thymidine levels be-
tween air and 0,-exposed mice. Select the test you consider |
most appropriate, and give the reason(s) for your selection. I‘



Chapter 2

TWO SAMPLES

The previous chapter dealt with the comparison of a sample and a
theoretical parameter. When the theoretical parameter is a control
or standard value, this value is often not known precisely under the
particular conditions of the experiment, so the investigator also ob-
tains a series of control observations. If the experimental and control
observations are paired on nuisance characteristics in order to elimi-
nate their effects, then individual differences should be computed for
each pair, and the problem remains a one gample problem of com-
paring the mean difference with zero. When it is not necessary to
pair the experimental and control series, the problem becomes a two
sample problem.

Other problems in which both sets of data would be called ex-
perimental arise as well. The criterion for handling them as one or
two sample problems is whether there is any natural pairing between

the data sets which should be taken into account in the analysis.
2.1. Normal Theory.

Let y11,--*»¥1in, be independently distributed as N(p1,0?), and let
Y21,° " s Y2ny DE independently distributed as N(p2,0%). The two
samples are assumed to be independent of each other as well. The
null hypothesis is customarily Hp : g1 = M2, and the alternative is
Hy :p1 # p2or Hy:pa > p2.

In order to mathematically derive a test the severe assumption
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o? = 02 = ¢? is imposed on the model. Under this condition of equal
variances the likelihood ratio test of the two-sided alternative leads
to the ¢ statistic

I ' St 1 2
t=—F—1, (2.1)
a\[,.—, * s

where §; = E?'=1 yij[ni, = 1,2, and 82 is the pooled variance

= Y - i:(uu -n)+ Z’:(!m 3 172)2] : (2.2)
§=1

“n n, —2
l+ 2 =1

Under Hp, (2.1) has a t distribution with n; +n,—2 df s0 a one-tailed
P value is given by P{tn,4n,—2 > t}. The two-sided P value would
add the areas in both tails.

For confidence intervals the pivotal statistic is

(71 — #2) = (1 — p2)
== A (2.3)

AV

1=

g0 a two-sided 100(1 — @)% confidence interval for p; — p2 is

af2 [ 1 1
mp-mEH -t t,.,+,.,_26\/ - + ' (2.4)

where t:{i",_z is the upper 100(a/2) percentile of the ¢ distribution
with n; + ng — 2 df. Though infrequently used, a one-sided interval
could also be constructed.

2.2. Nonnormality.
2.2.1. Effect

The effects of nonnormality on (2.1) are similar but not identical to
the effects on the one sample ¢ statistic. The reader should therefore
be familiar with Section 1.2.1 before pursuing the discussion here.
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As in the one sample case the ¢ analysis is validated in the
limit by the central limit theorem. For small samples, however, the
skewness and to a lesser extent the kurtosis of the populations can
have some effect. Continue to assume o} = o2 since the effect of
unequal variances is examined in Section 2.3.1, but let 71 (y1), 11(y2)
and ¥2(y1), 72(y2) be the skewness and kurtosis parameters of the
y; and y, populations. Then the story of nonnormality is pretty
much contained in the leading terms of the expansions for the first
three moments of t, which were derived by Geary (1947) and Gayen
(1950b):

B = 2 [ 2ntn) - mlm) ),
vy

Var(t) & ul,[(l + ;22-) v+ ;('n(m) = 'n(yz))’ul% -

+ (72(91) — 72(y2))(n1 — nz)z—%],

1 n
Be- B0 = g [T - T -3t - w2

where v; = (1/n;) + (1/n2), vz =ny +n2 — 2.

In many experimental applications the assumption that 7;(y1)
= ~(y2) and 72(y1) = 72(y2) would seem warranted. If this is the
case, then the expressions in (2.5) clearly show that the kurtosis
parameters have little effect on the ¢ statistic and when the sample
sizes are approximately equal (i.e., ny & n2) the skewness parameters
cancel each other approximately. Thus for equal sample sizes the ¢
statistic is more robust in the two sample problem than in the one
sample problem. It therefore behooves the investigator to perform a
balanced experiment if at all possible.

These theoretical considerations are supported by the Monte
Carlo work of Pearson (1929) for 71(y1) = 71(y2) between 0 and .7,
~2{1) = 712(y2) between —.5 and 4, and samples sizes in the range 5

-
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to 20, and of Pearson and Please (1975) for 71(y1) = 71(y2) between
0 and .8, 72(y1) = 72(y2) between —1 and 1.4, and equal sample sizes
between 10 and 25.

For n; and n, not approximately equal, the skewness of the

mean with the smaller sample size dominates the numerator of the ¢

2

statistic. Since s is a weighted average of the two sample variances,

le.,
(n1 —1)a? + (ny — 1)a3

2
= ! 2.6
? ny+n,— 2 ( )
v here
1 &
2 _ SRR T
= ’Z_‘:(y., 7)?, =12, (2.7)

the variance for the larger sample tends to dominate the denomina-
tor of the ¢ statistic. Since the dominating mean and dominating
variance are independent, there is less dependence between numera-
tor and denominator in the two sample case than in the one sample,
and the skewness of ¢ remains in the direction of the skewness of the
mean with smaller sample size. Recall that in the one sample prob-
lem the direction of skewness was reversed by the correlation between
numerator and denominator. Even for n; and n, not approximately
equal the kurtosis has only a minor effect on ¢.

More serious distortion of the P values can occur when 7 (y;)
does not approximately equal v, (y;). The leading terms do not can-
cel out in this case even for equal sample sizes. Fortunately, this case
does not seem to occur frequently. When it does occur, it is ques-
tionable whether an analysis of the mean values is an appropriate
comparison for the two populations with quite different shapes.

Although the P value from a t statistic is reasonably trust-
worthy, it still may not be the best statistic to use for nonnormal
distributions. Sharper results in terms of increased power or smaller
P values may be obtainable through alternative parametric or non-
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parametric procedures.

Just as in the one sample case, outliers can distort the mean
difference and the t statistic. Their major impact on the statistic
(2.1) is to inflate the variance estimate (2.2) and thereby depress the
value and corresponding statistical significance of (2.1).

2.2.2. Detecticn

For a full discussion of detecting nonnormality the reader is referred
to Section 1.2.2. One sample methcds can be applied to each of the
two samples. Probit plots of each sample are a worthwhile way to

scrutinize the data.

The presence of more than one sample does not substantially
alter the problem except through the advent of variance stabilizing
transformations. Their use is described in Section 2.3. The connec-
tion between variance stabilizing transformations and nonnormality
is mainly empirical. It often happens in practice that the transforma-
tion that best stabilizes the variance also improves the appearance of
normality in the data. Skewed long tails in the samples affect both
the variances and the probit plots. Thus methods for detecting and
correcting inequality of variance are in a broad sense also methods
for detecting and correcting nonnormality.

As in the one sample problem, outliers can be detected as well
through probit plots.

2.2.3. Correction

Transformations As mentioned previously, transformations can
be very useful in improving the normality of the data. For positive
data the logarithmic and square root transformations are the most
frequently employed because of easy access to tables, special keys on
electronic calculators, and readily available commands on large com-
puters. When some of the data take values close to zero, addition
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of a small constant to each observation before it is transformed may
increase the effectiveness of the transformation. Othker transforma-
tions are of course possible, and for a full discussion the reader is
referred to Section 1.2.3.

Selection of a transformation is still mainly guesswork and expe-
rience, or is suggested by examination of the variances (see Sections
2.3.2 and 2.3.3). Probit plots of the transformed data are a worth-
while check on the wisdom of the selection.

Transformations are not customarily useful in correcting for out-
liers. Nonparametric techniques and robust estimators are better
suited for handling outliers.

Nonparametric Techniques As in the one sample problem there
are three principal nonparametric tests. The two sample median test
is the two sample analog of the sign test. For reasons not entirely
clear it is not used with the frequency of the sign test. The two sam-
ple Wilcoxon test is by far the more common. Nevertheless, the two
sample median test is a quick, easy, and robust test. To execute the
test combine the two samples into one and calculate the median m,
of the combined sample. For n; + n2 odd, the median is an observa-
tion from one of the samples; for n; + ns even, it is the average of
the middle observations. Separate the data into the original samples
and within each sample count the number of observations above and
below m.. The counts can be neatly summarized in a 2 x 2 table:

< m,<
Sample 1 a b a+b
(2.8)
Sample 2 c d c+d

atc  b+d N=a+b+c+d

~
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Observations with values equal to m, are analogous to ties with
zero in the sign test and are a source of annoyance. It is hoped
that there are few of them. My preference is to exclude the values
tied with m, including the value m, itself when n; + n; is odd. A
conservative approach would place all the ties in each sample in the
direction opposite to significance; i.e., make ad — bc as close to zero
as possible. For large mumber of ties the reader is left to decide for
himself or herself. There does not seem to have been as extensive a

study of ties in this two sample problem as in the one sample case.

Once the 2 x 2 table has been created, the analysis can proceed
as for a 2 x 2 contingency table. The quickest analysis is to compute
the x? statistic

N (lad - be] - ¥)”
(a+b)(c +d)(a+c)(b+d)
Under the null hypothesis of no difference between the populations

(2.9)

this has a limiting x2 distribution with one df as n;, no — oo.
Various rules of thumb exist for how large n; and n, have to be
for the x? approximation to be valid. For min{ny,nz} > 10 and
min{a,b,c,d} > 2, I feel the x> approximation is quite good for
practical purposes. The sometimes suggested rule that the expected
pumber in each cell should be at least 5 is unnecessarily conservative.

The P value computed from the upper tail of the x? distribution
with one df is a two-sided P value since the test rejects when the first
sample has larger values than the second and vice versa. For a one-
sided P value take the square root of (2.9) and assign it a + or — sign
depending on whether population 1 or 2 has larger values. Tables
of the normal distribution can then be used to obtain a one-sided P
value.

There is disagreement over whether it is best to include the
Yates’ (1934) continuity correction N/2 in the numerator of (2.9).
Since the aim here is to accurately approximate the P value for the
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exact analysis to be discussed next, its use is justified. When many
values of the x2 statistic are being computed as a screening device for
detecting possible differences in large sets of data, then it is best to
leave it out. The uncorrected statistic has a false positive rate closer
to the nominally stated a. Also when pooling separate x? with one
df as in cooperative studies, it may be best to use the uncorrected
x2. For a full discussion of the controversy the reader is referred to
Mantel and Greenhouse (1968), Grizzle (1967, 1969), and Conover
(1974) with appended comments.

For a finer analysis with small sample sizes there is Fisher’s
(1934) exact test.* Under the null hypothesis the conditional distri-
bution of the table entries given the four marginal totals is hyperge-
ometric; i.e.,

a+8\ [+
P{a,bc,d|a+bec+da+ec,b+d}= i“—)lé—ﬁ,
(a+c) (2.10)
_ (a+b)!c +d)!(a + c)!(b+ d)!
; Nlatblcld! '

A one-tailed P value is obtained by summing the probabilities (2.10)
for each table equal to and more extreme than the observed with the
same marginal totals. For example, if the observed table is

5 2
T el (2.11)
then one would sum the probabilities for the tables
5 2 6 1 7 0 —
3 7 2 8 1 9 {2z}

It is not always clear how to obtain a two-sided P value. The

* This test was also proposed by Irwin (1935); in addition see Yates (1934).
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remainder of the sequence of tables is

0 7 1 6 74 5
8 | 2 7| 3 6 | 4
(2.13)
3 4 4 3
5 3 4 6

In this case the two tObles on the left would be considered more ex-
treme than the observed. In other examples, however, some criterion
may have to be introduced to measure the degree of disagreement
with the null hypothesis of questionable tables. One criterion might
be the size of the x?2 statistic (2.9), or equivalently, the size of |ad—be|.
Another would be the size of the probability (2.10). It would be un-
fortunate if the scientific conclusion rested on which criterion were
selected. When a + b = ¢ + d, there is no ambiguity because of the
symmetry in the sequence. A convention, which is sometimes used
and avoids the aforementioned dilemma when n; # ng, is to simply
double the one-tailed P value to get a two-tailed P value.

Computation of the probability (2.10) is usually easy. The num-
bers are usually not large (otherwise the x? approximation could be
used) and a great deal of cancellation occurs. Some of the better elec-
tronic calculators have special keys for N!, and some programmable
ones have programs for calculating (2.10). Once one probability has
been computed, the values for neighboring tables can be generated
quickly by multiplication and division with the appropriate integers
to give the new factorials.

Finney et al. (1963) give a set of tables of critical values for
Fisher’s exact test. The tables are easy to use but unfortunately

they are not always readily available.
The most popular two sample test next to the t test is the
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Wilcoxon (1945) rank test. Its asymptotic efficiency compared to
the ¢ is quite high for the normal distribution (i.e., 3/x & .95), and
it is more efficient than the ¢ for many heavy-tailed distributions.
Compared to the ¢ its asymptotic efficiency never drops below .864.
Outliers have no appreciable eflect on it. It is quick and easy to
compute, and good tables are readily available.

The Wilcoxon statistic can be computed in either of two ways.

One method depends on ranking. Combine the two samples
into one set of ny + na observations. Order the observations from
smallest to largest y(1) < ¥@2) < *** < Y(ny+na)s and assign ¢ to the
ith largest observation. Let R; be the sum of the ranks attached to
the observations from the first sample and, similarly, let R, be the
rank sum for the second sample. The Wilcoxon statistic is either R,
or Ry, or possibly R; — R; when n; = n2. Since

_(nitnz)(ni+n2+1)

Ry + R, = 2 ) (2.14)

any one of these statistics contains all the information on the rank

sums.

The Mann-Whitney (1947) form of the Wilcoxon statistic is

U=>Y Kyi>w;} (2.15)

=1 j=1

where
1 if Yis > V25,

Ny > yo5} = 2.16
L {0 if Y1 < y24- L

This can usually be quickly computed by taking each y;; observation
and scanning the second sample to count how many yo; values are
smaller than y;;.

The counting method (2.15) is related to the ranking procedure

~
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through
R = 'i(l‘zf—l) +U. (2.17)

The argument for (2.17) is simple. If all the y1; preceded all the y;,
the rank sum R; would be ny(ny +1)/2and U would be zero. Each
time a y,; comes before a yyi it increases the rank of y;; by one and

the sum U by one.

The easiest way of handling ties is to assign an average rank
to each of the tied observations. For example, if y11 = .3, y12 = 6,
ya = 1.1, y22 = .6, then y;2 and y22 would each receive the average
rank score 2.5. This is equivalent to expanding the definition of the
indicator function in (2.16) to include

] [
I{y > v2} = 2 if y1i = ¥2j- (2.18)

For small numbers of ties the ordinary tables and large sample ap-
proximations can be used without alteration with no serious effect
on the inference. For a moderate pumber of ties the tables can still
be used to get an idea of the P value, but one must be aware that the
variability of the Wilcoxon statistic has been reduced. A correction
to the variance of the Wilcoxon statistic, conditional on the pattern
of ties, can be made [see (2.20)] but the ties must be substantial
before the correction reaches appreciable magnitude. Numerous ties
can, of course, leave the inference in doubt. An excellent paper on
the effect of ties on the Wilcoxon statistic is Klotz (1966).

Good tables of the Wilcoxon statistic are usually readily avail-
able. Many textbooks contain abbreviated tables in their appendices.
Owen (1962) and Pearson and Hartley (1972) each contain a set.
When using whatever tables are available, one must check precisely
what is being tabled. Some give tail probabilities or critical values
for R;, others for U.

Asymptotically, U (and Ry or R2) has a normal distribution.
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Under the null hypothesis of no difference between the populations

1ts exact mecan and variance are

e Lo
¥ o (2:19)
Var(U) = —‘-2T,

where N = n; +n2. The large sample approximation is very good by
the time n; and n, are at least 10, and it can be used with impunity
for somewhat smaller samples provided peither one is quite small.

When ties are present and are handled by means of (2.18), the
exact mean and variance of U, conditional on the pattern of ties, can
be calculated. The conditional mean of U is still nynz/2. For the
calculation of the variance, let z1,- -, Zm be the distinct values in the
combined sample of y;; and y2;, and let ¢, - -,tm be the numbers
of observations that equal each of these values. In the case of an
observation with no other equal to it, t; = 1. Then the conditioan]

variance of U is

™ (t3 -t
Var(U | t1,*«tm) = ni'; [N $ )= !i(_l___')]‘

"N(N-1)
_ mm(N +1) [1 ] ;"‘gﬁ_—t_)] (2:20)
12 N’-N |

Experience will teach the reader that the tie correction factor 1 —
(on, (e -t)/(N*-N )] does not become substantially less than one
very fast.

From (2.17) the variance of Ry is the same as that of U. The
mean of R, differs from that of U by the additive factor ny(n; +1)/2.

Before leaving the Wilcoxon statistic, several remarks are in
order.

First, unlike the one sample Wilcoxon signed-rank test, there
is no assumption of symmetry of the underlying distributions. Sym-
metry does not play a role in the two sample problem.

1



52 Chapter 2: TWO SAMPLES

Second, the statistic U/nin, is estimating the probability
P{y; > y2} in the continuous case, and P{y1 > y2} + % P{y1 = y2}
when the distributions have discrete mass points. For the continu-
ous case the test will be consistent against any alternative for which
P{y, > y»} differs from % The statistic U/nyn; is a special case of

a two sample U-statistic in the sense of Hoeffding (1948).

Third, the estimator for the difference in location of the two
populations associated with the Wilcoxon rank statistic is the two
sample Hodges-Lehmann (1963) estimator. This estimate Apyp is the
median of the collection of n;n; values {yy; —y25, s =1,---,ny, 5 =
1,--+,na}.

A confidence interval for the true difference A in location of the
two populations can be constucted from the Wilcoxon statistic.* In
the Mann-Whitney form the confidence interval consists of all values
of A for which U(A) = 302, 5572, I{y1i — A > y2;} does not differ
significantly from the null mean nyn,/2. This is tedious to construct
numerically, but a graphical method due to Moses (see Walker and
Lev, 1953, Chapter 18) greatly simplifies the calculation. Plot the
ninz points (y1i,y2;), $ = 1,---,ny, 5 = 1, -+, nz on a sheet of graph
paper. Let u®/2 be the lower tail critical point for the U statistic
based on n;,n, observations; i.e., u®/2 is the largest integer such
that P[U < 4®/2 | Hy} < @/2. In large samples

1/2

af2 » TIN2 _ | ninz(ny +n2 +1)
ulte == -2 T ) (2.21)
where 1/2 is a continuity correction and z/2 is the upper 100(a/2)
percentile of a normal distribution. Slide a 45° line along the y, axis

until 4®/2 points lies to the right of the line and one lies on it; call

* The underlying assumption is that the shapes of the two distribitions are
the same except for their location. Thus A is the difference between the
means or the differences between the medians.
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the y; value where the line crosses the y; axis Ay. Similarly, let A
be the y; value at which a 45° line through (v1,0) has u®/2 points to
the left of it and one on it. The interval between Ap and Ay is the
confidence interval for A. The procedure is illustrated in Figure 2.1

with n; = n2 =3, uo/? = 1.

A )
//AL /ﬁHL /AU ;_l
Figure 2.1

The third and final nonparametric test to be mentioned is Pit-
man’s (1937) permutation test. It illustrates the general principle
of permutation inference. Select a statistic that should be sensitive
to the type of alternative hypothesis of interest. For the two sam-
ple problem, §; — #; is a prime candidate. Compute the value of
#1 — §2 for the observed samples, and also the ("':'l "3) hypothetical
values obtainable by dividing the combined sample of size n; + n2
into all possible pairs of subsets of sizes n, and n;. Under the null
hypothesis of no difference between the populations the conditional
probability, given the combined sample, of each possible pair of sam-
ples is ("':l"’)—l. If the observed §; — > lies far out in the tail(s)
of the range of possitle values, then it is judged significant. The
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positive one-tailed P value is the number of values {f; — {2 greater
than or equal to the observed divided by ("':’l ™). A two-tailed P
value uses |§; — #2].

The permutation test is not used much because it is computa-
tionally unwieldy except for small sample sizes or for obviously very
extreme values of §; — .. Large electronic computers aid in this prob-
lem, but even they can be taxed if n; and n, are moderately large.
Generation of random permutations in the computer to estimate the
P value is a solution to this dilemma, but for the simple two sample
problem it seems simpler to use something else, like the Wilcoxon
or t statistics. Asymptotically, the permutation test is equivalent to
the t test.

Instead of random permutations the bootstrap method of sam-
pling could be used; see Efron (1979, 1982).

Robust Estimation Discussion of robust estimation in the two
sample problem is limited here to just trimmed means. For more de-
tails on robust estimators in general the reader is referred to Section
1.2.3, “Robust Estimation.”

As in the one sample problem, there is an underlying assump-
tion that the cdf for each population is symmetric about its median.
Without this assumption the rationale for the estimators and the
distribution theory break down. K the assumption appears to be
grossly violated, the statistician may be able to first transform the
data to achieve better symmetry.

In the two sample problem one simply repeats twice what is
done in the one sample problem and pools the variances. Specifically,
let § be the trimming fraction, where it is assumed that én; and én,
are integers. For 1 = 1,2, let
1 n;—én;
gri = m . Z vi(j) (2.22)

J=bén;+1
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where yi1) < ¥i2) S - < ¥i(n;) are the order statistics for the sth

sample, and let

1
Wi = [T aye(me = 1) | e Witomery = i)’
n,~—6n,— (223)
+ Y (wig) — 9wi)* + 6nilitni—sny — flw.')zl g
j=bn;+1
where
1 n;—én;
wi = |08 Yisn+1) + S i) 0 Yini—any | - (2:24)
4 j=bn;+1
Then the pooled sample variance is
J‘ZV = (”l - l)aa’l + (n2 - 1)8%’2’ (225)

ny+ny;—2
and the appropriate trimmed ¢ statistic for testing Ho : F; = Fz is

SRl T (2.26)

2 A
l'l|+ﬂ1

tr =

sw

Yuen and Dixon (1973) have provided evidence that (2.26) is ap-
proximately distributed as a ¢ distribution with (1—26)(n; +n2)—2
df.

The pooled variance (2.25) and the ¢ statistic (2.26) are based on
the assumption that the two population cdfs Fyand F, are identical
(and symmetric) except for a location shift. Without the identity
assumption the problem is analogous to the case of 07 # 03 (see
Section 2.3). It should be mentioned that for this problem there
is a statistic utilizing trimmed means with unpooled variances that
is analogous to Welch’s approximate t' statistic (see Section 2.3.3,
“Other Tests”). For details the reader is referred to Yuen (1974).
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2.3. Unequal Variances.

The model is that the y;;, s = 1,2, j = 1,- -+, n;, are independently

distributed as N(p;, 0?) without the assumption o? = o2.

2.3.1. Effect

Under this model
o2 o2
f —§io ~ N — Ja, ht R 4 , .
hh— 92 (Ml M2 o + nz) (2.27)
and this is also true asymptotically without the assumption of nor-
mality. * Let n;/n, — R as ny,nz — 0o. Then

= 2
T itn—21" +n;-22 1+R% il 1+ R°% (2.28)

8

and this too is true asymptotically for nonnormal distributions. Thus
with or without the assumption of normality,

_ (1 = 92) = (11 — o)

t -
0 AT
e ny + n3

P % 4 %
_n-m)-(m-p2) Va t

1 na
a? ol 1 5
m T 8\ ar t as

R 2, 1 _2
i+r%1 + 1352 1+R

(2.29)

The asymptotic variance of ¢, instead of being equal to one, is

6+ R

AVar(t) = o5

(2.30)

where § = 0%/02.
How do different values of § effect AVar(t), and how, in turn,
does this affect the large sample inference?

* 4~? denotes “is distributed as.”
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Note first that when R =1 (i.e., m1 = n2), AVar(t) = 1. This
means that when the sample sizes are equal, inequality of variance
does not affect the inference asymptotically. If the sample sizes are
nearly equal, the t test can tolerate large disparities in the variances
(viz., ratios of 4 and up) without showing major ill effects. Thus it
pays to balance the experiment as closely as possible.

Consider another case: § = 2, R = 2. Here the variance for
the first population is twice as large as for the gecond, but the first
population also has twice as large a sample. In this case AVar(t) = .8
g0 the asymptotic standard deviation is approximately .9 instead of
1. The effect on the P value is not large. A reported two-sided P
value of .05 would in actuality be P = .03. In his Table 10.2.3 Scheffé
(1959, p. 340) gives more examples to illustrate the effects on P for
varying § and R.

The worst situation is where the variance of population 1 is very
much larger than for population 2 (ie., 02 >> 02) and the sample
size for the first population is much smaller (i.e., ny << n2). The
least information is available on the larger variance. In this case ¢
would be handled as though it had n; + ng — 2 df, which would be
large because of nz, whereas ¢ is approximately behaving like

f1— = ‘ (2.31)
ny 2 4 A2 /22
ni+ns 8 +03 [l'l_l]

because § — p2 = 0,83 = 02, n2f(n1 + nz) = 1, and 1/np 0. If
ny82/(ny +n2) is small relative to o3, the ratio in (2.31) behaves like
a normal variable with variance o7 /03 instead of 1, and if nys3/(ny +
ny) is large relative to o2, it behaves like a t variable on ny — 1 df
multiplied by \/(n1 + n2) /n;. In either case the variability is greater
than that hypothesized by a ¢ distribution on ny + nz — 2 df. As an
ilustrative example from Table 10.2.3 in Scheffé (1959, p. 240), the
actual significance level for large ny,n2 is .22 instead of .05 when

e da 4 % & B oo
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6 =5and R=1/5.
2.3.2. Detection

It is far harder to decide whether o7 equals 03 than it is to correct
for their inequality. The problem is that the standard textbook test
based on s2/s2 having an F distribution is extremely sensitive to
departures from normality and cannot be relied upon. Chapter 7
considers this problem in detail, and alternative robust test proce-
dures are described. All involve extra computation. Since the effects
on t are not large unless the variance disparity is sizeable and the
experiment is badly unbalanced, preliminary tests of 0} = 02 seem
to be a fruitless pastime. Worrisome differences in the variances that
are detectable to the naked eyeball lead one to correct for unequal

variances without the intermediate step of deciding whether 07 = o2.

2.3.3. Correction

Transformations Transformations are often useful in eliminating
inequalities between variances. The analysis is then conducted in the
transformed scale, although the results are usually reported in the
original scale.

Selection of a transformation can be facilitated by the following
simple large sample relationship. Consider a smooth function 9(y)
of the random variable y. If y is fairly tightly distributed about its

mean g, then in the expansion 3

o(y) = o(p) + (v — 1) ¢'() + O((y — »)?) (2.32)

the second order term will not be substantial compared with the
linear term. Rewriting this as

9(y) — 9(p) = (v — p) ¢'(») (2.33)
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suggests that

E{(g(y) — 9(n)]*} = Var(y)[g'(w)]*. (2.34)

Since E[g(y)] = g(p), the term on the left in (2.34) approximates
Varg(y)] so *
SD[g(y)] = SD(y)lg'(n)]- (2.35)

The preceding approximations can be justified asymptotically
if y-i’N (#, 0%). This procedure for obtairing Var{g(y)] in the limit
is known as the delta method. Two important special cases of (2.35)
are the approximations for the logarithmic and square root transfor-
mation variances. For logy, ¢'(y) = 1/y; thus

SD(log y) ‘2);‘(-”). (2.36)

The ratio on the right in (2.36) is the coefficient of variation of y.
Many measured variables have a constant coefficient of variation, or
constant percent error as it is sometimes called, in which case the
log transform is appropriate. For /¥, ¢'(y) = 1/2,/y; thus
SD(y)
SD(Jy) & ———. 2.37

WOEEs (237)
With Poisson data, the variance equals the mean so the square root
transform should stabilize the variances.

The relationship (2.35) is quite helpful when there are two or
more samples, for then it is possible to plot s; vs. §; to see if any
empirical relationship holds between the sample standard deviations
and means. If, for example, the standard deviation increases as some
power of the mean, then (2.35) suggests trying a power transforma-
tion with the power increased by one. Fiddling with the transforma-

* 4SD(y)” denotes the standard deviation of y.

——a st Bl
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tion by adding a constant to the variables may improve the stability
of the variances.

In the two sample problem there are just two points (s, #) and
(s2, §2) so only a little information is available through this proce-
dure. However, if s increases as § increases, a power transformation
like log or square root may work, whereas if # decreases, a different
type such as g(y) = 1/y would be required. Visual inspection of the
samples may give some added indication of the proper transforma-
tion. Increasing standard deviation with increasing mean is often
accompanied in practice by samples skewed to the right with long
upper tails. Examination of the upper tails of the samples may shed
some light on whether a square root transformation, or the stronger
log transformation, is required.

Other Tests The other method of correction is to use a differ-
ent test. This problem (i.e., two normal populations with 02 # o2;
Hy : py = po) is a classic one in statistical history and is referred
to as the Behrens-Fisher problem. Various methods, including fidu-
cial probability, have been proposed for handling it. Scheffé (1970b)
nicely summarized the current state of knowledge. In earlier work
(1943, 1944) he gzve a solution that has an exact t distribution but
which is not really suitable for practical work. It employs artificial
randomization, and in his 1970 paper Scheffé recommended against
its usage. The best solution from the practical point of view is the
following approximate one.

The practical procedure is Welch’s t' test. It uses the statistic
V1 — 92

£ - (2.38)
m Tt

Since 82-2+02, s2-2402, t' is asymptotically distributed as N(0,1)

when n;,n, — 0o. Thus for large samples the denominator in (2.38)
is correctly estimating the standard deviation of the numerator, and
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this asymptotic convergence is valid even if the populations are non-
normal.

The exact distribution of ¢ under Hj depends on the unknown
o and 02. Welch (1947, 1949) proposed approximating its distri-
bution by a t distribution with suitably chosen degrees of freedom
for small or moderate sample sizes. Welch’s approximation for the t
distribution and Satterthwaite’s (1946) approximation for the distri-
bution of a linear combination of x? variables employ the same idea.
It is to approximate the distribution of the variance combination

2 2
8 8
e (2.39)
ny 1y

by the distribution of a X2 variable multiplied by 0% /v, where 0? ard
v are chosen so that the first two moments of o%x2 /v agree with the
first two moments of (2.39).* In this case

s(ds8).d, 2 ”
n n ny n2
80 02 = E(02x2 /v) should be chosen equal to (2.40). The two vari-
ances are
. [8? a2 204 204
V. hit § + -—2) = L g % 2.41
o (nl n; (ni—1)n? * (np - 1)n? (241)
and ) :
Z2)=2
Var ( - x.,) == (2.42)

(2.43)

1 g{2+ 1 [e3)\?
ni—1 \ n; na—1 \ n3

+ dydn d;notes a x? variable (or distribution) with » df,

N
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i
This still involves the unknown parameters, but s? can be substi;
tuted as an estimate of 07. This leads to assuming that ¢’ has age
approximate ¢ distribution with t

(42) |

L (8) 4 2 (B

ny—1 \n,

A3
il
|

(2.44)

!

degrees of freedom. P values can then be calculated from ¢ tables

with the degrees of freedom equal to the integer nearest . !

It may not be necessary to actually calculate . A little algebra
establishes that '

min{n, — 1, n, — 1} £ 5 < ny + ny — 2. (2.45)

The extreme df may be sufficient to establish the significance o}
nonsignificance of the sample. If t' has a high P value even for n; +
ny — 2, then the sample difference cannot be statistically signiﬁcanf
for 7. Similarly, if ¢' gives a low P value for min{n, — 1, n; — 1},
then the difference must be even more significant for /. Results of
Hsu (1938) show that, when the populations are normal, use of the
min df is a conservative procedure. Namely,

i

< :;/2} >1-a, (2.46)

(71 — 1) = (92 — p2)
p{| ’

(s3/n1) + (23 /n2)

where ¥ = min{n; — 1, n; — 1}.

Transformations and Welch’s approximate t' test are the pro{
cedures I most frequently use to handle unequal variances. The ap-i
proximate t' test should enjoy the robustness properties of the ¢ test
with equal variances, but serious nonnormality of the data may moti-
vate one to use either the trimmed &' test or the nonparametric tests;
described earlier. The Wilcoxon rank test is also affected by unequa.l'?:

|
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variances, but guesswork and some results of Potthoff (1963) suggest
that the effects are small.

2.4. Dependence.

There is little more to be said than what appears in Section 1.3.
The effect on #; and s; of a serial correlation within each sample is,
of course, the same as in the one sample problem. In large sam-
ples it could be approximately corrected by substituting estimates of
the correlation coefficients in the expressions for the variances or by

grouping the data.

Dependence between the samples can occur as well. This is
the case if the observations in the two samples are paired through
the presence of a random block effect. For example, in biological
experiments where one observation is before and the other is after
t-eatment on a patient or animal there is almost always a substantial
effect due to patient or animal variability. Pairing through other
block effects (viz., time, technician, litter, etc.) occurs as well. The
solution for pairing is always simple. Taking the differences between
the paired observations eliminates the block effects 2nd reduces the
problem to a one sample comparison of the mean difference with

ZE€TO.

Other types of dependence besides pairing could occur between
the samples. If the blocks contain more than just one observation
from each population in each block, then the analysis is forced into a
higher-way classification. More complex types of intersample depen-
dence must be handled on an individual basis. It is the responsibility
of the statistician to cross-examine the experimenter for the possi-
ble presence of any factors that might cause dependence between (or
within) the samples.

For theoretical work on the effects of various types of depen-
dence on the two sample Wilcoxon rank test see Serfling (1968) and
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Hollander et al. (1974).
Exercises.

1. Show that the two sample normal theory likelihood ratio test

of Hy : py = po versus Hy : py # po with o = o2 is equivalent
to the two-sided two sample ¢ test.

. Show that for independently, identically, continuously distribu-

ted yij, ¢ = 1,2, j = 1,--+,n;, the Mann-Whitney U statistic

has variance
ninz(ny +nz +1)
12 j
Hint: Prove and use the fact that

ElT(ws > v3j) Hows > var)) = 3

for § # k, where I(-) is the indicator function (2.16).

. Prove that for Welch’s t' test

min{n; —1,n2 -1} <V <ni +n2—2,

where the approximate degrees of freedom ¥ are given by (2.44).

Note: This exercise will be more understandable after reading

about random effects in Chapters 3 and 4.

An investigator wants to compare Treatments A and B. On
n, subjects paired values for Treatments A and B (i.e., one for
each treatment) are available. On n; different subjects only the
value for Treatment A is available, and on another ns subjects
only the Treatment B is available. There is assumed to be
random variation between subjects (i.e., there is a random effect
a; for subject 1) as well as random variation in the paired values
within subject ¢ (i.e., there is error e;; for the jth observatinn
on subject 1). Normality of random effects and errors and equal
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error variances should be assumed.*

Construct a Welch ¢'-type statistic (with approximate distribu-
tion theory) for testing the hypothesis of no difference between
Treatments A and B.

. In a Stanford Medical Center study to investigate the effec-

tiveness of streptokinase in dissolving blood clots in the heart,
many different blood values were measured including the follow-
ing partial thromboplastin times (PTT) on patients who were
recanalized (i.e, the clot dissolved; R) and on those who were
not recanalized (NR).**

R : 4186 90 74 146 57 62 78 55 105 46 94 26 101 72 119 88
NR: 34233625 35 2387 48

(a) Run a ¢ test for the hypothesis of no difference in PTT for
those patients who were recanalized versus those who were
not.

(b) Run a ¢t test on the square root transforms of the data.
(c) Run a Welch’s ¢ test.

(d) Run a median y? test.

(e) Run a Wilcoxon rank test.

(f) Which test(s) do you consider most appropriate?

. In a study of cellular immunity in infectious mononucleosis, two

groups of healthy controls were considered. One group con-
sisted of 16 Epstein-Barr virus (EBYV) seropositive donors, and

&

See Ekbohm, G. (1976), On comparing means in the paired case with in-
complete data responses, Biometrika 68, 299-304, for the general problem.
Alderman, E. L., Jutzy, K. R., Berte, L. E., Miller, R. G., Friedman, J. P,,
Creger, W. P., and Eliastam, M. (1984). Randomized comparison of intra-
venous versus intracorenary streptokinase for myocardial infarction. Amer-
ican Joarnal of Cardiology 64, 14-19.

- ———

.
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the other of 10 EBV seronegative donors. These two groups
were compared for lymphocyte blastogenesis with phytohemag-
glutinin and several EBV and control antigens.* The following
stimulation indices are with the P3HR-1 virus concentrate as

antigen.

Seropositive : 2.9 12.1 2.6 2.5 2.8 158 3.2 1.8
78 29 328015 63 1.235

Seronczative : 4.5 1.3 1.01.01.3 1.9 1321
2110

Select what you consider to be an appropriate two sample test,
and test for no difference between seropositive and seronegative
donors with regard to P3HR-1 concentrate.

* Nikoskelainen, J., Ablashi, D. V., Isenberg, R. A., Neel, E. U., Miller, R. G,

and Stevens, D. A. (1978). Cellular immunity in infectious mononucleosis.

II. Specific reactivity to Epstein-Barr virus antigens and correlation with

clinical and haemotologic parameters. Journal of Immunology 121, 12239-

1244.

v



Chapter 3

ONE-WAY CLASSIFICATION

In discussing problems that invoive more than two populations one
may as well consider the general case of I populations because the
ideas and methods are the same whether there are three, four, or
more populations. The data now consist of a double array {y;;}
of observations where y;; denotes the jth observation in the sample
from the sth population.

The model customarily chosen for data in a one-way classifica-
tion is
Yis = B+ a; + ¢, (3.1)
where g denotes a general overall mean, p; = p + o; denotes the
mean of the sth population, and ¢;; is random (unexplained) varia-
tion. An important distinction in the model assumptions and associ-
ated analyses arises over whether the conclusions from the statistical
analysis are to apply strictly to the I populations in the experiment
or whether they are to apply to a wider class of populations of which
the I populations are a representative subset. In the first instance
the I populations are viewed as fixed, whereas in the second they are
considered random.

To illustrate this point consider an experiment comparing the
effects of three drugs, each of which is a new compound developed
by the laboratory. Information is desired on the comparative eflects
of these three agents, and there are no other compounds of interest
at the moment. In this case the three populations would be assumed

—— e & K
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fixed. Similar sets of variables that are usually considered fixed are
treatment regimens, types of disease, sex, age groupings, etc. In each
of these cases the populations included in the experiment comprise
the entire spectrum of possible populations of interest or at least

most of the spectrum.

On the other hand, variables that are usually considered random
are people, animals, days, etc. This is because the ones selected
for the experiment are not so important in themselves. They serve
instead as representatives of the whole class of all people, ali animals,
and all days. Conclusions based on them will be applied to the whole

class.

How a variable should be treated {i.e.. fixed or random} depends
on how wide the inference is tc be. Consider an experiment compar-
ing the measurements made by five different lab technicians. If the
five are the only five employed in the iaboratory and the compara-
bility of their results is all that matters to the iab director, then the
five populations (i.e., technicians) should be assumed fixed. If, on
the other hand, the five were selected to investigate the consistency
between technicians in general in performing these measurements,
then the inference extends beyond just these five and they should be

considered random.

It is often the case in experimental work that people, animals,
days, etc., are not actually selected randomly from a iarger popu-
lation. They are what become available to the investigator at the
time of the experiment. Usually it is safe to assume their availabil-
ity is the result of a process that is sufficiently haphazard to assure
that no bias is involved. However, If their representativeness is in
question, then they cannot be used for the estimation of the class
characteristics in the fashion described 0 this chapter.

This chapter is divided into separate subchapters depending on
whether the population effects are assumed to be fixed or random.

PR P
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FIXED EFFECTS
3.1. Normal Theory.

The compliete model is

I
I
Yij = i + eij, (3.2a)
or
: Yij = B+ a; + ¢, (3.2b)
fors =1,---,I, 7 = 1,---,n;, where the e;; are independently dis-

tributed as N(0,02). To avoid identifiability problems the parame-
ters a; are constrained by E,!:l nja; = 0.* In a balanced design with
equal sample sizes the subscript s is dropped from n. The general
statistical task is to construct point and interval estimates for the
ui, or i and aq, or to test hypotheses about the y; or a;.

3.1.1. Analysis of Variance (ANOVA)

The likelihood ratio approach leads to the standard analysis of vari-
ance displayed in Table 3.1.

Often the sum of squares for populations in Table 3.1 is com-
puted in the form (2’

=1 T 17.2) — Ng? and the error sum of squares
obtained by subtraction.

The mean sum of squares or mean squares (MS) for any effect
is the effect’s sum of squares (SS) divided by its degrees of freedom
(df), i.e., MS = SS/df. Most packaged computer programs print out
the MS column to the right of the columns in Table 3.1 and give the
F ratio as well. The mean squares for error

1 n;
6% = MS(E) = N—l_—I oD (v — ) (3.3)

=1 j=1

* Another constraint sometimes used is ZL, a; = 0. In the balanced design
the two constraints are the same.

o
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is the ANOVA estimate of the variance of the underlying normal
distributions. It is the generalization to I populations of (2.2) since it
pools the variability estimates from within each of the I populations.

Table 3.1. ANOVA Table ¢

VDT df SS
Mean (M) 1 N g2
I
Populations (A) I-1 En,—(ﬂ,—. ~-g.)?
=1
I n;
Error (E) N-1 Zz(y.-,- - 9:.)?
=1 j=1
I n;
Total N Z E y?,-
=1 y=1

In the special case of a balanced design (i.e., n; = n) the ex-
pressions in Table 3.1 simplify. In particular, SS(A) =n E'_l(ﬂ,‘. -
g.)? = ( i g,,) Ng, N=nl,and N-I=I(n-1).

The distribution theory for the sums of squares in Table 3.1 is
quite simple:

N 2
SS(M) ~ o* xf(—,,'%)-

I 2
i=1 il 3.4
SS(A) N 02 X?—l ( ;: ") y ( )

SS(E) ~ o® x4 _,

® “VDT” abbreviates “variation due to." “df” abbreviates “degrees of
freedom.” “SS” abbreviates “sum of squares.”
N = 2.-1 n; = total sample size.
g.-. = ;’; Z w1 ¥ij = sample mean of ith population.
=1 E_‘ E,-n yij = overall sample mean.
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and the three sums of squares are independent.* The expected mean
squares are

E(MS(M)) = 0* + Nu?,

> nia?
E(MS(A)) =o® % —(';'__;)—', (3.5)
E(MS(E)) = o*.

The likelihood ratio test or F test of the null hypothesis Hj :
a; = 0 vs. the very general alternative H, : a; # 0 compares the

ratio
_ MS(4)

= MS(E) (36)
with the percentage points of an F distribution with (I—1) df in the
numerator and N — I df in the denominator. The upper tail of the
F distribution gives the significance level. There is no differentation
between one and two-tailed significance levels in the F test because

of the general nature of the alternative.
3.1.2. Multiple Comparisons

The likelihood ratio test is intuitive because of the E(MS) in (3.5).
Under the alternative hypothesis, the F ratio tends to have larger
values than if it had a central F distribution. Although numerous
optimality properties have been established for the F test, it has
several deficiencies.

The first is that if you conclude the population means are not
all equal, the test does not tell you which means differ from which
other ones. This deficiency motivated the development of multiple
comparisons, which was pioneered by John Tukey and Henry Scheffé.

* “x2(5%)" denotes a x? distribution {or variable) with v degrees of freedom
and noncentrality parameter 62, that is, the distribution of Y v? where
the y; are independently distributed as N(pi,0®),s=1,-- ,v, and 6% =

L4 2 2
.--IP,;/U g
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A treatise on the work in multiple comparisons is given by Miller
(1981). For a shorter synopsis see Miller (1985).

If the sample sizes are equal (i.e., n; = n), the procedure I would
use in preference to the F test is the Tukey studentized range test.
It hinges on the probability statement

o :
P{p; — pp €gi. — go. £ q?"("")yr:u’ for all 4,4} =1-a, (3.7)

where qf 1, ) is the upper 100a percentile of the studentized range
distribution with I variables entering the numerator range and I{n—
1) df for the error standard deviation in the denominator.* Good
tables of the studentized range appear in Harter (1960, 1969a), Miller
(1981), Owen (1962), and Pearson and Hartley (1970).

The overall significance of the differences in the I means is the
probability that a studentized range variable g; j(n—1) €xceeds the
observed value max; s {y/nl|gi. — §i.|/5). Ordinarily, significance of
an individual difference §;. — . would be assessed by calculating the
P value of /(n/2) |§i. — §i~-1/6 from the upper tail of a ¢ distribution
with I(n — 1) df. However, the most extreme difference max;{#;.} —
min;{§;.} necessarily tends to be larger than the difference between
two sample means because of the selection of the largest and smallest
means out of the set. Allowance for the multiple comparisons is
made by using the studentized range distribution instead of the ¢
distribution to evaluate the statistical significance of any individual
difference.

Confidence intervals for each of the (;) mean differences are
given by the intervals inside the probabiity sign in (3.7). Treated

* A studentized range variable gx . is distributed as max; =1, allyi —yel)
J(x2/v)"/?, where y1,---,yx are independent N(0,1), x? has a x? distri-
bution with v df, and x% and y1,- -, Y& are independent.
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individually, the mean differences would have confidence intervals

i 4f2 A ,.-"'-2"
B — B € 5. — o tl(n—l)ob‘ ; (3a8)

but since there are a number of such intervals, the probability of all
of them being correct is less than 1—a. This latter probability can be
appreciably fess than I — « even for moderate values of 7. Switching
from multiplying 6/\/n by /2 t‘,’(/:”l) to multiplying by q?.l(n-—l)
increases the length of the intervals, but makes the probability of all
the intervals being simuitaneously correct equal 1 — a. In choosing
whether to use the intervals (3.7) or (3.8), the statistician needs to
decide whether it is the error rate on individual mean comparisons
that is important to the investigation or whether it is the correctness

of the whole group that is paramount.

If the design is unbalanced (i.e., n; # n), the approximate
Tukey-Kramer intervals are available. With probability approxi-
mately 1| — a

' 1/1 . 1\]Y?
Bi— By € ﬂ,‘.—ﬂ;l.iq‘;Nmi o [— (— + —-—)] for all 1,5’ (3.9)
) 2\n; nyp

The quantity inside the square root bracket in (3.9) can be inter-
preted either as the sum of the sample size reciprocals for the vari-
ance of a mean difference corrected by the factor 1/2 to convert to
the studentized range, or as the harmonic mean of n; and ny in-
serted for n in (3.7). These intervals were originally proposed by
Tukey (1953) and Kramer (1956), but they have not been used ex-
tensively because no proof existed that their probability coverage is
approximately 1 — a. However, Dunnett (1980a} has shown this to
be true through Monte Carlo work, and recently Hayter (1984) has
proved that the probability coverage is in fact always conservative
(i.e., 2 1—a). Earlier Kurtz (1956) had established this for the case

= 3 and L. D. Brown in an unpublished 1979 proof for I = 3, 4,
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and 5.

Alternative conservative procedures have been proposed by
Hochberg (1974) based on the studentized maximum modulus and
by Spjgtvoll and Stoline (1973) based on the studentized augmented
range. However, these confidence intervals are always broader than
the Tukey-Kramer intervals. Gabriel (1978) has proposed an almost
conservative procedure based on combining separate confidence in-

tervals.

Scheffé (1953) gave an important interpretation of the F statis-
tic that for balanced or unbalanced designs leads to the probability

statement
P{p;i—por € % — g £((I-1) Feyn-1)"?x

1 Ty A0 T
a(n,-+n,v) , for all n,c}_l a,

(3.10)

where F[, n_; is the upper 100a percentile of the F distribution
with I — 1 df in the numerator and N — I in the denominator. The
simultaneous confidence intervals in (3.10) are obtained by project-
ing the F statistic confidence ellipsoid onto the coordinate axes for
pi — pir. For a balanced design the Tukey studentized range inter-
vals given in (3.7), and for an unbalanced design, the Tukey-Kramer
intervals (3.9) are shorter than the Scheffé intervals given in (3.10).

The Bonferroni intervals

o, {1, 1\

pi—pr €EGi. —Fo. Xty 0 (;.‘ + ;‘7) (3.11)
also apply to balanced or unbalanced designs and are surprisingly
good if K is not too large. The constant K in the probability a/2K
for which the upper t percentage point is required is the number
of confidence intervals being computed. In the one-way classification
this is usually K = (;), but it could be less if some mean comparisons
are a priori not of interest. The justification for all K intervals
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being simultaneously correct comes from the Bonferroni inequality
in elementary probability:

K
P{A; N A;N---N Ak} 21- ) P{A}, (3.12)

=1
where A{ denotes the complement of A;.

Special percentage points of the ¢ distribution are required in or-
der to use Bonferroni intervals. Tables are available in Dunn (1961)
and Miller (1981) and charts in Moses (1978). A number of pro-
grammable electronic calculators have routines for calculating ¢ per-
centage points and of course computers do as well.

Both the Tukey (3.7) and Scheffé’s (3.10) probability statements
also include confidence intervals on all possible contrasts without

changing the overall probability 1 — a. A contrast is any liner com-

bination of the population means Y°1_, ¢; u; for which Y, ei=0

Mean differences (viz., 4; — p) are contrasts, and they are the para-

metric comparisons customarily of interest in data analysis. On oc-

casion, however, the populations may subdivide into groups having

similar characteristics (defined independently of the data) in which

case comparisons of group averages such as
prtps  pst+petps

2 3

may also be of interest, and these too are contrasts.

(3.13)

For a balanced design the Tukey intervals for contrasts are
I I 'y =1L I
'Z:; ¢ p; € ; ¢ g ql,l(n-l)ﬁi § lesl, (3-14)
and the Scheffé intervals for balanced or unbalanced designs are

I

I I 2 1/2
Eci Bi € EC-‘ g 2 ((I-1) Ffoyn_)" /% 6 (Z n—') (3.15)

i=1 i=1 g=1 !
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The probability that all the intervals in {3.14) [or (3.15)] are simulta-
neously correct for all possible contrasts is 1 —a. Although the Tukey
intervals are shorter than the Scheffé intervals for mean differences,
the Scheffé intervals can be shorter for other contrasts like (3.13).

If the number of contrasts of interest is small, the Bonferroni

intervals

P 1/2
Zc. B € Zc. g z;ﬁfg (E n:‘:) . (3.16)

=1

where K is the total number of mean differences and contrasts of
interest, may be competitive in length to (3.14) and (3.15).

3.1.3. Monotone Alternatives

A second deficiency of the F test is that it has uniform power against
alternatives in all possible directions. The power is constant for all
alternatives (py,---,ps) that yield the same noncentrality parame-
ter 62 = °1_ ni(p; — B)?/0® where p = I nipi/N. Therefore, it
cannot be especially sensitive to alternatives in any particular direc-
tion.

If there is auxiliary information available in the experiment
about the direction in which the alternative might lie. then it is more
sensible to use a specially designed test with increased power in that
direction. The all-purpose F and studentized range tests cannot win
in competition with a test against a special alternative when, in fact,
the special alternative is true. Of course, if the special alternative
is incorrectly selected and a different, far removed alternative holds
true, then the special test will fail miserably.

A case in point involves monotone alternatives. [t may be
known that if g3 = pa = - = p; does not hold, then py < py <

- < py (with strict inequality at some point) does hold.* This

* The original subscripts labeling the populations might have to be changed
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could be the case, for example, if the sequence of populations is de-
termined by an increasing sequence of dosage levels of a drug or by
staging of disease severity (e.g., stages I to IV of Hodgkin’s disease).
If the auxiliary information is in quantitative form with a value z;
such as dosage level associated with population s, then it is appropri-
ate to apply regression analysis, which is discussed in Chapter 5. If,
however, the extra information is qualitative as with staging of dis-
ease, then an analysis appropriate to a general monotone alternative
should be employed to increase the power of detecting an increase in

the means.

Bartholomew (1959a,b, 1961a,b) developed the likelihood ratio
approach to monotone alternatives, and earlier Brunk (1955, 1958)
had studied the associated estimation problem. Maximum likelihood
estimates of the mean parameters can be derived under the restric-
tion gy < --- £ py on the parameter space. These estimates are
computed by taking a (weighted) average of any successive pair of
sample means that are not in the correct monotone order. This
process is continued until a monotonic sequence of sample means is
obtained. The order in which the averaging process is performed
is immaterial because the end result is always the same monotonic

sequence.

Although the maximum likelihood estimates are easily calcu-
lated, the corresponding likelihood ratio test has a complicated null
distribution that necessitates the computation of special tables. Ta-
bles have been produced for balanced designs (see Chacko, 1963; Bar-
low et al., 1972; or Nelson, 1977), but the unbalanced case remains
hopeless. Also, the behavior of this test under alternative hypotheses
and under departures from assumptions has not been studied exten-
sively. For a summary of what is known in this area the reader is

to produce this ordering, but as long as the change is dictated by auxiliary
a priori information and not the data, the change is okay.
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referred to the excellent treatise on this approach by Barlow et al.
(1972).

Because of the disadvantages associated with the maximum like-

lihood approach I am inclined to use a second approach due to Abel-
son and Tukey (1963), which is very easy computationally and does
not require special tables. The power of this second test is good and,
in general, its properties are more obvious.

Abelson and Tukey advocated selection of a contrast that would
be sensitive to the type of alternatives considered likely. The t statis-
tic associated with the contrast ¢ = {cy, - -- 1) 18

= Y“ {._y-

/___l_. ?_f_

=i n,

(3.17)

where ¢ is given by (3.3). This statistic has a noncentral ¢ distribu-
tion with N — I df and noncentrality parameter*

i S
§= L=t G B (3.18)

I o2 1f2
o ( =] ﬁt)

In the balanced case the sample size n factors out of the de-
nominator sum, and 6§ becomes a function of the ratio (Zf_, ¢ u.-)

f'Zf_l ¢?. For alternatives g = (p1, -+, p1) on the sphere with Z
(#i = B)? equal to a constant, the power of the test is a function of

P = (Z'* i ) . (3.19)

E;:] (ﬂl -u) Z

which is the square of the correlation coefficient between the direction
in which the test is looking (i.e., ¢) and the real direction (ie., p).

* A noncentral t,(5) variable is distributed as y/(a’xf,/u)'“, where y is
distributed as N(u,0%) with 6 = plo, x% has a x? distribution with v df,
and y and x} are independent.
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If the direction of g from Hy were known, the power would be
maximized by choosing ¢; = ¢(p; — p), ¢ = 1,---, I, for arbitrary
¢ > 0. When p is unknown but hypothesized to lie in a region
R, Abelson and Tukey adopt a maximin approach and recommend
selecting ¢* satisfying

el p? H 1
? = ] - 3-20
min r (c*,m) max min r (c,p) (3.20)

They discuss the geometry of finding the maximin contrast which for
convex R lies on a boundary. For monotone alternatives the region
i1s R= {plp, < pz €<--- < pr}, and Abelson and Tukey have tabled
the maximin contrasts ¢* for I < 20.

Having to use special tables in a journal is a nuisance, and there
are other simple contrasts whose efficiency is very high. The linear
contrasts are the sets of coefficients for estimating the slope in a
regression with equally spaced values of the independent variable.
The linear ¢y, -, ¢ are displayed in (3.21) for I = 3(1)7, where
they have been normalized into integer form.

1= 3 -1 0 +1

I=4: -3 -1 +1 43

I=5: -2 -1 0 41 +2 (3.21)
I=6: -5 3 -1 +1 43 45

I=7:-3 -2 -1 0 +1 42 43

More weight can be assigned to the extremes in an effort to detect
a slow increase. The linear-2 contrast doubles the weight at the end
values as in (3.22) for I = 7.

fr= gariiegn s LD g Mpeigly e epe, (3.22)

The linear-2-4 contrast doubles the penultimate value and quadruples
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the last coefficient as in (3.23).
I=7: —-12 -4 -1 0 +1 +4 +12.  (323)

Any of these contrasts are easy to remember and use in conjunction
with the test statistic (3.17).

Abelson and Tukey define efficiency to be the ratio of the respec-
tive min r2. With this definition the efficiency of the linear contrast
relative to the maximin contrast is 84% at I = 5, but it falls off
rapidly for larger I. The linear-2 contrast has over 90% efficiency up
to I = 11 and then drops to 80% at I = 18. The linear-2-4 maintains
efficiency greater than 95% through I = 20.

For a discussion of contrasts to measure quadratic effects see
Section 4.1.3.

3.2. Nonnormality.
3.2.1. Effect

Lack of normality has very little effect on the significance level of the
F test, even less than in the two sample case.

The aysmptotic robustness of the F test follows from the mul-
tivariate central limit theorem which establishes that {3.6) has an
asymptotic x? distribution with I — 1 df as n; — 00,4 = 1,---,1I,
for any underlying distribution with finite variance. The robustness
improves with increasing I because the central limit theorem also
smooths the sum (of squares) in the numerator as I — co.

In a series of papers by Pearson (1931), Geary (1947), Gayen
(1950a), Box and Andersen (1955), and others, Monte Carlo sam-
pling and moment calculations have been employed to further sub-
stantiate the robustness of the F test. The reader is referred to
Scheffé (1959, Section 10.3) for a thorough discussion of the present
state of knowledge. In particular, Scheffé’s Table 10.3.2, which is

o
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Box and Andersen’s Table 2, clearly indicates the insensitivity of the
significance level to ’ﬁ between 0 and 1 and 4, between —1 and 1
when I =5, J = 5. The effects can be more serious, however, for a
badly unbalanced experiment.

The robustness of the studentized range has not been as thor-
oughly studied. It may be a bit more sensitive to nonnormality
than the F test because the numerator is determined by the extreme
means max;{#;.} and min;{§;.}. However, as long as no n; is too
small, the central limit theorem should be making the §;. approxi-
mately normal and the studentized range should be approximately
correct. A paper in this area is R. A. Brown (1974).

The Abelson-Tukey monotonicity test should aiso be insensi-
tive to nonnormality since it only needs Eff:l ¢; §i- to be normally
distributed. The central limit theorem and the averaging by the
¢; should help achieve this. The worst situation would be where a
few means dominate the contrast as in the linear-2-4 contrast. This
would be further aggravated if the dominating means were based on

just a few observations.

The reader should remain aware that although the significance
levels for the normal theory tests are robust for validity, these tests
may not be the most powerful for nonnormal distributions. That
13, they are nonrobust for efficiency. Transformations to improve
normality or other tests can lead to more efficient procedures for
nonnormal distributions.
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3.2.2. Detection

The same devices for detecting nonnormality are available to the
statistician as were previously available for the one and two sample
problems (see Sections 1.2.2 and 2.2.2). My recommendation would
be to make I separate probit plots, one for each sample, but calcula-
tion of the skewness and kurtosis in each sample is also sensible when
it is feasible to carry out the extra computations. I would certainly
not use some omnibus test over all the samples such as a combined
goodness-of-fit x2 test or a multisample Kolmogorov-Smirnov test,
but separate Shapiro-Francia tests could be computed.

3.2.3. Correction

Transformations Power transformations (1.21) in general and the
square root and logarithmic transformations in particular are use-
ful for handling positive-valued random variables with heavy upper
tails. For a full discussion of transformations the reader is referred to
Section 1.2.3. Even though the P value from a test on the untrans-
formed data is reasonably robust, the power of the test and accuracy
of individual confidence intervals can be improved through use of a
transformation.

The choice of a particular power transformation is aided in the
I sample problem by the empirical association between normality
and stabilized variances. How to choose a transformation to stabi-
lize the variances between populations is discussed in Section 3.3.3.
Whichever transformation is selected by the graphical method pro-
posed there, will probably also make the samples look more normally
distributed. One can check this by probit plotting the transformed
data.

Nonparametric Techniques  Although it is not frequently uti-
lized, there is a median test for the one-way classification due to

|
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G. W. Brown and Mood (1948) (or see Mood, 1950, pp. 398-406).
As in the two sample problem (see Section 2.2.3, “Nonparametric
Techniques™), compute the median m, for the total combined sam-
ple {yi;,s =1,.--, I, § =1,- < ,n;}. Then within each sample count
the number of observations falling above and below the median. (The
simplest way of handling any observations tied with the median is
to discard them.) The counts can be arranged in a 2 x I table as in
(3.24). (Note that the totals n; may not quite agree with the original
sample sizes due tc some observations being discarded for equaling
the median.)

Sample
i 2 . I

(] T e

| ! | {
>m, j gy | 4z : a; | a= ,{:l a,

A l‘_ | | (3.24)

i : : |
<m, | b | b ‘ by b= ::: by

I.._ [ L l —t s

ni n2 “bh nr N = E!:l ng

Under the null hypothesis of no differences between the I popu-
lations, the conditional distribution of (a,,- -, ar} given the marginal
totals is a multivariate hypergeomeric. This is too difficult to work
with to obtain an exact test as in the two sample problem, but the x?
statistic for the equality of I proportions p; = a;/n;, - .Pr=ay/n;
18 available:

i
g bl (5. — )2
X Fi(1_‘3)‘;':"11(9. )%,
¥ (3.25)

where p = a/N. Under Hy the statistic {3.25) has an approximate
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x? distribution with I — 1 df if none of the cell entries is too small.

Nemenyi (1963) has proposed an analog to the studentized range
test for sign statistics (see Miller, 1981, p. 184, or 1985), but this is

never used.

Cochran (1954, Sections 6.2 and 6.3) and Armitage (1955) have
proposed a test for trend in binomial proportions, which for mono-
tone alternatives could be applied to (3.24) in conjunction with the
contrasts (3.21)—(3.23). This test is also described in Armitage (1971,
pp. 363-365).

Of the nonparametric tests the best known and most widely
used is the Kruskal- Wallis test (1952). 1t is the analog of the F test
using Wilcoxon ranks. Replace each observation y;; by its rank R;;
in the combined sample of N = Ele n; observations. For each pop-
ulation compute the average rank score Ri. = 2;':_.1 Rij[n;. As all
the sample sizes become large the average rank vector (R;.,---, Rr.)
has a limiting muitivariate normal distribution. Under the null hy-
pothesis the limiting covariance matrix has the proper form for the
sum of squares E,!:l ni(Ri. — R.)? to have a limiting x? distribution
with 7 — 1 df except for a multiplicative constant. This constant can
be determined theoretically without resorting to a sample estimate
of dispersion as in the denominator of the F test. The resulting

statistic 1s

1

12 3
N+ 1) 2 R~ R

= (N(N+1 Zn, R,z) - 3(N +1),

whose P value can be determined from the upper tail of a x? distri-

KW
(3.26)

bution with I — 1 df if none of the sample sizes is too small. Kruskal
and Wallis (1952) give some exact probabilities for I/ = 3 and n; < 5;
similar tables appear in Kraft and van Eeden (1968, Table F), Hol-
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lander and Wolfe (1973, Table A.7), and Lehmann (1975, Table I).
Extended tables for I = 3(n; < 8), 4(n; < 4), 5(n; < 3) are given by
Iman et al. (1975).

When ties are present, average ranks can be used (see Section
2.2.3, “Nonparametric Techniques”). If ties occur excessively, the
denominator of KW can be multiplied by the correction factor 1 ~
[Som, (3~ £;)/(N3 = N}], just as in (2.20), where ¢; is the number

of ties at the sth distinct value.

For deciding which populations differ, Nemenyi (1963) proposed
a multiple comparisons method based on Scheffé- type projections of
the Kruskal-Wallis statistic (see Miller, 1981, pp. 165-172). Dunn
{1964) used the same test with Bonferroni critical constants. A
slightly more powerful procedure is to reject the equality of F; and
F;» when

B B N(N +1 1/2 1/2
i&.-&'.l>qﬂm[%] [%(i+—3—)] . (321)

n; ng

where g7, 1s the upper 100a percentile of the studentized range
distribution for a range of I variables and infinite df for the standard
deviation in the denominator. This test is a rank analogue of the
Tukey-Kramer test (see Section 3.1.2).

A test 1 like just as well as the Kruskal-Wallis and Nemenyi tests
s a rank analogue to the studentized range test due to Steel (1960)
and Dwass (1960) (see Miller, 1981, pp. 1563-157). It is based on the
comparison of each pair of populations by the Wilcoxon statistic. It
1s easiest to describe in its Mann- Whitney form so let

n; n

Uie =3 ) Hyij > vi'k}, (3.28)

J=1 k=1
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where !
1 if yi; > ik,

Kyij >y} = { 1/2 i yi; = v (3.29)
0 if yi; < Yirk-
The 1/2 in (3.29) is the standard tie correction, but there should not

be too many ties in order for the subsequent distribution theory to
hold. In order to standardize for unequal sample sizes let

Ui = g 8 (3.30)

ngn,

Then the Steel-Dwass test compares

[0 — 1/2] (3.31)
with the asymptotic critical value
1/2
= ni+ny+1
————— . 3.
‘Il,oo ( 24"‘_"'_’ ( 32)

In (3.21) the quantity 1/2 is the theoretical mean of Ui under Hy;
in (3.32) ¢f, is the upper 100a percentile of a studentized range
distribution for I variables in the numerator and infinite df in the
denominator, and (n; + ng + 1)/12n;ny is the variance of Usy under
Hp.* If (3.31) equals or exceeds (3.32) for any s, t', Hy is rejected,
and any pair of populations for which this happens is declared sig-
nificantly different.

For equal sample sizes (i.e., n; = n) limited small sample tables
for the sum of ranks distribution for 7 = 3, n = 2(1)6 are given
in Steel (1960), and a more extensive table with I = 2(1)10, n =
6(1)20(5)50, 100 based on the asymptotic approximation for the rank
critical values appears in Miller (1981).

* The variance is multiplied by 1/2 in (3.32) because the denominator of a
studentized range consists of an estimate for the standard deviation of a
numerator mean, not the standard deviation of a difference of two means.
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This test has the advantage that the comparison of population
¢ with ¢' is not affected by the data from the other populations as it
would be in comparing R; with Ry. in the Nemenyi-type technique
(3.27). However, somewhat more ranking is required to carry out
the Steel-Dwass test. Koziol and Reid (1977) have shown that the
Nemenyi-type test (3.27) and the Steel-Dwass test (3.31) and (3.32)
are asymptotically equivalent for sequences of alternatives tending
to Hy.

Simultaneous confidence intervals for the location differences be-
tween pairs of populations can be constructed with the Steel-Dwass
ranking by the graphical method described in Section 2.2.3, “Non-
parametric Techniques,” when the critical constant

niny 1 " [n.-n,-:(n,- +ng+1) i (3.33)

g g Yo 24

is substituted for u®/2 in (2.21).

The Kruskal-Wallis, Nemenyi, and Steel-Dwass tests do not uti-
lize any prior information on the ordering of the populations (if it
exists), but there is a rank test for monotone alternatives due to
Jonckheere (1954), which was proposed somewhat earlier by Terp-
stra (1952) in a less accessible journal. Let Uy be defined as in
(3.28). Then the test statistic is

M=) Usp. (3.34)

>4’

The rationale being the statistic is that if g; < --- < py, then U,y
should be larger than its null mean for ¢ > s'. Summation of the
two sample Wilcoxon statistics over the I(I — 1)/2 pairs where s > ¢’
should accumulate any stochastic tendencies for the y;; to increase
as 1 increases. The sample sizes can be unequal, and for alternatives

in the direction gy < --- < p; the null hypothesis should be rejected
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for large values of M. The null mean is

F LY

¢ f 0 3
; (N2 -y n,?) ! (3.35)

=1

where N = 252, n;, and the null varance 1s

‘}é [vz(w +3) - an(2n, ¥ 3)] (3.36)

If none of the n; are too small, a normal approximation to the distri-
bution of M will suffice. For additional details the reader is referred
to Jonckheere {1954) or Hollander and Wolfe (1973, pp. 120-123).
For small sample tables see Hollander and Wolfe {1973, Table A 8).

Chacko (1963) has given a rank analogue to Bartholomew’s test.
A rank test in the spirit of the Abelson-Tukey contrast tests

would utilize a linear combination of the population rank scores as,
for example, L = S| iR;, where the R, are the rank scores used
in the Kruskal-Wallis test and the populations are assumed to be
indexed in increasing order. The mean and variance of L are
(N+1)I(I+1)

4 )

"'_@il_)(z’:ﬁ) W+ gz (330

E(L) =

Vi Fog—
= 12 48 ’

=1
where N = 2 _; ni- Asymptotically, L is normally distributed so
values of (L — E(L))/[Var(L)]"/? can be compared with standard
normal critical values.

Theoretically, it would be possible to perform a permutation
test on the F ratioc {3.7) by calculating its value for each of the
Ni/nyt---np! different divisions of the N total observations into
samples of sizes ny, --,ny and rejecting the nuli hypothesis if the
observed ratic is one of the aN largest. Except for the minuscule
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sample sizes this is too laborious for actual use even with the aid
of electronic behemoths. Expressions for the permutation moments
provide justification for use of the normal test theory test (see Box
and Andersen, 1955).

Robust Estimation Ringland (1983) examines robust multiple
comparisons based on M-estimates.

3.3. Unequal Variances.
3.3.1. Effect

By far the best article about the effect of unequal varianes on the F
test is Box (1954a), and the reader should refer to this. When the
variances differ between populations, the numerator and denomina-
tor sums of squares in the F ratio (3.7) are distributed as weighted
sums of squares of independent normal random variables. Since the
weights are unequal, the distributions are not x2. Box develops the
distribution theory for quadratic forms of this type and applies it to
the one-way classification.

To get a glimpse of the effect of unequal variances on the F test,
it suffices to examine the large sample case where all the n; are large.
The denominator mean sum of squares is converging to its expected
value, which 1s

I

=1 j=1 =1

where o2 is the variance of the observations from the sth population.
Since N - I = E.—n("i — 1), the expectation (3.38) is a weighted
average of the oZ; call it #2. The expectation of the numerator mean
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sum of squares under Hp is
1 I
E[“I_—l Z".‘(ﬂi- = 9--)2]
=1
1 I
T=1 [Z ni B(gi — p)® - NE(g. - I‘)z],
=1

I I "
1 o? Do i=y B OF
;-I[Z"f,t_"” 5 ]

=1

Il

(3.39)

I!l

1 I
= N(I——l) z—:(N -»n.')a?.

The last expression in(3.39) is a different weighted average of the o?;
call it a2,

When the n; are all equal, the two weighted averages agree (i.e..

82 = 5%). This means the F ratio is centered near 1 as it should be.
But the variance of the numerator is

3_61 14 I1-2) gil(_a_'zja_’z_)? . (3.40)

I-1 I(I-1) a4
Under x? theory assuming equal variances, the quantity in brackets
in (3.40) should be 1, but it obviously exceeds this when the o? differ.
Thus the actual variance is larger than the theoretical variance for
the case of equal 0%, and the upper tail of the distribution of the F
ratio has more mass in it than anticipated by the x3_, distribution.
For an observed F ratio the actual P value is larger than the one
calculated from the tables, but numerical studies indicate that the
effect is not large. This conclusion is also born out in small samples
(see Box, 1954a or Scheffé, 1959, Section 10.3).

When the n; are unequal, the effects can be more serious. Sup-
pose the large o7 happen to be associated with the large n;. Then
in 8% of (3.38) the large o7 receive greater weight, whereas in &2 of
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(3-39) the small o? receive greater weight. The expectation of the
numerator mean squares is, therefore, less than the expectation of
the denominator, and the center of the distribution of the F ratio is
shifted below 1. The actual P value is less than the one stated from
the tables. If the large a.-z are associated with the small n;, the shift
goes in the opposite direction. The actual P value exceeds the re-
ported one, and it can increase dramatically above its nominal level
without too much disparity in the variances. The reader is referred
to Table 4 in Box (1954a) or Table 10.4.2 in Scheffé {1959) to inspect
the potential danger.

Falsely reporting significant results when the small samples have
the larger variances is a serious worry. The lesson to be learned is
to balance the experiment if it is at all possible, for then unequal
variances (and other departures from assumptions) have the least
effect.

A small study of the effect of unequal variances on the studen-
tized range test has been published by R. A. Brown (1974). The
results are similar to those cited for the F test.

For an Abelson-Tukey monotonicity test it is relatively easy to

see what will happen. The variance of the contrast E,’-=1 ¢ ¥ in
(3.17) is

I n
-;0;
_E ‘ Cg ;]: . (341)

and the square of the denominator is converging in probability to
i I ! 2
(ﬁ__j D (ni- 1)0?) (Z n—’) (3.42)
=1 =F

Even with the n; equal, if the large o? occur at the ends of the
range where the ¢; are largest, the actual variance is larger than the
normalizing one so the stated P value is too small. The linear-2 and
linear-2-4 are the most sensitive to this. If the smaller sample sizes
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also occur at the ends, the effect is magnified. A reverse effect on
the P value pertains when the large 67 occur in the middle. No
numerical work on quantifying these comments has been carried out.

3.3.2. Detection

Use of a preliminary test of homogeneity of variances is not recom-
mended. The three standard tests for equality of variances, which are
based on normal theory, are those of Bartlett, Hartley, and Cochran,
but each of these is extremely sensitive to departures from normal-
ity. There are robust tests, but they all involve substantial extra
computation. This probiem 1s the subject of Chapter 7.

It is best to avoid the problem of preliminarily testing variances.
It is harder to decide the isssue of equality or the lack thereof than
it is to corect for inequality if visual inspection suggests that this

might be warranted.
3.3.3. Correction

Transformations are extremely useful in correcting unequal variances
when the size of the variance is related to the size of the mean. Plot
the I pairs (§;.,8;),+ =1,---, I, where

1 s
45 e > (v — 9i)* (3.43)
. j=1

This is depicted in Figure 3.1. Often the s; tend to incrase with
increasing ¢;.. With luck the statistician can make a guess on an
approximate relationship s = h(y) between the standard deviations

and the means. In this case the asymptotic relation

SD(g(y)) = SD(y)lg'(s)l, (3-44)

which was derived in Section 2.3.3, motivates trying the transforma-




Section $.3: Unequal Variances 938

sA

~if

Figure 3.1

tion

9ly) = /, h{';) du. (3.45)

When # increases approximately linearly with § (i.e., s 2 ag), the
relation {3.45) suggests trying log y or log(y + ¢}. For a more curved
relationship like ¢ = a,/y, (3.45) suggests the square root trans-
formation /¥ or /y +¢c. Whatever transformation is selected, the
prudent statistician checks the variances of the transformed data to

ascertain if the transformation has in fact stabilized the vamnances.

Transformations are not as useful when the data can be both
positive and negative, and when the variances do not have a mono-
tonic relationship with the means. For these contingencies the alter-
native nonparametric tests are available. The Browa-Mood median
test and the Kruskal-Wallis rank test (see Section 3.2.3) should be
fairly insensitive to moderately unequal variances, but no study of
this has been published to date.

Tamhane (1979) and Dunnett {1980b) compare various Welch-
type (see Section 2.3.3, “Other Tests”) procedures that have been
proposed for the muitiple comparisons probiem with 0% # 0.

For monotone alternatives one can substitute the sample esti-
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2

mats s? for the unknown o7, ¢ = 1. -- I, in the variance (3.41) for

-"=1 ¢; Ji-- A Satterthwaite (1946) approximation could be used to

approximate the degrees of freedom of this variance estimate.
3.4. Dependence.

Dependence in the data caused by blocking or grouping of the obser-
vations is easily handled. Extra parameters are added to the model
(3.1) to represent the nuisance effects. The model then becomes a
two-way or higher-way classification, and the appropriate analysis
for these more complex designs should be applied.

The presence of serial correlation within or between the sam-
ples from the different populations is a much more serious affair.
Box (1954b) studied the effects in a two-way classification, and the
results are interpretable for the one-way classification as well. Serial
correlation within the samples from each population badly distorts
the significance level of the F test. The reported P value tends to
be too large or too small depending on whether the correlation is
negative or positive. The effect of serial correltaion in blocks across
the populations is much less severe. For further details and numer-
ical results the reader is referred to Box (1954b) and Scheffé (1959,
Section 10.5).

The techniques available for detection of serial correlation with-
in population samples is the same as in the one sample problem (see
Section 1.3.2). It’s just that there are more samples in the one-
way classification. Successive pairs {yi;,yij+1) can be plotted for
each population sample for visual inspection, or the serial correlation

coefficients can be computed.

It is well to know if senal correlation is present so that it is
known whether the significance level of the F test is shaky. However,
if the F test is in trouble, there is precious little that can be done
to rescue the situation. Estimates of the correlations can be plugged
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into the expressions for the mean and variance of the F ratio, and
for large data sets grouping may help (see Section 1.3.3). Since the
median and rank tests are also in trouble from serial dependence in
the one sample problem, it is likely that they are in trouble in the
one-way classification as well and cannot bail out the analysis.

RANDOM EFFECTS
3.5. Normal Theory.

The discussion here focuses on the situation where the I populations
in the experiment are not the only ones of interest. They are merely
representatives of a wider class of populations from which they have
been selected. The experimenter and statistician are primarily seek-
ing inferential statements about the broad class of populations.

The classical model is
yij=p+a;te; =11 1=1,-,m; (3.46)
where the random variables a; and ¢;; are distributed as
a; independent N(0,02),
¢;; independent  N(0,07), (3.47)
{a;} independent of {e;;}.
Whereas in the fixed effects model the analysis concentrates on esti-
mating and testing the population differenes a; — ay, for the random
effects model estimating and testing the variances o2 and o? are usu-

ally the primary concern. In some instances an estimate of p or each
population mean p + a; may also be desired.
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3.5.1, Estimation of Variance Components

The classic approach is to use the expected mean squares of the
ANOVA table (Table 3.1) under the random effects model and the
method of moments to estimate o2 and o%. It is a simple computation
to show that

1 ! 2\ 2
E(MS(A)) = o +_(.__1_)( N? Zni)oa. !

E(MS(E)) =

Equating the moments to the observed mean squares and solving the
pair of equations gives

= MS(E),

. N(I-1)[MS(A) - MS(E)] (3.49)
O = Nz _1"2 -

For a balanced design (i.e., n; = n) the expressions for the estimates
simplify to

= MS(E),
5% = MS(A) — MS(E) (3.50)

n
With the modification that if 62 is negative it 1s replaced by zero,
these estimators are the ones most commonly used in practice.

For a balanced design the estimators (3.50) possess certain opti-
mality properties. The vector [§.., SS(E) SS(A)] is a complete, min-
02, 02). The estimators (3.50) are
therefore the uniform minimum variance unbiased estimators. With-

imal sufficient statistic for (g, o

out the assumption of a normal distribution they are the uniform
minimum variance quadratic unbiased estimators (e.g., see

Graybill, 1976, pp. 614-615 or Searle, 1971, pp. 405-406). Still there
are biased estimators that have more desirable properties from the
point of view of mean squared error loss [i.e., E(67 — 07)%]. These
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alternative estimators deserve to receive greater attention in appli-

cations.

The Hodges-Lehmann (1951) estimator

. SS(E)
A ler2led
Oe I(n-1)+2 (3:51)
has the smallest mean squared error loss in the class of estimators of
the form ¢ x SS(E) where ¢ is a constant.

The maximum likelihood estimators of 02, 02 are

6% = MS(E),
52 = % [(1 3 ;) MS(A) - MS'(E)] , (3.62)
if (1 - I"1)MS(A) > MS(E), and
522 ] [(1 2 ;) MS(A) + (n — I)MS'(E)] s

n

62 =0,

if (1 - I"')MS(A) < MS(E). The estimate of 62 in (3.53) is a

pooled estimate of error; if MS(A) is not large enough to indicate

that 07 > 0, then SS(A) is added to SS(E) in the numerator of 42.
The expressions (3.52) and (3.53) can be written as

62

. = min

{ SS(E)  SS(E) +SS_(_A_)},

I(n-1)’ In
_1[ss(4) _ ss(g)1* (3:54)

1
Az—_
%a n[ I In-1)] °’

where (a)* = max(a,0). These maximum likelihood estimators have
uniformly smaller mean squared error loss than the unbiased estima-
tors (3.50) but they in turn can be dominated by more sophisticated

estimators.

e —
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The Klotz-Milton-Zacks (1969) estimators

5? = min SS(E) ' SS(E) + SS(A) ,
¢ I(n-1)+2 In+1
[ (3.55)
., 1[85(4) _ SS(E)
e nlI+1 In-1)} ’
. improve upon (3.54) by choosing the denominator constants in a
more optimal fashion.
Finally, the Stein (1964) estimators
4 . SS(E) SS(E) + SS(A)
2 _
"‘"m“’{l(n-—l)+2‘ In+2
SS(E) + S5(A) + SS(M)
In+2 ] 256
.2 . f1(SS(A) SS(E) )* (i5E)
6% = ming — - ,
n\I+1 I(n-1)
1(55(A) +SS(M) _ SS(E) )+
n I+2 I(n—1) g

improve upon (3.55) by including the one df variation in the grand
mean if it does not differ much from zero.* Since only one df 1s
involved, the amount of improvement is apt to be only slight.

In their excellent paper Klotz et al. (1969) give proofs of the
preceding statements on mean squared error loss and numerical com-
parisons of the estimators. They also consider some formal Bayes
estimators. In a later paper Portnoy (1971) considers formal Bayes

estimators in greater depth.

C. R. Rao (1970, 1971, 1972) introduced the concept of mini-
mum norm quadratic unbiased estimators (MINQUE).

* Selection of zero is arbitrary. Any other value go that has some justification
independent of the data can be used. In this event SS(M) is replaced by

In(g.. - po)®.
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For work on nonnegative unbiased estimators, see LaMotte
(1973) and Pukelsheim (1981).

Alternative estimators for the unbalanced design (i.e., n; # n)
are not considered here. The unbalanced case is more complex than
the balanced. The results that exist are considerably messier and go
beyond the intent of this book. The reader is referred to Chapters
10 and 11 of Searle (1971).

3.5.2. Tests for Variance Components

For A balanced design
Inpy?
2 24 N
SS(M) ~ (o7 + nog) xi (m) )
SS(A) ~ (03 + no?) xiy, (8.57)
SS(E) ~ aez X?(..-l),

under the normal theory assumption, and the three sums of squares
are independent.

A common problem is that of testing for the presence of popu-
lation variability, that is, Hy : 02 = 0 vs. H; : 02 > 0. A test that
is uniformly most powerful similar and invariant and is almost the
likelihood ratio test is to reject Hp for large values of MS(A)/MS(E)
(see Herbach, 1959). This is the same ratio as (3.6), and under H,
this ratio has an F distribution with df I —~ 1 and I(n — 1) for nu-
merator and denominator, respectively. Under the alternative H,,
the distribution is not a noncentral F as in the fixed effects model.
Instead, from (3.57) it is distributed as*

2

(l £ t;i;) Fl—l,l(n-—l)' (3.58)

* “F,,,," denotes an F variable (or distribution) with v, and »; df for
numerator and denominator, respectively.
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The parameter o> enters through a multiplicative factor to a central
F variable rather than through a noncentrality parameter. Power
calculations are thus obtained from tables of the central F or beta
distributions.

Spjgtvoll (1967) studies the structure of optimum tests of Hy :
o2/o? < Q.

Although their general use is not recommended because of their
extreme sensitivity to nonnormality (see Section 3.6.2), confidence
intervals can be constructed based on the distribution theory {3.57).
In particular, a confidence interval for o7 can be obtained from

SS(E) 2
acz ~ X,(”_l), (359)

and a confidence interval for 02/o? from

MS(A) ¥ o?
MS(E) o2 +no?

~ Fr_y,1(n-1)- (3.60)

The ratio 02/0? measures the size of the population variability rela-
tive to the error variability inherent in the data. In some problems
this ratio may be the parameter of interest, but in others a confidence
interval on o2 alone may be required. This is a much more difficult
problem. Bulmer (1957) has a complicated method for constructing
an approximate confidence interval, and Scheffé (1959, pp. 231-235)
discusses this approach in detail. Another method that should yield
a rougher approximation is to employ a Satterthwaite approximation
(see Section 2.3.3, “Other Tests”):

L (MS(A) - MS(E 2X 6
L (Ms(4) - MS(E)) ~ 0322 (361)

The degrees of freedom v in the approximation are selected by equat-
ing the second moments of the random variables on the two sides of
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(3.61). This yields

2-4
- na,
V= Q2+n6ﬂ’ Y] (362)
-1 & f(n—1

No confidence intervals linked to the more sophisticated estima-
tors (3.54) - (3.56) have been developed.

In the unbalanced design
S5(A) ~ 07 xj- (3.63)

under Hp : 02 = 0. Under H; : 02 > 0, SS(A) does not have a x2
distribution but instead a weighted combination of x? distributions.
The ratio MS(A)/MS(E) can still be used to test Hy : 02 = 0 because
under Hy it has an Fy_y y—; distribution, but the distribution under
the alternative is more complicated than in the balanced case.

A normal theory confidence interval for 02 based on

SS(E)
ot~ XN~ (3.64)

is available, but no confidence intervals have been developed for o2
or 02/o? in the unbalanced case.

3.5.3. Estimation of Individuai Effects

In most cases the primary statistical problem in a one-way classifica-
tion with random effects is to estimate or test hypotheses about the
two sources of variability, namely, error (0Z) and populations (o2).
Occasionally, one wants to estimate or test g, and aiso at times to
estimate the individual population means p; = p+a;, s = 1,---, 1.
The latter problem is relevant when specific actions or calculations
are to be made for each individual population on the basis of its es-
timated mean value. For examples of this the reader is referred to
Efron and Morris (1975).
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The standard maximum likelihood approach would be to esti-
mate p; = p + a; by §;.. However, if for I estimators ji; of the I
parameters p; the criterion of performance is the sum of the squared
error losses Zf___l (f1; — p)?, then empirical Bayes estimators do bet-
ter.

Under the distribution structure (3.47), the Bayes estimator of
p; for the balanced design is

. ol
Bi=p+ (1 2—+T) (9:. — B),

il ln ey (IO N
02 + no? o2+no2) "’

Whereas the risk of the set of maximum likelihood estimators {§;.}

(3.65)

equals Jo2/n, the Bayes risk for the set of Bayes estimators (3.65) is

2 2
I (1 A _2_0_2.) , (3.66)
n o; + nog

The Bayes estimator (3.65) corrects the population sample mean
toward the theoretical overall mean by an amount proportional to
the size of the two components of variability 0?/n and oZ. The
savings in risk of (3.66) over IoZ/n can be considerable for small o7
relative to o?/n.

Of course, the parameters p, 02, 0% are unknown in any prac-
tical problem unless there is previous data or auxiliary information
available. However, they can be estimated from the data and this
leads to empirical Bayes estimators. James and Stein (1961) showed
that, in the case of known s and 02/n but unknown o2, the estima-

tors .

A __ %

Bi=p+ (l T+ nag) (9. — 1), (3.67)
where

I
A Z =pyeele, (3.68)

.

it
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uniformly (over fixed a;) improve on the risk of the maximum likeli-
hood estimators provided I > 3. The Bayes risk (averaging over the
a;) for the estimators (3.67) is

Io? I-2 o? )
. (l—( i, )03'*'"_"72 (3.69)

(see Efron and Morris, 1973a). One can substitute an independent
estimate of o7 based on MS(E) into (3.67), and Lindley (1962) sug-
gested substituting §.. as an estimate of 4. The Lindley form of the

James-Stein estimator is

(I-3)  SS(E)
T Iln-1)+2 SS(A)

=g+ (1 )@-s) @)

which shrinks each sample mean toward the grand mean in propor-
tion to the relative sizes of the sums of squares.

The empirical Bayes estimator (3.70) seems most relevant for
application to the one-way classification (provided I > 4). There is
a large literature on these estimators and variants of them which the
reader may wish to pursue. He or she is referred, in particular, to
James and Stein (1961) and Efron and Morris (1973). The latter
authors include a discussion of unbalanced designs as well.

The original work of Stein (1956) and James and Stein (1961)
was for the fixed effects model (3.2), not the random effects model
(3.46). They established the existence of estimators that domi-
nate the maximum likelihood estimators in terms of the sum of the
squared error losses uniformly over all values of the mean vector
(#1,---, pr) for I 2 3. Lindley was one of the first to give an empiri-
cal Bayes interpretation to the James-Stein estimators. His remarks
appear in the discussion fcllowing Stein (1962). Efron and Morris
in their aforementioned series of articles amplify the empirical Bayes
interpretation of these estimators.

Although the estimators (3.70) improve on the maximum like-
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lihood estimators in the fixed effects case, they have not received
widespread acceptance. The examples in which they have been uti-
lized have more of a random effects flavor. It is not clear why there
is hesitation in using the empirical Bayes estimators (3.70) in fixed
effects problems. Perhaps there is some distrust of the loss function
that adds all the squared errors. The estimation of any given mean
is subjugated to the estimation of the whole set of means. Concern
for the individual mean may inhibit using an estimate substantially
different from the observed sample mean. Efron and Morris (1971,
1972) discuss this point and introduce modifications of the empirical
Bayes estimators.

Another handicap of the estimators (3.70) is that no tests or
confidence procedures are available for use in conjunction with them.
Some theoretical work (viz., Stein, 1962; Joshi, 1967; Faith, 1976;
and Morris, 1983) has appeared, but it has not been reduced to
practical form for everyday use. The work of Dixon and Duncan
(1975) is very relevant but is not entirely practical.

3.5.4. Estimation of the Overall Mean

The estimate for the overall mean p in the balanced case is ji = §...
Its variance is

af_'_ag
N I’

(3.71)

Tests and confidence intervals for 4 can be constructd from ¢.. and
MS(A)/In since §.. is normally distributed and an unbiased estimate
of (3.71) is MS(A)/In. The df for the t statistic is ] — 1.

In the unbalanced case there are several choices of estimators for
. One is the weighted average of the population means §.. = (1/N)
E‘Ll n;§;., and another is the unweighted average §° = (1/1I)
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YL, #.. The variances for these two estimators are

I
1 o2
Var(ﬂ,,) = }V—E Zﬂ‘z (n_e + D’:) ;
=1 '
i

Var(g’) = %E (Z—'z + 03) y

=1 "

(3.72)

and either one can be estimated by substituting estimates for o?
and oZ. The relative sizes of 02 and 0? determine which variance
in (3.72) is smaller and thus which estimator is to be preferred. If
0? >> o3, then Var(g.) < Var(g?), and if 02 << o2, the reverse is
true. By substituting estimates for 02 and o? into (3.72) one can
assess whether either estimator is definitely superior to the other.

It is possible to go even further and determine the weights {;}
that give the estimator g¥ = E,!:l 09/ E{:x @; with the smallest
estimated variance. In this case w; is a function of 62 and 62. My
experience has been that this approach produces a less satisfactory
estimator than §.. or §°. The noise in the weights #; introduced by
the estimates 67 and 62 tends to produce an unstable result. There
is some theoretical work that substantiates this assertion for small
sample sizes like n; < 9 (see Graybill and Deal, 1959, and Norwood
and Hinkelmann, 1977).

3.6. Nonnormality.

3.6.1. Effect

Lack of normality can occur in both the variables a; and the vari-
ables e;;. Let 72,4 denote the kurtosis of the distribution governing
the a;, and ~;, the kurtosis for the ¢;j- The corresponding skew-
ness parameters are not introduced here because their effects on the
distributions of the statistics are not as profound.

=
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Confidence intervals and tests for 02 based on the assumption

SS(FE
_a(z“) e (3.73)

are very nonrobust. This is created by the dependence of the variance
of SS(E)/o? on 2., which is not accounted for by the x? distribu-
tion. For greater detail the reader is referred to Chapter 7.

The test of the null hypothesis Hy : 02 = 0, which assumes that

MS(A) _ N ik ._,n.(ﬂ. 9.
MS(E) o=l ! j=l (yu = ﬂi-)z

(3.74)
=1

is distributed as F;_; n_j, i3 quite robust. This must be the case
because it coincides with the fixed effects test of Hy : a; = 0, which
is known to be robust (see Section 3.2.1). Under Hy the a; are
nonexistent (02 = 0, 72,4 = 0) so they do not affect the distribution
of (3.74). Since the ;. are sample means with v2(§;.) = 72 /n;, the
effect that the v, , might have on the numerator is dampened so thé
distribution of the numerator is nearly x%. There are usually plenty
of degrees of freedom for estimating o2 in the denominator so ~z .
does not appreciably affect the distribution of the ratio (3.74).

Uunder the alternative a2 3 Q, the wohustness vanighes when
v2,0 # 0. Unless the n; are very small or a'f >> o;’;, the population
variable a; dominates &, in controlling ¢;. = a; + &;. . The effect of
2,6 on a; has not been dampened by any averaging process and

( Z(a. = d)’) = o} ( s "’I") (3.75)

The kurtosis vz, thus has a substantial effect on the variance of the
numerator of (3.74). Since the a; cancel out of the denomiantor of
(3.74), the denominator cannot correct for the change in the variance
of the numerator. This leads to nonrobustness of the distribution
of (3.74). Confidence intervals for 02/0? or tests of the hypothesis
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Hy : 02/6% < Ay based on (3.74) are, therefore, very sensitive to
departures from normality. For numerical confirmation of this the
reader is referred to Arvesen and Schmitz (1970) and Arvesen and
Layard (1975).

No numerical work has appeared on the effects of nonnormality
on the distribution of the alternative estimators (3.54)~(3.56) for o2.
However, one would guess that 4; , has a considerable influence.

The effect of nonnormality on the performance of the empirical
Bayes estimators of p; = p + a; is less clear. Some work in this
direction would certainly aid in determining whether they should be
used routinely in practice.

The effect of 72, and 72,4 on the estimates of the overall mean
and their estimated standard errors is more straightforward, but no
numerical work has been published.

3.6.2. Detection

Lack of normality of the ¢;; is easy to spot when there are enough of
them. The situation is simply an I-fold repetition of the one sample
problem; therefore, the reader is referred to Section 1.2.2. Probit
plots of y;;, y = 1,--+, n;, for each of the population samples should
reveal any skewness or kurtosis in the error distribution.

Detection of 724 # O is more difficult. Typically, I is not all
that large so there are not many variables a;. One can make a probit
plot of the §;., s = 1,---, I, but this does not allow one to see the
empirical distribution of the a; directly. Each a; is contaminated
by the addition of &;., which clouds the picture of the behavior of
the a;. Since tests or confidence intervals on 02 are usually more
of interest than those on af, and since -2, substantially affects the
normal theory tests in the nonnull case, this leaves the normal theory
techniques in an unfortunate situation.

- ——
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3.6.3. Correction

A suitably chosen transformation may improve the normality of the
data. With the use of a transformation there may be some difficulty
in the interpretation of the variances on the transformed scale. It
may be necessary to inversely transform the variance estimates back
into the original scale (see Section 2.3.3, “Transformations”}.

The main alternative to normal theory for assessing the vari-
ability in variance component estimates is the jackknife. This tech-
nique is decribed below and in Chapter 7. Arvesen (1969), Arvesen
and Schmitz (1970), and Arvesen and Layard {1975) have studied
its application to variance component problems. Miller (1974a) has
described the more general uses of the jackknife, which was proposed
by Tukey (1958) for robust interval estimation.

Consider interval estimation on o2 in the balanced design. Let
0 = 02 and

b= %(MS(A) ~ MS(E)). (3.76)

The jackknife systematically deletes each of the / population samples
in its turn and recomputes {3.76) each time with one population
missing. Let #_; be the estimate (3.76) computed from Yij, § =
1,---,k~1,k+1,---,I, 3=1,---,n. The next step is to form the
quantities

bp=10-{I-1)0_y, k=1,--,1I, (3.77)
which have been called “pseudo-vailues” by Tukey. Then 51, ro ,51

are to be treated as approximately independently, identically dis-
tributed random variables so that

— e~ N(0,1), (3.78)
v nﬁ)’ E!:l(ok - 0)2

__-"‘l
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where § = E'!:l 8:/1. Thus with probability approximately 1 — a,

r

debdx z°/2d 1(11- 1) 2(51. - 6)2, (3.79)
=1

where 29/ is the upper 100(a/2) percentile of a unit normal distri-
bution.

For 8 = (02 + no2)/o? = 1 + n(0%/0?) the same procedure
can be applied with § = MS(A)/MS(E). Jackknifing tends to re-
duce the bias in 8 as well as provide robust confidence intervals.
In variance ratio problems use of the log transformation - that is,
§ = log(MS(A)/MS(E)); 8 = log((0? + no2)/o?) - is likely to im-
prove the normal approximation (3.79). Any confidence interval for
0 can be converted to a confidence interval for 6%/o? by subtracting
1 from the endpoints and dividing by n.

Arvesen (1969) and Arvesen and Layard (1975) have considered
the modifications necessary for handling jackknifing in unbalanced
designs.

Jackknifing is not likely to work well cn the nonsmooth alter-
native estimators (3.54)-(3.56). Unless an estimator admits a power
series expansion in certain basic variables, the jackknife technique
is likely to go awry (see Miller, 1964, 1974a). The jackknife should
do well on smooth formal Bayes estimators such as those of Portnoy
(1971; see Arvesen, 1969, p. 2092).

3.7. Unequal Variances.

Under Hp : 03 = 0, the effect on the robustness of the F test if
o2 varies from population to population is the same as for the fixed
effects model. The reader is referred back to Section 3.3.1. For
a balanced design (i.e., n; = n) the effects are minimal, but the
distortion can be serious for unbalanced experiments.

==
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The effects on various point and interval estimates for o2 when

; # of are unknown. I have not seen any work concerning the
eﬂ'ects on the empirical Bayes estimators of {p + a;}. The effects on
the estimators §.. and §° of p are calculable; see P. S. R. S. Rao et
al. (1981) for numerical results.

Detection would be the same as for the fixed effects model (see
Sections 3.3.2 and 3.3.3). Plotting s; versus ;. is the best hope of
detecting systematic change.

Since estimation of 02 and/or o2 is often the primary problem,
use of nonparametric techniques is obviated as a corrective device.
Transformation may even perturb the problem too much to be useful.
P.S. R. S. Rao et al. (1981) study estimators modified for unequal

e,

3.8. Dependence.

As opposed to the models previously considered in this book, depen-
dence between observations is already present. Since

Cov(y.-j, vik) = E[(a.- + c.-,-)(a; + e.-l,)] = 03 (3.80)

for j # k, the correlation between two observations from the same

population is

2

2. 3.81
o2 +o? st

o

This within population correlation coefficient is called the intraclass
correlation coefficient, and it is a parameter that has been studied
classically in statistics (see Kendall and Stuart, 1961, pp. 302-304).
Observations in different populations are, of course, independent un-
der the model.

Blocking because of the presence of a nuisance effect is easily
handled through a higher-way classification model, but any other

it
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kind of dependence outside the model spells big trouble. Serial cor-
relation between the ¢;;, or between the a;, can have a substantial
effect. Unfortunately, little or nothing has been written on this or
on what to do about 1it.

Exercises.
1. For the one-way classification with fixed effects, show that

I nia?
E[MS(A)] = o* + =t

2. For the balanced one-way classification with fixed effects, show
that SS(A) ~ 0% x3_,(62), where 62 =n Ei:x a?/o?.

3. Let y1,---,yn be independently, identically, continuously dis-
tributed, and let R; be the rank of y; in the sample. Show
that

(a) E(R) =(n+1)/2,

(b) Var(R;) = (n+1)(n —1)/12,

(c) Cov(R;, Ry) =(n+1)/12,5 #14'.
Hint: P{R; =k} =1/n, k=1,.--- n.

4. Use the results of Exercise 3 to establish that for a one-way
classification rank analysis

(a) E(R:)=(N +1)/2,

(b) Var(R;) =[N(N +1)/12n;] — (N + 1)/12,

(c) Cov(R:), R.) = (N +1)/12,
where N = E:{:x n; and (R,., -, R;.) is the average rank vector
[see the discussion preceding (3.26)].

5. Use the results of Exercise 4 to establish that for the linear rank
statistic L = E,{:l ¢ R;. [see the discussion preeding (3.37))
(a) E(L) — !N+l!{![+l!’
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(b) Var(L) = NI (31| i2) - HTEHE,

=1 n; 48

6. For the one-way classification with random effects, show that

s (-5

7 For the balanced one-way classification with random effects,
show that SS(A) ~ (02 + no?)x}_;-

8. Prove that S/(v + 2) minimizes the mean squared error among
the class of estimators ¢S for o2, where ¢ is a constant and

E[MS(A)) =0+

S ~ax2.

9. A clinical method for evaluating trunk flexor muscle strength in
children was needed to assist physical therapists in accurately
assessing strength in pediatric patients. In this Stanford study
trunk flexor muscle strength was measured in 75 girls 3 to 7
years of age.* Muscle strength was graded on a scale of 0 to 5
using modified manual muscle testing methods. These methods
attempted to minimize the amount of hip flexor muscle activity
during trunk flexion while allowing more isolated action of the
abdominal trunk flexors.

The means and standard deviations (§+ s) for the girls grouped

by years of age (n = 15 in each group) are summarized in the

table.

Age 3 4 5 6 7

Muscle Grade 3.3£09 3.7+ 1.1 4.1+11 44%£09 4.8 £ 0.5
(a) Run an ANOVA test of the null hypothesis of no age effects.
(b) Use Tukey studentized range intervals to decide which age
groups differ.

* Baldauf, K. L., Swenson, D. K., Medeiros, J. M., and Radtka, S. A. (1984).
Clinical assessment of trunk flexor muscle strength in healthy girls 3 to 7
years of age. Physical Therapy, 64, 1203-1208.
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(c) Apply a linear-2 contrast test for monotone alternatives to
test for muscle grade increasing with age.

Plasma bradykininogen levels were measured in normal sub-
Jects, in patients with active Hodgkin’s disease, and in patients
with inactive Hodgkin’s disease. The globulin bradykininogen
is the precursor substance for bradykinin, which is thought to
be a chemical mediator of inflammation. The data (in micro-
grams of bradykininogen per milliliter of plasma) are displayed
in the table. The medical investigators wanted to know if the
three groups differed in their bradykininogen levels.* Carry out
the statistical analysis you consider to be most appropriate, and
state your conclusions on this question.

* Eilam, N., Johnson, P. K., Johnson, N. L., and Creger, W. P, (1968).

Bradykininogen levels in Hodgkin’s disease. Cancer, 33, 631-634.
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Normal Active Inactive
Controls Hodgkin’s Disease Hodgkin’s Disease
5.37 3.96 5.37
5.80 3.04 10.60
4.70 5.28 5.02
5.70 3.40 14.30
3.40 4.10 9.90
8.60 3.61 4.27
7.48 6.16 5.75
5.77 3.22 5.03
7.15 7.48 5.74
6.49 3.87 7.85
4.09 4.27 6.82
5.94 4.05 7.90
6.38 2.40 8.36
9.24 5.81 5.72
5.66 4.29 6.00
4.53 2.77 4.75
6.51 4.40 5.83
7.00 7.30
6.20 7.52
7.04 5.32
4.82 6.05
6.73 5.68
5.26 7.57
5.68
8.91
5.39
4.40

7.13
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11. In an experiment on the effects of oxygen toxicity in newborn
mice, littermates were separated at birth into chambers con-
taining air or nearly 100% oxygen. Pairs of nursing mothers
were switched between the chambers every 12 hours to avoid
oxygen intoxication of the mothers. This experiment was re-
peated 4 times with the newborn mice in the chambers for 24
hours. The amounts of tritiated thymidine incorporated into
the pulmonary DNA (dpm/pug DNA) in the air and Oz-exposed
mice are displayed in the table. Additional experiments were
run for 36, 48, and 72 hours.*

Estimate the variance component in the differences due to ex-
periments by the method of moments from the ANOVA Table
1 [i.e., (50) with I = 4, n = 4]. Assume no nursing pair effect.

* Northway, W. H., Jr., Petriceks, R., and Shahinian, L. (1972). Quantitative
aspects of oxygen toxicity in the newborn: Inhibition of lung DNA synthesis
in the mouse. Pediatrics, 60, 67-72.
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1 Nursing  Litter - ;
Experiment  Pair Mother Air O; Difference
M; 11.2 239 -12.7
M) Ms
5 M; 26.1 7.5 18.6
! M; 142 166  -24
MM,
M, 73 143 -7.0
M; 174 193 -1.9
M; M,
E M;s 16.8 149 1.9
4 M, 156 16 14.0
M, M,
M, 126 46 8.0
M, 126 4.6 8.0
M; M,
E Ms 204 11.2 9.2
4 My 56 88  -32
MoM,
M, 19.2 16.4 2.8
M; 11.2 78 34
M Ms
g M 135 938 3.7
! My 126 133 0.7
MM,
M, 7.4 5.4 2.0




Chapter 4

TWO-WAY CLASSIFICATION

With a two-way classification there are two distinct factors affecting
the observed responses. Each factor is investigated at a variety of
different levels in an experiment, and the combinations of the two
factors at different levels form a cross-classification.

The simplest linear model for an observation y;; taken at level
¢ of Factor A and level j of Factor B is

yij = p+a; + B; + ¢, (4.1)

where p is the overall mean, ¢;; is the unexplained variation, and ay
and B; are the effects for Factors A and B, respectively. The more
general model

vij = p+oa;+ B8+ af +e¢; (4.2)

allows for an interactive effect af;; between the Factors A and B at
the levels combination (s, 7). Sometimes more than one observation is
taken at the (¢, 7) combination of levels so a third indexing subscript
k is added to y and e (i.e., y;jx and e;j;).

The assumptions that should be imposed on {a;}, {#;}, and
{aB;;} are dictated by the types of factors involved in the experi-
ment. As in the one-way classification, it is necessary to distinguish
between fixed and random effects. Different treatments, types of dis-
ease, age groupings, sex, etc., are typically considered to be fixed
effects, and the statistical inference extends only to those included
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in the experiment. On the other hand, patients, days, batches, etc.,
axe wsuelly considered to be merely sepresentatives {rom « larger
population; thus they are handled as random eflects.

In a two-way classification each factor can be either fixed or
random. If both factors are fixed, the model is called a fixed effects
model. When both are random, it is called a random effects model,
and when there is one of each, it is a mixed effects model. In Churchill
Eisenhart’s (1947) terminology, these are referred to as Models I, II,
and III, respectively. The sections of this chapter discuss the fixed,
mixed, and random effects models.

FIXED EFFECTS
4.1. Normal Theory.

When Factor A has I levels (i.e., s = 1,---,I) and Factor B has J
levels (i.e., y = 1,---,J), the cross-array of (¢,5) combinations has
IJ cells. Let p;; be the mean for the cell (s,5). Any arbitrary set of
IJ means {s;;} can be expressed in the form

wij = p+ a; + B + apij, (4.3)

where the constraints

I J
Zal':()i Zﬂj'_:o’

=1 J=1
I J
Y apij=0forall, ) efi=0foralli

=1 =1

(4.4)

are imposed on the a, 8, and af parameters. These parameters,
subject to the constraints (4.4) are defined in terms of the p;; as
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follows:

LA
#=}—jZZPu.

=1 j=1

J
1
a; = jZPU—ﬂ' (4.5)

=1

1
B; = % Z Bij = By
=1
afi; = pij —a;— B = p.

When the model (4.1) is selected for the analysis, a strong re-
striction is imposed on the structure of the p;;; namely, the effects of
the two factors must be strictly additive. Whether this assumption is
warranted in an experiment needs to be carefully considered. Models

intermediate between the strictly additive and completely arbitrary
models can and will be studied.

4.1.1. Analysis of Variance (ANOVA)
To start, consider the balanced full model
Yijk = p+ a; + B + aBij + ¢jji (4.6)

with n replicate observations per cell (i.e., k = 1,---,n). Because
the parameter sets {a;}, {8;}, {aBi;} are completely orthogonal in
this balanced design, the likelihood ratio tests of the null hypotheses

Ho:aB;; =0, Ho:8;=0,and Hy: a; =0 (4.7)

lead to the analysis of variance displayed in Table 4.1.
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Customarily, SS(A) is computed in the form (nJ E,_l 72 )
nlJg?, SS(B) in the form (m}'z".zl ij'*;) —nlJg?, SS(E) in the

rorm( et ,_,E,,_,y.,.)-(n i ;ﬂya-.)‘and SS(AB)

by subtraction.

Table 4.1. ANOVA Table for a balanced two-way classification. ¢

VDT - df SS
Mean (M) 1 nllJ g2,
I
Factor (A) I-1 nJ Y (9. - 9..)°
=1
Factor (B) J-1 nl Z(g.,-. -g..)
=
14
Interactions (AB) (I—-1)(J =1) nd_ Y (% — ¥ — 95 +9..)°
=1 y=1
I JJ n
Error (E) IJ(n-1) Z Zz(y;jb - f[.'j.)z
=1 j=1 k=1
I
Total Iin ZZZy,z,,,
=1 j=1 k=1

The mean squares column (i.e., MS = SS/df) is usually also
printed out in packaged computer programs along with correspond-

ing F ratios.

The distribution theory for the sums of squares in Table 4.1 is

3 e

E -l Yijk,

E .1 Ek-. Vijk,
Z.-] Ek-] Yijn,
E.-\ E,-i Ek-l Vijh-

1
nJ

L2z

QQ
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very similar to the one-way classification:

SS(M) ~ (nI:2F )’
SS(A) ~ 02X§-l (nJ E'-l & ) )
SS(B) ~ 0*x3_, ("IE’—' ) ; (4.8)

I J 2
2= =1 af;
SS(AB) ~ 02Xf1-1)(.l-1) ( a; ") )
SS(E) ~ azxf‘,("_,),

and the five sums of squares are independent. The expected mean

-
E(MS(M)) = o* + LI
E(MS(A)) = 0* + "(JI 2%11?,
E(MS(B)) = 0% + ° ( & )'*” (4.9)

2
2:"'1 J--l aﬂu

E(W(AB))=02+ (I l)(J—l)O’z ’

E(MS(E)) = o®.

The appropriate F statistics for testing the null hypotheses in
(4.7) by the likelihood ratio method are, respectively,

MS(AB) . _MS(B) . . MS(4)

“p ‘MS(E)’ ° ~ MS(E)’ MS(E)

(4.10)

In their numerators the F statistics in (4.10) have (I — 1)(J - 1),
(J - 1), and (I — 1) degrees of freedom, respectively. Their common
denominator has IJ(n — 1) df. Each F statistic in (4.10) has a

-
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central F distribution under the associated null hypothesis and a
noncentral F distribution under the alternative.* The tests reject
for large values of F so the upper tail of the F distribution gives
the P value. This P value is multisided because the alternatives are
general. There is no analog to the one-sided P values of Chapters 1
and 2.

If the estimated interaction effects (i.e., e;;\‘i,,- = §ij. — Gi- — 9.5+

g..) are statistically significant, the interpretation of the estimated
main effects (i.e., &; = @i — §.. and ﬂ, = §.j. — §..) becomes less
straightforward than if the interactions are insignificant. The pres-
ence of interactions means that, for example, a treatment effect (i.e.,
level of Factor A) has to be evaluted in terms of the conditions or
types of patients (i.e., level of Factor B) to which it is to be applied.
The interactions could be so large as to switch the treatment of choice
depending upon the conditions or patients. Mere statistical signif-
icance of the estimated main effects is not enough to substantiate
the superiority of one or more treatments. On the other hand, the
estimated interactions can be statistically significant but insufficient
in size in comparison to the estimated main effects to cloud the issue.
To ascertain their impact, one has to examine the sets of estimates
{&:}, {B;}, and {EB,-J-} as well as the sums of squares.

Consider next the case of an unbalanced design where the num-
ber of replicates n;; in cell (4, 5) varies with the cell. Assume n;; > 1
for all cells.

If the two-way classification is badly unbalanced with the cell
sample sizes differing by orders of magnitude (e.g., 10 or more obser-
vations in some cells and only 1 or 2 in others), the prudent analysis
is to resort to multiple regression on a large computer. The X matrix

* A noncentral F, ., (5%) variable (or dmtnbutlon) is distributed as (x2, (62)
/v1)/(x%,/v2), where the noncentral x3, (6%) variable and the central X2,
variable are independent.

—
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in the regression model ¥ = X8 + e for the two-way classification
should be constructed of 1’s, 0’s, and —~1’s to insert or leave out
the appropriate parameters for each cell and to incorporate the con-
straints (4.4) by expressing some parameters as negative sums of
the others. For greater detail on this approach the reader can read
Draper and Smith (1981, Chapter 9).

Unfortunately, even with this subterfuge, the analysis is murkier
than in the balanced case. The parameter sets are no longer orthogo-
nal, 5o the sequence in which the hypotheses in (4.7) are tested makes
a difference. For example, one has to decide whether one is going to
test the SS(A) adjusted for af and 8 (or perhaps just adjusted for 8
if the af are insignificant) or the SS(A) unadjusted against SS(E).
The size and significance of the other factors affect the choice of test
for a factor. No single partition of sums of squares is possible. The
regression program has to be run repeatedly with sets of parameters
inserted or deleted to obtain the appropriate sums of squares for dif-
ferencing. Some packaged computer programs will do this for you
either automatically or with the proper commands.

One hopes to avoid this predicament and be in a position where
the following approximate analysis suffices. Compute each cell mean
§ij- from all the observations in the cell, and, similarly, compute the
error sum of squares from all the observations in the cells of the
two-way classification:

I J %
: SS(E) = Z ZE(%‘,‘& - §ij- )%,
oL '::: . (4.11)
S5 N ) S
=1 j=1 k=1 =1 j=1

However, in computing the other entries in the ANOVA table, the
§i;. are treated as though they were all averages of n* observations

= ——
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where the n® is the harmonic mean of the {n;;}:
e ad
272224 | .- (4.12)
=1 j=1

This leads to the approximate analysis of variance displayed in Table
4.2.

Table 4.2. Approximate ANOVA for an unbalanced
two-way classification ¢

VDT df 5SS
Mean (M) 1 n*1J(g".)?
1
Factor (A) I-1 n*J Z(ﬂ: -g.)°
J
Factor (B) J-1 n'IZ(ﬂ.'j. -g*)?
=
T
Interactions (AB) (I-1)(J =1) n*Y_ Y (% — 92 — 95 + )
=1 j=1
J ni
Error (E) N-1J Z 3 (wie - 9i)?
i=1 j=1 k=1

The sums of squares in Table 4.2 do not add exactly to the
total sum of squares, but the discrepancy should not be too great.
Only SS(E)/o? has precisely a x? distribution. All the other sums
of squares (divided by o2) have approximate noncentral (or central
under Hy) x? distributions. The sum of squares SS (E) is indepen-

-
® §ij. = _L Ek:l Vijk,

ﬂ: = ¥ E 1”1

ﬂ.j = %Z.-lﬁi

t = 'ij E,-l E,-; Pisy
Z.-IZ:,. s

-
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dent of the rest, but the others lose their interindependence. The
approximate F tests of (4.7) employ the usual ratios (4.10).

Although the preceding analysis is only approximate, it is easy

I to carry out and to interpret. Rankin (1974) has shown that it does
not give misleading results provided the ratios of sample sizes do not

| exceed 3. He also studied a modified analysis in which the numerator
degress of freedom are adjusted for the irregularities in sample sizes.

When there is just a single observation per cell (i.e., n;; = n =
1}, the analysis of variance in Table 4.1 reduces to that in Table 4.3.
Notice that the row for “Error” has vanished from this table since
there are no replicate observations for measuring error. This leaves
the statistician in a pickle because there is no denominator for the
F statistics in (4.10).

The statistician has two choices.

The first is to close his or her eyes, cross his or her fingers, and
use SS(AB) as an error sum of squares. This leads to

Fo MS(B) . L MS(a)

= M5(4B) s )

being used as the test statistics for the last two null hypotheses in
(4.7). If there are no interactions, the ratios in (4.13) have (noncen-
tral) F distributions with J — 1 and I - 1 df in their numerators,
respectively, and (I — 1)(J — 1) df in their denominators.

All this is find provided there are no interactions. In some
experiments the assumption af;; = 0 may be justified because of
the nature of the factors. A synergistic reaction between them would
not be conceivable. However, if interactions are indeed present, they
inflate the sum of squares in the denominator and unduly dampen
the significance of the numerator sum of squares. Of course, if the
ratio is significantly large as judged by the central F* distribution,
the issue of whether the main effects are really even more significant

= N—_— e
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is academic.

Table 4.3. ANOVA table for a balanced (n = 1)
two-way classification °

VDT df SS
Mean (M) 1 1J ¢*
I
Factor (A) I-1 1Y (5 -9
sJ=l
Factor (B) J -1 1y (9;-9.)
-
i 4
Interactions (AB) (I-1)(J - 1) EZ(;{;’- -9 -9;+9.)°
=1 j=1
I J
Total 1J E Z y?,-
=1 §=1

In other instances it might be argued that the main efects are
only of interest if they are substantially larger than the interactions.
The F ratios (4.13) reflect the relative sizes of the main effects and
interactions, but computing P values from an F distribution un-
der such circumstances is a fantasy. When interactions are present,
SS(AB) has a noncentral x? distribution, and the ratios in (4.13)
have doubly noncentral F distributions.*

The alternative choice available to the statistician is to try to
split SS(AB) into two components of which one soaks up most of
the interactive effects and the other is mainly pure error. Tukey

“ g =3 T v
95 = T Lim1 Visr
.= & Tie) Tiay vis-

* A doubly noncentral Fy,,.,(57,67) variable {or distribution) is distributed
as [x3, 6/ n)/Ix2, (62)/vz] where the noncentral variables x?,l (63) and
x2,(63) are independent.
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(1949) proposed separating from SS(AB) one degree of freedom for
nonadditivity which would engulf most of the interactive effects in
a quadratic model. Specifically, if the response surface is postulated
to be quadratic in the main effects, i.e.,

Bij x (p+a;+ ﬂ,’)z, (4.14)
then expansion and rearrangement of terms gives
pij B + (2pa; + a?) + (206 + 7) + 2a:8;, (4.15)

so the interaction a;8; is multiplicative in nature. A single square
term that is sensitive to detecting interactions of this form is

[ ::1 Ej‘:l 6i5.fy"f]2 '

I - J 32
=1 6F iy B;

55, = (4.16)

Scheffé (1959, Section 4.8) provides a more rigorous derivation
of the statistic (4.16) and shows that when there are no interactions,
55, and SS(E) — SS; are statistically independent and have x? dis-
tributions with 1 and (7 — 1)(J — 1) — 1 df, respectively. Thus one
can test for the presence of interactions by comparing the ratio

(I-1)(J-1)~1 S8,

1 ' SS(E) - 88, el

with the critical values for an F distribution with 1 and (I - 1)(J -
1) — 1 df. If interactions are present and generally multiplicative in
nature, then SS; should soak up most of them and leave SS(E)— SS;
relatively uncontaminated, so it should be possible to use the latter
sum of squares for legitimately testing the main effects.

Tukey (1955) and Abraham (1960) extended this idea to Latin
squares. In Problem 4.19 Scheffé (1959) indicated how to generalize
this method for testing other forms of interactions in the general
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linear model. Later Milliken and Graybill (1970) elaborated on this
generalization.

Occasionally a single observation is missing because, for exam-
ple, a slide has been dropped or an animal has been lost for reasons
unrelated to the experiment. When the experiment is otherwise bal-
anced with n > 1, I would run the approximate analysis in Table 4.2
with n* = n. In other words, consider each cell mean as being based
on the full n observations and compute SS(E) from the observations
available in each cell. However, if n = 1, this cannot be done because
¥;. cannot be computed for the cells with missing data.

For a single observation per cell experiment with a lot of missing
data, there is nothing to be done other than to resort to running the
data through a multiple regression program. However, with a single
missing value in cell (k, £), one can substitute

. IRy + JC,-T

Yke = Wj—_‘_—ﬁ (4.18)

for the missing observation, where Ry is the sum of the nonmissing
observations in row k, C; is the sum of the nonmissing observations
in column £, and T is the total sum of all the nonmissing observations
in the I x J array. The sums of squares given in Table 4.3 can then
be calculated, but the df for interactions (AB) should be reduced by
one to (I—1)(J —1)—1. Approximate F tests can then be performed
by computing the usual ratios.

If one desires more accuracy, it is possible to compute an exact
analysis of variance without resorting to multiple regression. For
details the reader is referred to Kempthorne (1952, pp. 172-174).

An iterative procedure using (4.18) is available when two or
more observations are missing and n = 1; see Cochran and Cox
(1957, pp. 110-112). When n > 1, an approximate analysis (see
Table 4.2) is usually satisfactory for several missing values provided

e

—— A
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all cell means can be estimated.
4.1.2. Multiple Comparisons

The idea and methods of multiple comparisons were introduced in
Section 3.1.2. The reader may want to refer back to this section or
to a fuller discussion in Miller (1981).

Essentially all the methods introduced in Section 3.1.2 extend
to the two-way classification with the only change being in what is
used for 62. If there is more than one observation in all, or at least
some, of the cells, then

.o _ SS(E)
N1

(4.19)

where SS(E) hasy = N-IJdfand N = 2::: }"=1 n;;. With just
a single observation for each cell, then

PSR (4.20)

with v = (I — 1)(J — 1) df. The appropriate subtractions should be
made in the numerator and denominator of (4.20) for missing obser-
vations and deletion of single degrees of freedom for nonadditivity
(see Section 4.1.1).

For a balanced design (i.e., n; = n) the Tukey intervals are

a; — ag € §.. (4.21)

: m i,
- gp.. qr. m,
where g7, is the upper 100a percentile of a studentized range dis-
tribution for I numerator variables with » df in the denominator
and & is given by (4.19) or (4.20). When a design is slightly unbal-
anced and the approximate analysis given in Table 4.2 is used, then
(4.21) can be applied with n® replacing n. The coverage probability
of (4.21) for all pairs ¢ and ¢’ is exactly 1 — a in the balanced case
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and is approximately the same in the unbalanced case. As the de-
sign becomes more unbalanced, the coverage probability deteriorates
(see Dunnett, 1980a); extension of the Tukey-Kramer intervals (3.9)
to the two-way classification should afford better protection in this

case.

For badly unbalanced designs where one has to resort to employ-
ing multiple regression, the Scheffé intervals provide the simultaneous

confidence intervals
a; — ap € &; — Go £ [(1— DF ]2 6[eh(XTX) eiw]'/?, (4.22)

where ¢; is the vector containing 1, —1, and interspersed zeros that
pick out the contrast a; — a;. The error variances 62 is the residual
sum of squares divided by the degrees of freedom N —IJor N -1 -
(I - 1) = (J — 1) depending on whether interactions are included in
the model. Bonferroni intervals are obtained by substituting tﬂl 2l
with K = (;) for ((I—l)Ff’__l‘y)‘/2 in (4.22), and these can be shorter

than the Scheffé intervals.

For special tables of percentage points to use in conjunction
with these methods, see Section 3.1.2.

More general contrasts can be handled as well. The Scheffé
and Bonferroni methods merely substitute the appropriate e into
¢T(XT X) e, and Bonferroni must modify K to include the requisite
number of contrasts. The Tukey intervals for balanced, or almost
balanced, designs must append the multiplicative factor ZL: lesi/2
[see (3.14)].

Similar intervals could be constructed for Factor B. The symbols
8. 7, and J are simply substituted for a, s, and I.

If multiple comparisons are made for both Factors A and B, it
is not true that the combined coverage would have probability 1 — o
(or greater). The critical constants would have to be substantially
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changed to achieve this. However, it is rare that one is interested in
multiple comparisons of both factors, and even rarer (never?) that
one wants to be so conservative as to have simultaneous coverage on
both sets of comparisons.

4.1.3. Monotone Alternatives

The general theory for monotone means of normal distributions dis-
cussed in Section 3.1.3 is available for use in the two-way classifica-

tion.

With balanced, or nearly balanced, designs, either the likelihood
ratio approach or the contrast approach can be applied. The only
changes from the one-way classification are that ¢,. based on nJ
observations, or §;. based on n*J observations, is substituted for ;.
and 62 from (4.19) or (4.20) is used for the estimate of the variance
with its corresponding degrees of freedom.

For an extremely unbalanced design, the likelihood ratio ap-
proach fails, not for any theoretical reason, but just for lack of ex-
plicit formulas and tables. However, the Abelson-Tukey approach
is still possible. For the regression estimates a;, - -, &y, which have
been produced by the computer, one simply calculates the linear
combination eTa = ZLI ¢i@;, where the ¢; are given by (3.21),
(3.22), or (3.23). The variance of the contrast is then estimated by
6% eT(XT X)~'e. If in running the regression program one of the a;,
say, as, has been deleted to incorporate the constraint Ef___l a; =0
by setting a; = —E,’.__—ll a;, the contrast should be computed as
E,!:—ll(c,- — ¢r)&; with a corresponding adjustment in the estimated
variance.

When the design is balanced, it is possible to test for more
general types of monotone alternatives than just linear increases (or
decreases). One rarely, if ever, goes beyond quadratic eflects to cubic
and higher order effects so the discussion is limited to just quadratic

-L___
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effects.

The contrasts that measure a quadratic effect and are orthog-
onal to the linear contrasts and general mean for I = 3 to 7 are
displayed in (4.23). These come from the values of the second order
orthogonal polynomial that have been normalized into integer form.
For additional details on orthogonal polynomials and their construc-
tion, the reader can study Draper and Smith (1981, Sections 5.6-5.7)

or other sources.

I=3: +1 -2 +1

I=4 41 1 -1 41

I=5 42 -1 2 -1 42 (4.23)
I=6: +5 -1 -4 -4 -1  +5

I=7:45 0 -3 -4 -3 0 +5

As with linear constrasts, one simply calculates E,{:l ¢:¥;.- and
the estimated variance is 62 E.!:l c¢2/Jn, where 62 is given by (4.19)
or (4.20).

Since the linear and quadratic constrasts are orthogonal, it is
possible to subdivide SS(A) into linear, quadratic, and remainder
sums of squares. Let (&, --,¢s) denote the linear contrast from
(3.21) and (q1,--,qs) the quadratic constant from (4.23). Then,

2 2
nJ (EL, lsfu--) nJ (Ef:; q;ﬂ.'--)
SS(A) = i + 7

=1 t? =1 q'z
where the last term RSS(A) is obtained by subtraction. The three
sums of squares on the right hand side in (4.24) are independently
distributed, and under Hy have central x? distributions with 1, 1,
and I — 3 df, respectively. Each can be tested against MS(E). Sig-
nificance of the first and/or second sum would indicate the presence

+ RSS(A), (4.24)

e 8l
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of a linear and/or quadratic effect, and significance of the third sum
would substantiate the existence of other effects.

If the column effects are considered to have monotone alterna-
tives as well as the rows (or instead of the rows), the same analysis
can be applied to the columns with Bj playing the role of a;, J for
I, etc.

The possibility of interaction between Factor A and Factor B
with monotone alternatives can be tested also. The size of the linear
contrast in column j is Z::: 6;9:;., where (&4,---,¢;) is given by
(3.21). Since the overall linear contrast is E.!:l 4;9;.., the effect of
the sth column on the linear contrast is measured by the difference

I I I
Yot - Y v = Y GG — 9.,

=1 =1 =1

I
= Z Z,(g" = ¥i. — 95 + g-.), (4.25)

=1
I
= z l.'t;/\?.'j-
=1

The sum of squares

A I gqe. _ o ]2
SS(ALB) = ndlisi [Z.':;Q(tﬂ?.,. #i-)]

=1

(4.26)

is sensitive to a A linear x B interaction, and under Hp it has a x?
distribution with J — 1 df and is independent of the leftover inter-
action sum of squares [i.e., SS(AB) — SS(A¢B)]. It can be tested
against MS(E) to determine if interactions of the form A linear x B
are present.

A similar contrast and sum of squares could be constructed

for A quadratic x B interactions. The coeflicients (g, -, qr) would
be chosen from (4.23). The interaction sum of squares can be fur-

-
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ther subdivided into SS(A,B) + SS(A,B) + [SS(AB) - SS(A(B) -
5S(AgB)], where each of the three sums of squares has an indepen-
dent x? distribution on J—1, J-1, and (I-3)(J - 1) df, respectively,
under H,.

For monotone alternatives in both directions, one can form the
Alinear x B linear contrast

; & (Xl: b !7-':'-) = 2'3 b (i fi'ﬂo*) ’ e

J =1 =1 J=1
1 J
—~
=22 _GGaby,
=1 j=1

with corresponding sum of squares

2
I J =
1=] Luj=] c::l;'yi.i')
= (P T, ()

=

n
SS(A¢By) = ( : (4.28)
where (€], ---, €7} and (£, - -, ¢5) are the appropriate linear contrasts
from (3.21). Under Hy, SS(A¢By} has a single df x? distribution,
which is independent of the remaining interaction sum of squares.
Similarly, SS(A4B;), SS(A.B,), S$S(AgBy), can be separated out
from the parent sum of squares SS(AB).

If the design is not fully balanced but is nearly 80, the preceding
analysis can be carried out with n® replacing n [see (4.12)] and with
¥i;- being computed from however many observations are present in
the (1, 7) cell.

If n;; = n = 1 and the populations have an a priori ordering,
calculation of (4.28) offers an alternative to Tukey’s one degree of

freedom for nonadditivity.

If there is an actual quantitative variable associated with the
rows and/or columns (i.e., Factor A and/or Factor B are quantita-
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tive), then the techniques of regression analysis in Chapter 5 are also
available and are usually superior.

4.2. Nonnormality.
4.2.1. Effect

The reader is referred back to Section 3.2.1 for the discussion of the
effects of nonnormality in the one-way classification because there is
little or no difference for the two-way classification. In the balanced,
or nearly balanced, two-way classification the tests for row (or col-
umn) effects are essentially the same as one-way tests except that the
error sum of squares has been corrected to remove the column (or
row) effects and, when n;; > 1, interactions. Basically, nonnormality
has very little effect on the F, studentized range, and linear contrast
tests as along as the size of the design (i.e., IJn) is not too small.

The preceding optimistic remarks must be tempered for badly
balanced experiments. Heavy-tailed or contaminated distributions
may produce unusual observations (outliers) in the thin part of the
design and thereby distort the tests and estimates.

Welch (1937) and Pitman (1938) compared the moments of a
beta statistic corresponding to an F statistic (4.13) under normal
theory and under permutation theory when there is a single observa-
tion per cell (i.e., n;; = 1) and no interactions (i.e., af;; = 0). The
agreement was shown to be good, thereby giving credence to the
normal theory analysis for general distributions. This work is sum-
marized in Kempthorne (1952, Chapter 8). Related material and
discussion appears in Box and Andersen (1955) and Scheflé (1959,
Chapter 9 and Section 10.3).

Welch (1937) also studied the permutation moments for a Latin
squares analysis.
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4.2.2. Detection

It is more difficult to detect nonnormality in the two-way classifica-
tion than it is in the one-way classification or one and two sample
situations. The problem is that each cell in the two-way array rep-
resents a different population so there are orly a few observations,
sometimes just one, for each population. One cannot make probit
plots, or perform tests, for each separate population.

The only recourse is to pool residuals from all the cells. When
there are multiple observations per cell, one can use the N differences
rijk = Yijk — ¥ij- and make a single probit plot as in Section 1.2.2.
Test statistics could be computed, but their ordinary associated sig-
nificance levels would be fouled up by the dependencies between the
rijx caused by the subtraction of the cell means. However, these
dependencies do not cause any substantial difficulty with the pro-
bit plot because the empirical distribution function of the residuals
is a consistent estimator for the underlying error distribution (see
Duan, 1981). The residual distribution function should give an ac-
curate picture of the true error distribution and enable one to decide
whether it is sufficiently close to normal.

With just a single observation per cell, it may not be possible to
distinguish between nonnormality and interactions. When interac-
tions are assumed not to exist, the residuals ri; = y;;— p—a;— ﬂ, can
be used in a plot of the residual distribution function as mentioned in
the preceding paragraph. However, if here are some unusual values
and /or the plotted quantiles do not fall approximately on a straight
line, one cannot be sure whether the lack of fit is due to a nonnormal
error distribution or the presence of some interaction terms. There
is no way to incorporate general interactions and have any residuals
left, but one could estimate interactions with special structure (like
afi; x aifj a la Tukey) and calculate the residuals ri; = yi; — jij,
where ji;; is the estimated cell mean including the special interaction
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term. It is not clear that all this effort would be warranted since
the effects of nonnormality are not severe unless the departure is

extreme.
4.2.3. Correction

Transformations Transformations are possible, but they do not
seem to be as frequently used with the two-way classification as with
the one-way or one and two sample problems. The reason is that
transforming the data may destroy an additive linear model and
create interactions where none existed before.

On the other hand, one may get lucky and reduce both nonnor-
mality and nonadditivity at the same time. For example, with the
quadratic model

vij = (B+ a; + B; + ¢;5)?, (4.29)

which was mentioned earlier in (4.14) with regard to nonadditivity,
a square root transformation will exactly produce an additive linear
model and normal errors (provided the ¢;; are normally distributed).

Nonparametric Techniques 1t is not often that a nonparametric
technique is used in place of an ANOVA analysis for a two-way clas-
sification. Nonparametric methods are more work to run and usually
do not provide as much information. Also, special structure on the
design and model is typically required in order to apply nonparamet-
ric methods.

The one technique you will occasionally see is Friedman’s (1937)
rank test. It assumes that there is a single observation per cell (i.e.,
n;;j = 1). If there are more observations per cell, then the analysis
is run on the cell means §;;. and any information in the within-cell
variation is ignored. Also, the analysis assumes that no interactions
are present. With these restrictions, the analysis for the presence
of row effects proceeds by replacing each observation y;; in the jth
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column by its rank R;; in the set of I observations in column j. Then
the test statistic is

12J
I(I+1)

A (1(,1'2:1) 2 R'z) e

where R; = 2}!:1 R;j/J and R. = S RiJI = (I+1)/2. The

statistic (4.30) is just the usual row sum of squares computed for the

Q= Z(R. R.)?,

(4.30)

ranks with the proper scale factor in the denominator for it to have
a limiting x2 distribution with 7 — 1 df as the number of columns
tends to infinity. Tables of the cdf of Q with the small sample sizes
J=2(1)13for I=3,J =2(1)8for | = 4,and J =3,4,5 for [ =5
appear in Hollander and Wolfe (1973, Table A.15). Tables for I = 3,
J = 2(1)15 and I = 4, J = 2(1)8 have been given by Owen (1962)
and Lehmann (1975).

When ties are present average ranks can be used. If ties occur
excessively, the denominator of @ can be modified to account for this.
For an exact expression see Hollander and Wolfe (1973, p. 140).

It is possible to make multiple comparisons based on (Ry.,- -,
R;.). For details see Miller (1981, pp. 172-178) or Hollander and
Wolfe (1973, pp. 151-154).

For testing against ordered alternatives Page (1963) proposed
the statistic L = E.’-zl i R;., where stochastically larger variables are
assumed to correspond to increasing s. The mean and variance of L
are I(I+1)*/4 and (I - 1)I*(I + 1)2/144J, respectively.

When n;j =n=1 and no interactions are present, rank tests
other than Friedman’s test are also available. Some of these are based
on the (2'_,) signed-rank statistics for comparing treatments s and v,
§,# =1,---, I, where the pairing is provided by the columns (see, for
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example, Hollander and Wolfe, 1973,pp. 167-173). For references to
additional tests see Hollander and Wolfe (1973, Chapter 7).

If it is also important to test the null hypothesis of no main
effects for the other factor, one of the aforementioned tests can be
run with the roles of rows and columns being interchanged. One
drawback to rank tests in the two-way classification is that there is

no way to test both rows and columns in a single, unified analysis.

For a rank analysis when there are missing observations (i.e.,
ni; < 1), see Skillings and Mack (1981).

Analyses that utilize the within-block (column) rankings for all
observations when n;; > 1 exist but are more complicated. For de-
tails the reader is referred to Benard and van Elteren (1953), Noether
(1967, Section 7.6), and Brunden and Mohberg (1976). Since I have
never used these tests in practice, | cannot comment on their effec-

tiveness.

A different rank approach is the method of aligned ranks. This
was introduced by Hodges and Lehmann (1962) for the case of just
two treatments (i.e., /] = 2) and was extended to the full two-way
classification by Mehra and Sarangi (1967). The idea is to eliminate
the block (column) effects by “aligning” the blocks. Usually this
is accomplished by subtracting from each observation the median or
mean of the column for which it is a member. All N = E’,___l Z;-':l ni;
aligned observations are then combined and ranked. An appropriate
ANOVA-type statistic for the ranks is selected to measure the dif-
ferences between the average ranks for the rows (i.e., levels of Factor
A). The distribution of this statistic is considered under permuta-
tions of the observations within columns. Under some conditions
this statistic has an asymptotic x2 distribution with I — 1 df. As in
the preceding analyses, it is necessary to assume that no interactions
are present. Lehmann (1975, Section 6.3) gives a clear presentation
of the use of aligned ranks in the balanced case n;; =n = 1.
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Many other nonparametric tests exist beside those already men-
tioned, but they are rarely used in practice. Included among these
are sign tests and permutation tests. For the former see Miller (1981,
Section 4.2). With the latter, the significance of the observed F ra-
tio is evaluated with respect to its permutation distribution rather
than normal theory. Because the computation required to carry out
the analysis is excessive except for the smallest designs, permutation
tests are not used in practice for two-way classifications. However,
the moment calculations by Welch (1937) and Pitman (1938) under
the permutation distribution give credence to the robustness of the
F test (see Section 4.2.1).

Robust Estimation Robust methods have not really come to the
two-way classification so far. One paper using tests analogous to
M-estimators is Schrader and Hettmansperger (1980).

4.3. Unequal Variances.

4.3.1. Effect

The main article on the effects of unequal variances in the two-way
classification is Box (1954b), where just the model with no inter-
actions and a single observation per cell is considered. Basically,
the effects are not large unless the departure from homoscedastic-
ity is quite extreme. If the variances differ from row to row but
are constant over columns, then J Ef-:,im — §.)? is behaving as in
a balanced one-way classification (see Section 3.3.1), and for the F
test of the null hypothesis Hq : a; = 0, the actual P value is greater
than the nominally stated one (i.e., Pycryal > Fstated) Put not by
much. For the test of no column effects Hy : #; = 0, the reverse is

true (P, tual < Patated) Put again not by much.
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4.3.2. Detection

When there is just a single observation per cell (i.e., n;; = 1), there
is little that can be done to detect unequal variances. If the ob-
served values bounce around more in some rows than others, one
might interpret this as unequal variances, particularly if the vari-
ability appears to be greater for larger (positive) effects. However, it
is impossible to distinguish heteroscedasticity from interactions.

When n;; > 1 for each of the cells, then it is possible to com-

2
]
3.3 become available. In particular, plotting a?j vs. #;;. will reveal

pute an error variance s7; in each cell, and the methods of Section
whether there is any change in the variance due to increasing size of
the variable. At no time would I consider running a formal test on
the equality of the cell variances (see Chapter 7).

4.3.3. Correction

One could apply a transformation to the data to try to stabilize the
variances. An appropriate transformation might be suggested by
the plot of s?j vs. §;;. in designs where n;; > 1 (see Section 3.3.3).
Howver, there is the danger that transforming the data may destroy
an additive model and create interactions. The best of all worlds is
to find a transformation that creates normality, stabilizes variances,
and eliminates interactions.

The nonparametric tests mentioned in Section 4.2.3, “Nonpara-
metric Techniques,” such as Friedman’s rank test, should be even less
sensitive to heterogenous variances than the F tests, but no research
has been done on this to date.

4.4. Dependence.

In designs with multiple observations per cell dependence within cells
could be created by the presence of an unaccounted for extra nui-
sance factor that forms blocks of observations. Observations group-
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ing themselves into clusters is an indication of the existence of such
a variable. The remedy for this ailment is relatively straightforward
_ use a higher-way (e.g., three-way) classification for the analysis.

The problem of serial correlation, created for example by ob-
servations being taken in a time sequence, is far more serious in its
implications and is far more difficult to detect and correct. The
principal paper on the effects of serial correlation in the two-way
classification is Box (1954b). See also Andersen et al. (1981).

The case of no interactions and a single observation per cell
with a first order serial correlation between rows within columns is
studied by Box (1954b). Specifically, suppose that Cor(y;, ¥i+1 J)
= p; for all 4, j, and all other correlations are zero. With this
probability structure, the F test of Hp : a; =0 is not at all seriously
affected. Thus treatment comparisons are not substantially affected
by serial correlation between the treatment measurements within a
block (i.e., column). On the other hand, the F test of Hy: ;=0
is drastically affected with Py iual ® Pstated for /1 >0 and the
reverse for p; < 0. Thus serial correlations among the mesurements
on each treatment can destroy the validity of treatment comparisons.

If, for example, the time sequence in which the observations
are taken is known, one can plot the successive time pairs and see
if any association is discernible. The presence of row (or column)
effects may, however, obscure the appearance of the time association.
Unfortunately, even if detected, there is no known correction for a

serial effect.

In repeated measurements designs a replicate within row 1 for
Factor A is a subject who receives all levels (i.e., columns) of Factor
B. Use of the same subject for different levels of Factor B produces a
correlational structure between columns that is usually assumed to
be of a special form. Some of the relevant literature on the analysis of
repeated measurements is Geisser and Greenhouse (1958) and Huynh
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and Feldt (1970, 1980). For a study of general correlations in a two-
way design with n replicates per cell see Olkin and Vaeth (1981) and
Walters and Rowell (1982).

MIXED EFFECTS

Although it is more customary to discuss the random effects
model before the mixed effects model, the order is reversed here
because the goals of a mixed effects analysis are so similar to those of
fixed effects. Main interest centers on testing the equality of different
levels of the fixed effects factor (e.g., Factor A) because these are
different treatments, products, etc. The other factor (e.g., Factor
B) is a nuisance factor, such as days, subjects, and plots of ground,
whose levels are viewed as random because they are representatives
of a potentially larger group. Testing and estimation of the levels for
the random effects factor are not of prime importance.

4.5. Normal Theory.

The model is

Yijk = B+ a; + bj + ab;; + eiji, (4.31)
fors=1,---,I,5=1,---,J, k= 1,---,n;;. The fixed effects {a;}
are assumed to satisfy the constraint E.!_-.] a; = 0 for identifiability.
The distributional assumptions are

b; independent N(O, o}),
¢ijx independent N (O, 0?), (4.32)
{b;} independent of {e;;s}.
What about assumptions on the interactions {ab;;}? Histori-

cally, there was a controversy over the choice of proper conditions. In
the original version of his textbook, Mood (1950) assumed that the
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ab;; are distributed as N(0,0%,), independently of each other and
the ¢;;x. On the other hand, R. L. Anderson and Bancroft (1952) in
their textbook assumed normality and independence from the ¢;;s,
but they aisd imposed the tonstraint T, ub;; = for each 5. This
creates dependence between the ab;; within each ) fevel. The ra-
tionale for the constraint had its roots in the fixed effects structure.
The consequence of the difference in assumptions is that one is led
to different denominator sums of squares in testing for the presence
of Factor B main effects (i.e., Hp : af = 0).

This issue was more or less resolved by the publication of an
article by Cornfield and Tukey (1956). In this article they derived
the expected mean squares under sampling from a finite population
model. Their results agreed in form with Anderson and Bancroft so
imposition of the constraint is usually accepted to be appropriate.
Searle (1971, Section 9.7) discusses both models.

Scheffé (1959) has the most general model in which he assumes
only that the vectors (b,-,ab,,-,---,ab,,-), j=1,---,J, are indepen-
dent multivariate normal random vectors that satisfy E,Ll ab;j =0
for each j. This allows aby;,- -, abs; to be dependent on b;. Gray-
bill (1961), on the other hand, assumes that the interactions ab;;,
§ = 1,---,I are independent of the main block effect b;. With the
assumption that the ab;; are identically distributed, this gives the

covariance structure

Var(ab;;) =(l = %)026,
¥ (4.33)
Cov(ab;j, aby;) = —}a?,,, fors # ¢'.

There are only inconsequential differences in the distribution theory
for the sums of squares between the Scheflé and Graybill models so
the Graybill model is adopted here for its simplicity.

For a balanced design (i.e., n;; = n) the ANOVA Table 4.1

|
—
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is retained in the mixed effects analysis of variance. The central
question is what is the distribution theory for its entries. The answer

nlJp?
2+ nlo?

nJ Z,_l a? )

02 + no? 2y

18

SS(M) ~ (02 + nlo?)x? (
SS(A) ~ (oF + no?y)x}_, (
SS(B) ~ (02 + nlo?)x3_,,

SS(AB) ~ (02 + RO )X {1-1)(7-1)»

SS(E) ~ 07X 5(n-1)>
and the five sums of squares are independent.

(4.34)

The null hypotheses of no interactions and no Factor B (column)
effects are now stated in terms of variance components, namely, Hy :
02, =0 and Hy : 0 = 0, respectively. For these two hypotheses one
uses the same F ratios as in the fixed effects case, namely,

_ MS(AB) _ MS(B)
. respectively. The only difference from the fixed effects case is in the
calculation of power. Under the alternative hypotheses
MS(AB mw2
) 7\25% (1 + “a—h) Fu-nya-115(n-1)s
i (4.36)

' MS(B) nlo
MS(E) (1+ cb)FJ—x,u(n-n),

where the F distributions are central F distributions with their re-
spective df, whereas for fixed effects these rations would have non-
central F distributions and no multiplicative factors.

For testing the null hypothesis H, : a; = 0 of no Factor A
(row) efects, the test statistic is different from the fixed effects ratio
MS(A)/MS(E). Because of the multiplicative factor 02+ no?, in the
distribution of SS(A) [see (4.34)], it is necessary to divide by a sum

- -
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of squares with the same factor. The distribution of the interacation
sum of squares SS(AB) has this factor so the ratio

MS(4)

F=3is048)

(4.37)
is the appropriate statistic. Under Hp the ratio (4.37) has a cen-
tral F distribution with I — 1, (I = 1){J — 1) df for numerator and
denominator, respectively, and under the alternative hypothesis it
has a noncentral F distribution with the noncentrality parameter
nJ Y1, a2/(0? + nol)).

If one feels rather sure that no interactions are present (i.e.,
02, = 0), then it is possible to use the fixed effects ratio MS(A)/
MS(E) for testing Hp : a; = 0. This usually provides more degrees
of freedom for the denominator. One could even pool the SS(AB)
and SS(E) if degrees of freedom are scarce. To do this I would
need to have MS(AB) nearly equal to MS(E) and not merely have
nonsignificance for MS(AB)/MS(E).

Under Scheffé’s more general model for the block (column) and
interaction effects, the distribution theory of SS(A) and SS(AB) is
more complicted. Their ratio does not have an F distribution. The
only way to obtain an exact test of Hp : a; = 0 is to convert the prob-
lem into one in multivariate analysis, and this leads to Hotelling’s T2
test (see Scheffé, 1959, pp. 270-274). However, Scheffé eschews this
procedure and suggests the use of the ratio (4.37) as an approximate
test under his model.

The preceding analysis of the mixed effects model has been
based on the assumption of a balanced design. What if the n;; are
not all equal? For mild imbalance I would recommend using the ap-
proximate ANOVA presented in Table 4.2,with n* given by (4.12),
in conjunction with the preceding analysis for a mixed model. If you
asked me what to do for badly unbalanced designs with random block

|
_—
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and interaction effects present, I would probably shrug my shoulders
and say “I don’t know” or “Use a fixed effects analysis.” Searle (1971,
Chapters 10 and 11) struggles with this problem but has no simple
solution.

The design with n;; = n = 1 causes less of a dilemma for the
mixed effects model than it does for the fixed effects model. With
mixed effects the interaction mean squares MS(AB) is the appro-
priate denominator in the F ratio for testing the primary null hy-
pothesis Hy : a; = 0, whereas with fixed effects it was a substitute
for the unavailable MS(E). With fixed effects the use of MS(AB)
in the denominator was questionable, but for mixed effects it is the
denominator we want.

A single missing value in an otherwise balanced design with
n =1 could still be estimated by (4.18).

For maximum likelithood estimation in the mixed model see Sza-
trowski and Miller (1980) and the references contained therein.

Multiple comparisons among the a; can be handled as well un-
der the mixed effects model. The only difference from fixed effects is
that MS(AB) is used as the estimate of o%. In particular, the Tukey
intervals for a balanced design are

- Ms(AB)\'/?
a; — ay € §i.. — Pir. £ qf (1_1y(s-1) (——ni‘,——)) , (4.38)

where q‘,’ (I-1)(J-1) is the upper 100« percentile of a studentized range
distribution for I variables with (I — 1)(J — 1) df. For a mildly
unbalanced design the approximate MS(AB) from Table 4.2 can be
used in (4.38) with the harmonic mean n*® of (4.12) substituted for n
and ¢}, for §;.. . The probability coverage 1 ~ a for all the intervals
(4.38) with s # ¢ will deteriorate as the imbalance increases when
the harmonic mean n® is used (see Dunnett, 1980a).

For just a single confidence interval (4.38) can be calculated
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with t(/ NU- 1)\/§ in place of q, (1=1)(J—1)" For a limited number K

of comparisons the Bonferroni intervals, which utilize t(,/ 1)(J- 1)‘/_
instead of q,’(,_l)(_,_l), are available. For K < ( ) these intervals
can be shorter than the Tukey intervals.

Simultaneous confidence intervals are alse available for more
general contrasts. The Scheffé or Tukey intervals ji.e., (3.14) or
(3.15), respectively] can be computed with MS(AB) for 62, nJ for
n, and (I — 1)(J — 1) for the df.

For monotone alternatives the linear contrast methods of Sec-
tions 3.1.3 and 4.1.3 can be applied to the balanced, or approximately
balanced, mixed model. The only difference from these earlier sec-
tions is that the variance estimate of o, ¢;§;.. is MS(AB) i e
nJ for balanced designs. For mildly unbalanced designs the variance
of 37, ¢;g}. is estimated by MS(AB) L, ¢2/n"J where MS(AB)
and n* are given by Table 4.2 and (4.12), respectively.

Although attention usually centers on the fixed effects in a
mixed model, estimating the variance components o} and 02, may
also be of interest in some circumstances. The method of moments

estimatcrs
52 = M5(B) Ing(f::)
n
., MS(AB) - MS(E) (4.39)
Oab = n ’

with n® in place of n for nearly balanced designs, are reminiscent
of Section 3.5.1 and are forerunners of Section 4.7. Normal theory
methods, in particular the method of Satterthwaite (1946), could be
applied to produce confidence intervals for o7 and 0Z,, but these are
not especially recommended because of their sensitivity to normality.
The jackknife method (see Section 3.6.3) should provide more robust
results. To apply the jackknife one would successively delete each of
the Factor B levels (columns).

<
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4.6. Departures from Assumptions.

Virtually nothing has been published on the effects of various depar-
tures from the underlying assumptions for the mixed effects model.
What we are to believe must be inferred from the known results on
fixed effects and random effects models.

For nonnormal e;j;, ab;;, and b; the effects on tests about the
a; should be minimal for balanced, or nearly balanced, designs. The
block effects are eliminated, and the introduction of the random in-
teractions does not change the character of the tests that much from
the fixed effects case.

If appreciable nonnormality is present, there is not much that
can be done about it. Perhaps a transformation will improve the
analysis. The common rank tests require that no interactions be
present. If this is the case, then the nonparametric tests described for
fixed effects can be applied. For details on these corrective procedures
the reader should consult Section 4.2.3.

The situation is different for the effects of nonnormality on tests

and confidence intervals for 02, o2

, and o?. Here the analysis can
ab b y

be led into catastrophic errors. Escape is through more robust pro-
cedures such as the jackknife. For details see Sections 3.6, 4.8, and
Chapter 7.

What about unequal variances? This could occur either in the
eij, abyj, or b; variables. For tests on a; the effect of different o?
and 02, on the analysis should be very similar to the fixed effects
case with a single observation per cell studied by Box (1954b) since
the interaction sum of squares is used in the denominator of the F
statistic. The effects of different 03 on testing Hy : ”Zb = 0 and
Hp : o} = 0 should be similar to the one-way classification (see
Sections 3.3 and 3.7) since MS(E) is used in the denominators of the
associated F statistics.
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For substantially unequal variances about the only hope of cor-
rection is to find a transformation that stabilizes the variances and
does not destroy the model (see Section 3.3.3).

No particularly insightful comments can be made on dependence
within the ¢;;, ab;;, and b; in the mixed effects model. The reader
may wish to read, or reread, the discussion in Section 4.4.

RANDOM EFFECTS
4.7. Normal Theory.

The random effects model is not fraught with questions about as-
sumptions as is the mixed effects model. Very simply, it is

Yijk = B+ a; + b; + abj; + eji, (4.40)

fori=1,--,I, 3 =1,---,J, k = 1,---,ny;, where the random
components are distributed as

a; independent N(0,0?2),
b; independent N(0,0f), (4.41)
ab;; independent N(0, o2s)s '

¢i;x independent N(0,02),

with independence between the different lettered variables.

Concerns have been expressed over the reasonableness of as-
suming that the interaction term ab;; is tossed into the model in-
dependently of a; and b;. However, uncorrelatedness, which with
normality becomes independence, does seem to emerge from finite
sampling models that define the interaction to be a function of the
main A and B effects. For details the reader is referred to Scheffé
(1959, Section 7.4) and Cornfield and Tukey (1956).

—
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The problem usually of interest is to estimate the components
of variance 02, 0}, 0%,, and 2. However, on some rare occasions es-
timates of the individual components a;, b;, and ab;; may be desired.
These two problems are treated in the order cited.

The model (4.40) is referred to as a cross-classification model.
A slightly different and equally important model is the nested model.
For this latter model see (4.44) and the related discussion.

4.7.1. Estimation of Variance Components

The standard method of moments estimators for a balanced design
(i.e., n;j = n) are based on the expected mean squares for the sums
of square appering in Table 4.1. These expectations are

E[MS(A)] = 02 + noZ, + nJo?,

E|MS(B)] = 0% + no?, + nlof,

4.42
E[MS(AB)] = 0? + no?,, (4.42)
E[MS(E)] = o2,
<0 the associated estimators are
52 = MS(A) - MS(AB) '
nJ
poR MS(B) g MS(AB)
b nl ; (4.43)
a2 MS(AB) — MS(E)
Ogp = '
n
6 = MS(E).

The credentials of the estimators (4.43) are that they are uni-
form minimum variance unbiased estimators (UMVUE) under nor-
mal theory, and uniform minimum variance quadratic unbiased es-
timators (UMVQUE) in general; see Searle (1971, pp. 405-406) for
additional discussion and references. They do, however, suffer the

embarrassment of sometimes being negative, except for . which is

...
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always positive. The actual maximum likelihood estimators would
occur on a boundary rather than being negative (see Herbach, 1959).
Personally, I would always adjust an estimate to zero rather than re-

port a negative value.

It should certainly be possible to construct improved estima-
tors along the lines of the Klotz-Milton-Zacks [see (3.55)] estimators
used in the one-way classification. However, the details on these
estimators have not been worked out by anyone for the two-way

classification.

Similarly, it should be possible to construct formal Bayes esti-
mators, but the details have not been worked out for the two-way
classification. For discussion and references on Bayes estimators in
the one-way classification see Klotz, Milton, and Zacks (1969), Port-
noy (1971), and Searle (1971, p. 408).

See C. R. Rao (1970, 1971, 1972) for MINQUE estimation.

LaMotte (1973), Pukelsheim (1981), and others have investi-
gated nonnegative unbiased variance component estimators.

An approximately balanced design can be handled by the pre-
ceding approach with the Table 4.2 approximate ANOVA replacing
Table 4.1. On the other hand, extremely unbalanced designs are a
horror story. A number of different methods have been proposed
for handling them, but all involve extensive algebraic manipulations.
The technical detail required to carry out these analyses exceeds the
limitations set for this book so the reader is referred to the best ex-
position of this area, namely, Searle (1971, Chapters 10 and 11). I
have not had any experience with the different methods discussed by
Searle so I cannot recommend any one over another.

On occasion Factors A and B are such that it makes no sense
to postulate the existence of interactions so the terms ab;; should be
dropped from (4.40). In this case o2, disappears from (4.42), and
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the estimators for 02 and o} in (4.43) can use MS(E) in place of
MS(AB). Alternatively, one can add SS(AB) and SS(E) and divide
by IJ(n—1) + (I — 1)(J — 1) to form a combined estimate of o2.
This combined estimate can then be substituted for MS(AB) in the
expressions for 67 and 67 in (4.43).

Another variation on the model (4.40) gives rise to the nested
model. In my experience the nested model for components of vari-
ance problems occurs more frequently in practice than does the cross-
classification model. In the nested model the main effects for one
factor, say, B, are missing in (4.40). The reason is that the entities
creating the different levels of Factor B are not the same for different
levels of Factor A. For example, the levels (subscript 5) of Factor A
might represent different litters, and the levels (subscript j) of Factor
B might be different animals, which are a different set for each litter.
The additional subscript ¥ might denote repeated measurements on
each animal.

To be specific, the formal model for the nested design is
Yije = p+a; + b;j + e, (4.44)

with
a; independent N(0,02),
b;; independent N(0,0%), (4.45)
eiji independent N(0,0?),
and independence between the different lettered variables. It is cus-
tomary with this model to use the symbol b rather than ab because

the interpretation for this term has changed from synergism or in-
teraction to one of a main effect nested inside another main effect.

For a balanced design the method of moments estimators are
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based on the sums of squares

I
SS(A) =nd Y (5 - 9-)%,
=1

[ )
SS(B)=n)Y_ Y (5 — #:-) (4.46)
=1 j=1
I l.: K
SS(E) = Y_ 33 (wijn = #:5:)%,
=1 j=1 k=1

which have degrees of freedom I—1, I(J —1), and IJ(n 1), respec-
tively. The mean squares corresponding to (4.46) have the expecta-

tions
E(MS(A)) = 02 + no} + nJo?,

E(MS(B)) = o? + no}, (4.47)
E(MS(E)) = o?,

so the estimators are

5% = - (MS(A) - MS(B)),

nJ
5% = L(M3(B) - MS(E)), (4.48)
6% = MS(E)

The increasing tier phenomenon exhibited in (4.47) holds for
nested designs with more than two effects. The only complication
arises when one or more of the estimates are negative. This is an
indication that the corresponding variance components are zero or
negligible. One might want to reset any negative estimates to zero,
combine the adjacent sums of squares, and subtract the combined
mean squares from the mean squares higher in the tier.

Extension of these ideas to the unbalanced design does not rep-
resent as formidable a task for the nested design as it does for the
crossed design. The details for the case of two factors are given explic-
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itly in Graybill (1961, pp. 354-359) and Searle (1971, pp. 475-476).
The sums of squares (4.46), appropriately modified for unbalanced
designs, form the basis for the analysis. It is even possible to allow
for varying numbers J; of levels of Factor B for different levels of
Factor A.

4.7.2. Tests for Variance Components

Under normal theory the distributions of the sums of squares ap-
pearing in Table 4.1 are rather easy to derive and describe:

SS(M) ~ (0% + no%, + nlo? + nJo?)

nlJy?
X1 (02 + no?, +nlo} + nJaz)
SS(A) ~ (0% + no%y + nJol)xi1, (4.49)
SS(B) ~ (o? + no, + nlof)x5_y,
SS(AB) ~ (62 + no )X {r-1)(-1)"
SS(E) ~ 0%x7s(n-1):

and all five sums of squares are independent.

To test the hypothesis Ho : 0%, = 0, one uses the F' ratio
MS(AB)/MS(E). To test Ho : 02 = 0, one usually uses the F
ratio MS(A)/MS(AB), unless a decision has been made to combine
SS(AB) and SS(E) in the denominator because 02, is believed to be

zero. An analogous F statistic provides a test for Ho : o} =0. Under

the alternative nonnull hypotheses, these ratios are distributed as the
appropriate ratios of multiplicative constants from (4.49) times cen-
tral F random variables. (For details see Secton 3.5.2.) Thus power
calculations are made from central F tables in contrast to noncentral
F tables for fixed effects models.

The F tests of Hp : 02, = 0 and Hp : 0% = 0 mentioned in
the preceding paragraph are uniformly most powerful similar tests.
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However, they are not likelihood ratio tests, which are more compli-
cated because of boundaries to the parameter space. For details and
proofs of these assertions the reader is referred tc Herbach (1959)
and Gautschi (1959).

Although their general use is not recommended because of their
extreme sensitivity to nonnormality (see Section 4.8), confidence in-
tervals can be constructed based on the distribution theory (4.49).
For o a confidence interval can be derived from SS(E)(02 ~
x"; I(n=1)" Simlarly, confidence intervals on ratios of particular com-
binations of variance components can be obtained by taking the ap-
propriate ratios of mean sums of squares from (4.49) as, for example,

J"IS(A) Uf 5 o naib

MS(AB) ~ o2 4 noZ, + nio? ~ Froy,(r-1)(-1)- (4.50)
However, the problem of calculating confidence intervals for 036, 6;‘;,
and o2 separately is far more difficult. The complicated method of
Bulmer (1957), which is described in Scheffé (1959, pp. 231-235), is
available. However, the approximate method of Satterthwaite (1946)
may produce just as good results. The idea behind this method was

described in Sections 2.3.3, “Other Tests,” and 3.5.2, and it easily
extends to the two-way classification.

The nearly balanced design can be handled by the usual dodge
of inserting n® for n (see Table 4.2), but tests and confidence intervals
for poorly balanced designs constitute a wasteland.

The distribution theory for the sums of squares (4.46) used in
conjunction with nested designs is straightforward and simple:

SS(A) ~ (02 + no} + nla?)xi_,,

SS(B) ~ (0% + no})xF(s-1)» (4.51)
SS(E) ~ 02x3 s(n=1)»

and all three sums of squares are independent.
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To test the hypothesis Hy : 02 = 0 one uses the F ratio MS(B)/
MS(E), and to test Hp : 07 = 0 the appropriate ratio is MS(A)/
MS(B). In all nested designs the higher line in the tier is always
tested against the next lower line. If a conclusion is reached that
of = 0, then the test of Hy : 02 = 0 could be improved by combin-
ing SS(B) and SS(E) to form a denominator sum of squares with
I(J = 1)+ IJ(n — 1) degrees of freedom. Under alternative hypothe-
ses these F ratios are distributed as central F ratios multiplied by
the appropriate ratio of variances. This can be exploited to pro-
duce confidence intervals on some variance ratios. However, one still
needs to rely on the approximate Satterthwaite (1946) approach for
constructing intervals on individual components (see Sections 2.3.3,
“Other Tests,” and 3.5.2).

4.7.3. Estimation of Individual Effects and Overall
Mean

For the two-way crossed classification with random effects interest
almost always is focused on estimating and testing 02, 02, 07, and
o2. However, it is not inconceivable that in some cases there might
be interest as well, or instead, in estimating the cell means p;; =
p+a;+ b,‘ + ab,-,-.

The classical approach would be to use the estimates ji;; = ;. .
However, viewed as a collection of estimates, one could do better (in
terms of mean squared error) through the James-Stein (1961) and
Lindley (1962) approach. The idea would be to shrink the individual
estimates toward the common mean as in

i = 9+ (1= S)(gsj. — 9-), (4.52)

where the shrinking factor S depends on the sums of squares SS(E),
SS(AB), SS(B), and SS(A). Unfortunately, the specific details on
the construction of an appropriate S have not been worked out for the
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two-way classification as they have been for the one-way cassification
(see Section 3.5.3).

Alternatively, attention might center on estimating ay,---,dy,
or, equivalently, on the levels of Factor B. Again, specific estimators
have not been proposed to date for handling this situation.

In the nested design one sometimes wants an estimate and con-
fidence interval for p. One typically uses i = §.. . In the balanced

case this estimator has variance

o o}  o?
m + I—j + 7 (4.53)

This can be estimated by MS(A)/IJn. In the unbalanced case an
estimate for the variability of §.. can be obtained by substituting

estimates 62, 62, and 42 into the expression for the variance of §... .

Alternative estimators using different weights may be worth consid-

ering in the unbalanced case. For a pertinent discussion see Section
3.5.4.

4.8. Departures from Assumptions.

The effects of nonnormality in any of the sets of underlying random
variables {e;;x}, {abi;}, {b;}, {a:} can be devastating to the distri-
bution theory for the sums of squares involving them. The kurtoses
of these variables have a substantial impact on the variances of the
sums of squares. Confidence intervals, even those based on Satterth-
waite’s approximation, are not to be trusted. Tests on o? are also
very semsitive to nonnormality. The exceptions to this general non-
robustness are the variance ratio tests for the presence of a variance

component, such as

MS(A) <

MS(AB) > Fig-nu- (4.54)

for Hp : 02 = 0. The denominator is converging by the law of large
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numbers to the correct normalizing constant under the null hypoth-
esis. Also, under the null hypothesis, the variables corresponding
to the component being tested are not present and the averaging
over the other variables in the various row, column, and cell means
dampens the effects of the kurtoses in the numerator. The larger the
design, the better off one is in this regard.

For a fuller discussion of the effects of nonnormality on the
distribution of variance estimates see Section 7.2.

Detection of nonnormality in anything but the e;;x is usually
hopeless. The reason is that, unless I and/or J are awfully large,
there are just too few a; = §.. — §..., l;,' = ¢ —§.,or ;b,-j =
Gij. — ¥i-. — §.;. + §... to infer anything. In addition, a; and 5,‘ contain
mixtures of the interactions ab;; so that an uncontaminated view of a;
and b; is impossible. There may be enough residuals r;;; = yijx — ;.
to spot nonnormality in e;jx through a combined probit plot (see
Section 4.2.2).

There are no outstanding suggestions for how to cope with non-
normality in the random effects two-way classification. Possibly, a
fortuitious transformation could be uncovered. For balanced designs
application of the jackknife may be feasible (see Section 3.6.3).

So little is known about the effects of unequal variances and
dependence on the random effects analysis in the two-way classifi-
cation that no discussion is possible. Techniques for detection and
correction of these assumption failures are nonexistent, except for
what can be carried over from simpler designs.

Exercises.

1. Verify the expectations in (4.9) for the two-way crossed fixed
effects model.
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Chapter §: TWO-WAY CLASSIFICATION

Verify the distribution theory for SS(A) and SS(E) stated in
(4.8) for the two-way crossed fixed effects model.

For a balanced two-way classification with n = 1, prove that
Tukey’s SS for nonaddivitity

2

[Z‘— Tie GifiaBy;
22;:1 )

is distributed as 0?x? under Hp : afi; =0

S5 =

Hint: Condition on {é&;} and {3;}. Use the independence of
{0/;9.','} from {&;} and {4;}.

For a two-way crossed mixed model with [ (fixed) rows, J (ran-
dom) columns, and n replictions per cell, show that

n" E|=l 0

E(MS(A)) = 0? + no2y + —= o1

For a two-way crossed mixed model with I (fixed) rows, J (ran-
dom) columns, and n replications per cell, show that under the
Graybill model (4.33)

02 + no?,

I a2
SS(A) ~ (02 + no?y)x2_, (Q';‘f—) :

Hint: Show that {g;. — #...} has the same covariance structure as
{2z; — 2}, where the z;,s =1,---I, are independently, normally
distributed with equal variances.

For a two-way nested mixed model, i.e.,
vijk = p+ ai + bij + eiji,

withs=1,--,I,9=1,---,J, k=1,---,n>1, Ef=10i=0,

L

il X
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and

b;; independent N(O, o}),
eij¢ independent N(O, o),
{b;;} and {e;;s} independent,

construct atest of Ho:a; =0,s=1,---, I, vs. H; : a; #0.

Note: {a;} might be different treatment effects, {;;} might be
subject effects with different subjects for each treatment, and
{ei;x} might be repeated measurements on each subject.

. Verify the expectations in (4.47) for the two-way nested random
effects model.

. Verify the distribution theory stated in (4.51) for the two-way
nested random effects model.

. In a study of platelet production, 40 rats were equally sepa-
rated into altitude chambers, the experimental group at 15,000
ft. and the control group at sea level. Half of the rats were
splenectomized (i.e., spleen removed), and the other half were
nonsplenectomized. Various blood parameters were measured
over a succession of days.* The fibrinogen levels (in mg%) on
day 21 are reported in the table. Some data are missing.

Determine if there are significant effects due to altitude and
splenectomy.

Rand, K. H., Anderson, T., Lukis, G. A., and Creger, W. P. (1970). Effect
of hypoxia on platelet level in the rat. Clinical Research, 18, 178 (abstract).

-
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Splenectomy
Yes No

Altitude 528 434
444 331

338 312

342 8§75

338 472

331 444

288 575

319 384

Control 294 272
254 275

352 350

241 350

291 466

175 388

241 425

238 344

269 425

10. The ability of radiologists to visualize vascular structures has
progressed through the development of contrast agents and ra-
diographic imsaging technology. Using digital subtraction an-
giography with measurements frcm a modified CT scanner, a
Stanford study compared 6 contrast agents injected sequentially
into the arteries of dogs at 10 minute intervals. Although this
time interval was considered sufficient to eliminate any residual
effect from a previous injection, an extra period Latin square de-
sign with 6 dogs was used to permit statistical testing for resid-
ual effects as well as main effects. The design and the values for

the opacification index computed from photon absorption are
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displayed in the table.

A full analysis indicated no period and residual effects.* In your
analysis discard the data from the extra period and assume no
period effects. Test for differences in contrast agents (A, B, C,
D, E, F).

Dog

Period 1 2 3 4 5 6

1 A363 B259 C300 D407 E221 F 156
C349 D326 E236 F 286 A267 B 254
B212 C280 D309 E 427 F 227 A 234
E203 F245 A27 B291 C287 D319
F221 A265 B189 C413 D364 E 251
D272 E311 F238 A442 B262 C225
D368 E321 F27 A422 B263 C257

-3 O v e W N

11. For the data in Exercise 11 of Chapter 3 allow for a nursing
pair effect, and estimate by the method of moments its variance
compornent in addition to the components for experiments and

error.

* Burbank, F. H., Brody, W. R, Hall, A., and Keyes, G. (1982). A quanti-
tative in vivo comparison of six contrast agents by digital subtraction an-
giography. Investigative Radiology, 17, 610-616. For technical details on
the ANOVA for extra period Latin square designs see Lucas, H. L. (1957),
Extra-period Latin-square change-over design, Journal of Dairy Science, 40,
225-239, or Cochran, W. G. and Cox, G. M. (1957), Experimental Designs,
Second Edition, Wiley, New York, Sec. 4.65a (pp. 139-141).




Chapter 5

REGRESSION

With each value of the variable y there may be associated the value
of another variable z. Both variables may be of equal stature and
interest, and the statistical problem is to investigate the relationship
between them. In other instances, the variable z may be a baseline
value against which the value of the primary variable y should be
compared, or z may be an explanatory variable whose effect on the
primary variable y should be adjusted for or standardized. The ap-
propriate analyses for these situations are the topics of this chapter
and the next.

A common statistical problem involves repeated measurements
under different conditions. For example, z might be the pretreat-
ment value for a patient and y the posttreatment value. Similar
paired settings include studies of twins or measurements on the two
arms (or legs) of each subject, where the two twins or extremities
receive different treatments. In Chapter 1 it was suggested that the
comparison between z and y be handled as a one sample problem by
computing the difference y — z for each pair. This is typically the
appropriate approach, but it does assume that, except for random
error, the z and y values lie on a line with slope 1 whose intercept is
the average difference between the variables. This underlying model
is displayed in Figure 5.1.

Another situation, somewhat less commonly encountered, is
where the z and y values follow a ray emanating from the origin



Chapter 5: REGRESSION 185

y=QA+x

=
X

Figure 5.1

as in Figure 5.2. In the difference model of Figure 5.1, z and y are
related by y = A + z, where A is constant except for random vari-
ation, but in the model for Figure 5.2, y = pz, where p is constant
except for rardomness in the data.

s

y=px

=)

Figure §.2
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v A

y=a+Bx

Y

Figure 6.3

The ratio or multiplicative model y = pz can be handled in one
of the following ways. The first possibility is to take logarithms of z
and y and use the methods of Chapter 1. This is appropriate if the
errors look normal and homoscedastic after the log transformation.
A second possibility is to use ratios, taken singly as y;/z; and then
averaged or as the ratio of averages §/z. This is the subject of Chap-
ter 6. The third possibility is to treat the analysis as a regression
problem in which the intercept is known to be zero. This approach

is considered in this chapter.

Figure 5.3 illustrates the most general linear relationship be-
tween z and y, namely y = a + fz. Estimation and testing of the
intercept a and the slope 8 lie in the domain of regression analysis,
which is the topic of this chapter. Because of the increase in com-
plexity of the analysis, it is the least preferable method for handling
paired values, but at times it is unavoidable. Although the differ-
ence model y = A + z is often appropriate for such measurements as
post vs. pre, and left vs. right, it is more typical for the full model
y = a + Az to be required when z is an explanatory variable such

as age or weight, and not the same measurement as y at a different
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time, site, etc.

In regression analysis, given the value of z, the variable y is
assumed to fluctuate randomly about the central value a + Az. The
distribution theory of the estimates and tests takes the z values to
be fixed. If, in fact, the z values are themselves random variables,
the same analysis pertains, but it is now a conditonal analysis, con-
ditioned on the observed values of the z variable.

If, in addition to inherent variability, the y variable is measured
with inaccuracy, there is still no change in the analysis. The un-
explained variability about the regression line simply has another
component added to it. However if the z variable is measured with
nontrivial error, the standard analysis should not be used because
it leads to biased estimates. For this reason this chapter is divided
into two parts. The first describes the standard regression model and
analysis, and the second is devoted to the errors-in-variables model,
which is a term often used for the situation where the z variable

contains measurement error.

This chapter considers only the case of a single variable z lin-
early related to y. Polynomial regression and regression with more
than one predictor variable are all topics in multiple regression, which
is beyond the intended scope of this book. There are many excellent
books on multiple regression, and I especially recommend Draper
and Smith (1981).

v

HMN IV DO 1~ a ~
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REGRESSION MODEL
5.1. Normal Linear Model.
5.1.1. One Sample: General Intercept
The standard model assumes that the observations y;, - - - y» satisfy
yi = a+ fz; + e, (5.1)

where the ¢; are independently distributed as N(0,0%). Although
(5.1) is stated simply in terms of the observed z; and y;, the inves-
tigator usually has in mind that, given an z value, the variable y is
normally distributed with

E(y|z)=p(z)=a+ fz (5.2)

and
Var(y | z) = 0%(z) = 0>. (5.3)

The parameter a is the intercept on the y-axis when z = 0, and 8
is the siope of the regression line (5.2). The linear relationship (5.2)
is assumed to hold over a range of z values, but this range may be
limited. Assumption (5.3) requires the variance to be constant over

this range.

No assumption has been stated about zy,:--,z,. They can be
fixed values such as dosage levels in a bioassay or selected consecutive
time points. At other times the z; value may be whatever comes
along with y;. Examples of this are the age and weight of the subject
or the ambient temperature at the time of measurement. In this
latter context where the z; may themselves be random, they are
nonetheless thought of as being fixed in the analysis. The distribution
theory is conditioned on the observed values of z; therefore, the
resulting tests and confidence intervals are conditional ones.
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In regression analysis with explanatory variables, the variable y
is often referred to as the dependent variable and the variable z as the
independent variable. This can be confusing to the novice because of
the independence assumption on the y;. Alternative terminology is
to refer to y as the response variable and z as the predictor variable.

When z is a baseline or other explanatory variable, the usual
statistical problem is to estimate a and 3. Sometimes one also wants
to test whether the intercept and slope equal certain preconceived
values, such as 0 for a and 1 for 4. Since the (conditional) mean of
y depends on z, the problem on occasion is to estimate the mean of
y at a standardized value zo, i.e., p(z0) = a + fzo. This is called
the prediction problem, and the reverse of this is the calibration
problem. In calibration the problem is to estimate the value z, for
which p(zo) equals a specified value po (i.e., zo = (po — a)/B). This
type of problem occurs frequently in bioassay.

When neither variable is subordinate, the problem is to investi-
gate the relationship between z and y. If the investigator computes
the correlation coefficient r between z and y, he or she is examining
the extent of the linear relationship between z and y. In the case of
bivariate normally distributed variables, there are two nonidentical

linear regressions, namely,
E(y|z) =a+ 8z, (5.4)

and
E(z|y)=a'+8y. (5.5)

These lines are distinctly different as indicated in Figure 5.4. How-
ever, testing whether the correlation is zero is equivalent to testing
whether # = 0 and 8' = 0.

The least squares and maximum likelihood estimates of a and
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ik

1.
Figure 5.4
# are :
a=g- fpz,
j = Lim(%i— 2%~ ) (5.6)
I ?zl(zl' = 2)2 '

where the computational formulas

i:(x-' -2)(yi—9) = z“:zw.' - n2g,
=1

=
) - (5.7)
Z(z.- -2)2= Ezf - nz?,
=1 =1

may be used. The bias-corrected maximum likelihood estimator of

o? is*

* The maximum likelihood estimate of o has the denominator n rather than
o= 7, the latter denotinator makes the estimate unbiased.
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57 = 3 (vi- & - Bz,

n-—2 =1
| DO L 5 DU S D)
=1 =1
1 [y [(r, (2 — 2)(y: — 9))°
= n_2{§y?—nﬂ2— i1z — 2)? }

For bivariate normally distributed variables (z,y), the maxi-
mum likelihood estimate of the correlation coefficient p = Cov(z, y)
/SD(z)SD(y) is

S L (i — 2)(vi — 9)
(S o - 21 Ty (i - 971

where the formulas (5.7) may be used for computation. The estima-

(5.9)

tor r is called the product-moment correlation coefficient.

The estimators (&, /) have a bivariate normal distribution with
means (a, ) and variances-covariance given by

1 x?
Var(é) =o?| -+ s5———3 |
(é) (n '-"=1(:r.--5:)2)

Cov(a,B) = az(—TL); (5.10)

=1 (:L‘,' = 5)2

. 1
vt = ()

The variance estimator 6 is distributed independently of (&, 3) and
has a scaled x2 distribution with n — 2 df, i.e.,

(n —2)6?
RGN X?.-z- (5.11)
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If the model were recast as
Yy = a® + 8% (z; — z) + e, (5.12)

where 8* = # and a® = a + %, then the least squares and maximum
likelihood estimates

a*=g, P'=8 (5.13)

would be independently and normally distributed with means (a«*, 8°)

and variances

" (5.14)

?—_—1(3!' - 2)2 )
The models (5.1) and (5.12) are the same, but the independence of
a* and f* permits easier derivation of some expressions for tests and
confidence intervals. The formula and the distribution theory for o?
remain unchanged under this model formulation.

If one wants to test the null hypothesis that the intercept a has
a specified o, as for example where ao is 0, the ratio

&-—ao

1/2
- 1 !2
K (“ F E :i_,fli—‘—’]’)

has a t distribution with n — 2 df under Ho : a = ao. One-sided
or two-sided P values for the observed value of the ratio can be

(5.15)

calculated from t tables or computer routines for the t distribution.
The corresponding 100(1 — a)% confidence interval for a is

1 22 1/2
Ekitalz' = Qb ————— . 5.16
neaxilio(F+ st —5y) e
where t:/_ 22 is the upper 100(a/2) percentile of the t distribution with

n -2 df.
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The ratio
B -
6\/1/ E?:x(zi - %)?
is used to test that the slope 2 has a specified value 8o, as for example
where o is 1. Under Hp : 8 = o, the ratio (5.17) has a t distribution
with n — 2 df. The corresponding confidence interval is

(5.17)

1/2
pefxels (--—ﬁ-—(h&) : (5.18)

Sometimes one wants to test a joint null hypothesis Hy : a@ = ay,
B = Bo, which amounts to specifying the line agp + foz. An example
might be the 45° line with ag = 0 and fo = 1. The classical test is
to compare the value of (ﬁ - ﬂo)Tx'(ﬁ — Bo)/26% with the critical
points of an F distribution on 2 and n — 2 df, where B =(a, )T,
Po = (ao, fo)T, and Fis the covariance matrix for B given by (5.10)
without the scalar multiple o%. Joint confidence intervals for a and §
car: be obtained by projecting the confidence ellipsoid for 8 = (a, B)T
generated by the equation (B-B)TSY(B-P)/26% = 5'n—2 ODto the
coordinate axes (see Scheffé intervals in Section 3.1.2 or Miller, 1981,
pp. 58-60):

2 1/2
o €&+ (2F2, )% (l + ——L——) ,
) n ‘___1(2. = f) (5 19)
1/2
3 a 1/2 ______l___
pedsem”s (srizy)

Shorter intervals are obtained by substituting the Bonferroni critical
constant tn_2 for (2F3 —2)"/? in (5.19); see Section 3.1.2. With either
critical constant, the intervals (5.19) have a probability exceeding
1 — a of jointly containing the true paramter values a and 3.

If one is willing to have the test statistic and confidence in-
tervals expressed in terms of the reformulated, but equivalent, null
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hypothesis Hp : a* = ag, 8* = f;, where ag = a¢ + foZ, the compu-
tations simplify and the confidence intervals shorten. The classical
test statistic 18 now

[n(a' ~al)?+ (E(z; - 1)2) (8 - ﬂ‘)z] / 262, (5.20)
=1

which has an F distribution with 2 df for the numerator and n — 2
df for the denominator under Hy;. However, the shortest confidence
intervals, which have probability exactly equal to 1 — a of containing
a* and f°, are

1 1/2
o® € 6* & mlg s (—) ,
[ n

) 1/2
ﬂ'eﬂ‘ilmlg,n-zé(—l ) ,

iy (2 - 2)?

(5.21)

where |m|3,, _, is the upper 100a percentile of the studentized maxi-
mum modulus distribution with two independent variables in the nu-
merator and n — 2 df for the denominator.* Good tables of |m|3, _,
are available in Hahn and Hendrickson (1971), and these are repro-
duced in Miller (1981). The interval for § = 8° in (5.21) is the
same as in (5.19) except that [m|3,_, is smaller than (2FF,_,)"/?
and tﬁ{‘z.” The interval for a® in (5.21) amounts to a confidence
interval for the value of the regression line a + Sz at z = Z, whereas

the interval in (5.19) is a confidence interval for the regression line

* A studentized maximum modulus variable |m|s,. is distributed as max{|y],
< yel}/(x3/v)'/?, where g1, -, yx are independent N(0,1), x2 has a x?
distribution with v df, and x2 and yi, -, yx are independent.

** The critical constant |m|3,,_; can be used in place of (2F5,_2)"/? in (5.19)
as well. The probability of the intervals (5.19) with |m]3 .2 jointly covering
the true parameters is still greater than or equal to 1 - a. This follows from
Sid4k’s inequality (see the first inequalty in Corollary 2 to Theorem 2 in

Sid4k, 1967). However, |m|$ ._; is only slightly smaller than t:l_‘z.
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value at z = 0.

In general, the sample correlation coefficient (5.9) has a com-
plicted distribution that depends on the parameter p (see T. W.
Anderson, 1958, p. 69; C. R. Raoc, 1973, p. 208, or other multivariate
or general texts). However, one can verify algebraically that

A

r\/n—2= B ‘
Vi-r 5\/1/2?-_-1(2.’ - z)?

The ratio (5.22) can be used to test the null hypothesis Hy : p = 0
(and, equivalently, Hp : 8 = 0 and Hp : ' = 0) because under Hp
(5.22) has a t distribution with n ~ 2 df [see (5.17)]. For nonnull
values of p the transformed correlation coefficient

(5.22)

tanh~!r = ~;—log (-it—:) (5.23)

has an asymptotic normal distribution with mean tanh™ p+[p/2(n -
1)] and variance 1/(n — 3). Approximate tests and confidence inter-
vals can be constructed with the aid of this transformation, which is
due to R. A. Fisher (1921). (See Gayen, 1951, and Hotelling, 1953,
for the correct moment expansions). Unfortunately, the asymptotic
nonnull variance of (5.23) is sensitive to the assumption of normality.
This makes confidence intervals based on this approach dangerous to
use in practice indiscriminately (see Section 5.3).

On occasion the investigator may want to estimate the value
of the regression function at a specified value z; of the independent
variable and surround the estimate with a confidence interval. This
is referred to as the prediction problem. The specified zo can be
an interpolated value (i.e., within the range of z;, -, z,) or an ex-
trapolated value (i.e., outside the range of zy,---,z,). In the case
of extrapolation, the conformity of the regression function to a line
over the extended range comes into question. The commonly used
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estimate for the regression value p(z¢) = a + fzp is
i(z0) = é& + Bao, (5.24)

and the associated confidence interval is

zo — )% 1/2
p(zo) € & + fzo = t°'/_22& (1 2%) , (5.25)

which is easily derived from (5.14).

On rare occasions there is interest in scveral different values
for zo or possibly a continuous range of values. The estimates are
the obvious ones obtained from j(z) = & + Bz, but, with regard to
confidence intervals, what is called for is a confidence band on the
regression function. The first band to be proposed was the Working-
Hotelling (1929) band:

)2 1/2
p(z)€a+fz+ (2F°,._2)l/2' (n + _#:—(—z,jl—z)z) . (5.26)

The probability that the intervals (5.26) are correct for all z between
—~o0 and +co is 1 — a (see Miller, 1981, pp. 110--114). If the inter-
vals for only a few z are used, then the probability exceeds 1 — a
somewhat.

Because the bands in (5.26) are hyperbolas (see Figure 5.5), they
are time-consuming to calculate and draw by hand. For computer
graphics this is not a problem. Easier bands to construct by hand
are the straight-line bands (see Figure 5.6) of Graybill and Bowden
(1967):

p(z) €4+ fz Im|3 ,_20 ( \/%Tz) (5.27)

where |m|3_, is the upper 100a percentile of the studentized max-
imum modulus distribution with two independent variables in the
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Figure 5.5

Figure 5.6

numerator and n — 2 df in the denominator. See Hahn and Hen-
drickson (1971) for tables of |[m|g,,_,. The intervals (5.27) are easily
derived from (5.21). They are narrower than the intervals in (5.26)
for z near Z and *oo, but they are somewhat wider for middling
values of z between Z and *oo.

The reverse problem, which is called the calibration problem,
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is to decide which value of z leads to a specified value po. From
the regression line it follows that zo = (#o — a)/B, so the standard
estimate i1s R
Ppo—a

i (5.28)

This is a biased estimate due to 8 occurring in the denominator (see

A

To =

Chapter 6). Based on the second order term in the power series

expansion

L=tei-0(7)¢ P (XY sy (520

an adjusted estimate that reduces the order of the bias is

&2
fo=2+ ('—'5’79—”) (1 N 2)2) . (5.30)

A confidence interval for zo can be constructed by realizing that

the ratio )
Q = 2
(a + ,310 ”0) (531)
z9—2)2
( i (,,_,)z)

bas an F distribution with 1 and n — 2 df. Setting (5.31) equal to
Fp,_, and solving the resulting quadratic equation in zo for the two
roots yields a confidence interval in most cases. The two roots are

-9+ (F-e)0 [ (1=9+ 'ﬁ'f‘.‘po_{:. !]3]'”

fi=

z + 30 -0 , (5.32)

where* .
F¥,_0
e it ol s G (5.33)

B iz - 2)?

* Note that (F&._g)"? =213,

-
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However, the roots can be imaginary, in which case the confidence
interval is the entire real line. Also, when %y does not lie between
the roots, the confidence region consists of the two infinite intervals
above and below the two roots.

The aforementioned confidence interval procedure is credited
to Fieller (1940, 1954). For greater detail the reader is referred to
Chapter 6 or to Miller (1981, pp. 117-120) for discussion and figures
on a closely related problem.

The ratio

a

o
Bl 5y (zi — 2
appearing in (5.30) and (5.33) is the estimated coefficient of variation
of A [denoted by 6"\’(5‘)] When it is small (e.g., < .10), the regression
slope J is accurately determined. In this case the bias correction in
(5.30) is negligible (e.g., < .02) and can be ignored. Also, in this
case ¢ in (5.33) is small (e.g., < .05), so the confidence interval

(5.34)

1/2
oz 8 [1 (#o — 9)? 4

"8 |n T BT - 2)?

gives a good approximation to the fully exact interval (5.32). The
factor multiplying t:{_ 22 in (5.35) is the estimated standard deviation
of (40— §)/ B obtained by the delta method (see Section 2.3.3 “Trans-
formations”). For additional detail see Chapter 6 or Finney (1978,

pp. 80-82).

It may be that several or many values of yy (and corresponding
o) are of interest, not just a single one. The confidence bands (5.26)

To €ETpxt (5.35)

or (5.27) can be used to construct confidence intervals for arbitrarily
many values z(u), that have probability at least 1 — a of all being
simultaneously correct. The procedure is to draw a horizontal line
through the value p on the vertical axis. The region of z values
where the horizontal line is contained inside the band constitutes the
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confidence region for z(p).

If the Working-Hotelling bands (5.26) are used, the confidence
interval for z(p) is given by (5.32) with (21"'2‘7,._2)‘/2 replacing
(Fﬂn_z)‘/ 2, Pathologies in the confidence region {i.e., the confidence
interval is the entire real line or two infinite intervals) can occur
just as for a single value z,. However, for a small coefficient of
variation 6’7(/9) [see (5.34)], this does not happen. For quite small
a(ﬂ) the intervals (5.35) with (214"2"_’,,_2)‘/2 replacing tz{_"; are good
approximations to the exact intervals. Figures illustrating these ideas
for the Working-Hotelling bands can be found in Miller (1981, pp.
118-119).

Similar comments hold for the Graybill-Bowden confidence
band (5.27). When W(ﬂ) is quite small, the confidence interval is

approximately

»- " o 1 B — 9l
et mld, s |2+ 1. (536
W)€ == b o | A Y im0

Calibration problems often arise in the following context. Two
ways of measuring the same quantity are available. One 15 very ac-
curate, time-consuming, and possibly expensive; the other is more
variable, easier to obtain, and usually cheaper. The one may be a
direct measurement, and the other an indirect measurement. The
laboratory develops a standard line by laboriously obtaining a series
of paired values (z;,y;), s = 1, -, n, where z; is the direct or more
accurate measurement and y; is the indirect or more variable mea-
surement. The regression line & + Az is estimated from these paired
values. Further readings on unknown amounts of the substance are
obtained by measuring just with the indirect or more variable proce-
dure and converting the measured y to z by z = (y—&)/ﬁ. Typically,
a standard line is used to calibrate a number of additional measure-

ments.

_—
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Usually only the point estimates Z = (y — &)/ B are of interest
to the laboratory, but at times some idea of the variability in the
method is desired. If the standard line is accurately determined with
small CV (8), then an approximate standard deviation for Z is

1/2

ol 1y -9F
18] no g2y, (zi—2)?

Expression (5.37) is similar to the standard deviation factor appear-

(5.37)

ing in (5.35). The difference is the extra “1” which enters the variance
due to the variability in the single y measurement about its mean
value u(z). Note that the size of (5.37) will vary somewhat depend-
ing on whether the observed y is at the low or high ends of the range
or in the middle.

An exact confidence interval for zo corresponding to a single
additional observation yo is given by (5.32) with an additional “1”
added inside the braces to include the variability in the y; measure-
ment. Simultaneous confidence intervals corresponding to an arbi-
trary number of additional measurements exist (see Lieberman et al.,
1967, and Scheffé, 1973) but seem to be rarely used.

The theory of calibration is extensive and has only been touched
upon here. Alternative procedures, such as regression z on y (see
Krutchkoff, 1967) or adopting a Bayesian approach (see Hoadley,
1970, and Hunter and Lamboy, 1981), exist in the literature. Histor-
ical perspective and references are given in the Hunter and Lamboy
(1981) article and in the discussion articles that follow it, especially
Rosenblatt and Spiegelman (1981).

5.1.2. One Sample: Zero Intercept

Not often, but every now and then, one knows that a = 0 from a
priori considerations about the experiment or a graphical plot that
strongly indicates the data follow a ray emanating from the origin.

-
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In such a situaion the reduced model is
E(y | z) = p(z) = Bz (5.38)

and

Var(y | ) = 0%(z) = o?. (5.39)
Typically, the z; and y; values are all positive when this model is
applied.

The maximum likelihood estimate of the slope is

B = % (5.40)
=1 “3

The bias-corrected maximum likelihood estimate of the variance is

- Bz;)?,
s=l

(5.41)

z: g2 (2._1 3:!’-)2

" - l ' :‘=l 192 ‘
=1
The estimator 3 has a normal distribution with mean 8 and
variance
Var(8 o’

ar(f) = Th (5-42)

=1
The variance estimate 62 is distributed independently of 3 and has
a scaled x? distribution with n — 1 df, i.e.,

n - 1)é?
L—a,,—— ~ Xa-1- (5.43)

For testing a null hypothesis Hp : 8 = B9, the ratio

B - Bo

g i=1%;
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which has a t distribution with n — 1 df, provides P values. The
associated 100(1 — a)% confidence interval is

gepxl? :— (5.45)

2
i=1%;

Since the values of the mean function p(z) = Az at different
values of z are simply known scalar multiples of each other, there
is no distinction between a confidence interval for a single zo and a
confidence band for many z. From (5.45) it follows directly that

p(z) € Bz t"/2 e a0 (5.46)

\/Ez.:l z?

with probability exactly 1 — a for any number of z.

In the calibration problem the inverse estiamte for z is

. _ P
t=3 (5.47)

For a poorly determined B the biased reduced estimate
52
g 8 s (5.48)
B ﬂ Et—l Iy
might be more accurate. From (5.45) the confidence interval for z(u)

z(p) € - Q/L" =,
ﬂ:tt"_la/v =12

provided the values in the denominator have the same sign (usually
positive). When the calibration involves a variable y, the inverse

is simply
(5.49)

estimate from the standard line has the same form z = y/ﬂ as (5.47),
but the confidence intervals differ from (5.49). For an accurately
determined standard line with small CV(ﬂ) =6/8 (L5, 2 ‘/2, an
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approximate standard deviation for z is

5 yz 1/2
H [‘* Ay ] ' |

5.1.3. Multisamples: General Intercepts

With I separate populations the full model is
vij = o; + Bizi; + ¢ (5.51) '

for s = 1,--<,I, 5 = 1,:--,n,, where the ¢;; are assumed to be
independently, identically distributed as N(0,0?).

In classical analysis of variance this model would be discussed
under the heading analysis of covariance. It is a one-way classifica-
tion in the population intercepts with a single covariate z;;. Before
the advent of large computers, specialized computational techniques
were devised for analyzing experimental designs with single or mul-
tiple covariates. The computational techniques were based on the

simple analyses of variance for the designs (viz., one-way ANOVA,
etc.) relating the intercepts of the regression lines. With our cur-
rent computers which can speedily spit out large multiple regression
analyses, these specialized methods are no longer so relevant.

Usually the first major question to be addressed is “Are the
slopes equal?” If 8, = --- = By, then the family of I regression
lines is conveniently restricted, and comparisons between regression
lines greatly simplify. With unequal slopes, any bizarre collection of
lines is possible with irregular criss-crossing like the game of “Pick
Up Sticks.” In general, whether the mean for one population is
higher or lower than the mean for another depends on which values
of the independent variable z are under consideration. With equal

slopes, differences between populations are characterized solely by
the differences in the intercepts ay, - -, aj.

I
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A graphical plot of the data will frequently indicate whether
the assumption of equal slopes is at all reasonable. A formal test of
the null hypothesis Hp : §; = --- = f; is carried out as follows. The
estimate of the common slope g under the null hypothesis Hj is

§m L ,__,(:r., 2. )(yi; — i)

1 2 pon (5 — 20 )?

where 2;. = (1/n;) 1°7%, j, etc. This is a weighted combination

, (5.52)

= Z.-, wibs (5.53)

=1 Wi
of the separate slope estimates

J._](xlj 2!"}(”&3 = il)

A Yitilzi-2)p (554)
with weights )
w; = Z(x,-,— - 2;)%. (5.55)
Under Hy the sum of the wei;l_l:ed squared differences
1 A
Y wilBi - B (5.56)

is distributed as 02 times a x? variable with I — 1 df. When (5.56)
is divided by 7 — 1 and the pooled estimate 42, the ratio has an F
distribution with I — 1 and Z,_,(n,- — 2) df. Typically, one wants
to accept the null hypothesis unless the P value calculated for the
observed ratio is so small as to preclude this decision.

The pooled estimate 62 referred to in the preceding paragraph

= >3t — s funi (5.57)

=1 j=1
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where N = E'!:l n;, B; is given by (5.54), and
a; = §i. — B.':i.'. : (5.58)

The estimate 2 is a weighted combination

I 2
J — (n; — 2)6¢
Pl J (5.59)
i=1 (ni—2)
of the separate error variance estimates
1
6} = ni=2 jz_;(v-' - é; = Pizy;)? (5.60)

for the different samples with weights equal to the respective degrees
of freedomn; —2,¢=1,---, I

An alternative test of Hy : By = --- = B is a Tukey-Kramer-
type multiple comparisons procedure (see Section 3.1.2). This test

would reject Hp for large values of

|Bi' ~1 Bi"l

max 1/2
—Q' " l + LI l
V2 E:';l (#ij=2i)2 Zj;ll""f -2;)?

Under Hy the distribution of (5.61) is approximately that of a stu-
dentized range of I variables with N — 21 df for the error variance
estimate. Tables of the studentized range appear in Harter (1960,
1969a), Miller (1981), Owen (1962), and Pearson and Hartley (1970).

(5.61)

If there were any reason to suspect monotone alternatives for the
slopes in the event that the slopes were unequal, a statistic exploiting
this information could be applied (see Section 3.1.3).

If the decision is made that the slopes are equal, then the anal-
ysis proceeds on the basis of the restricted model

Yi; = a; + Bz + €. (5.62)

S

B—
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The maximum likelihood estimator for 8 is given by (5.52). For
ay, - -,ay the MLE are

a
a a

&; = §;. — B2, (5.83)

¢ =1,---, I, which differ from (5.58) because of the common slope
estimate. The estimator for 02 becomes

I n; A .
8= e 303 i - i B, (5.64)
J=1 §j=1
1 I n; I ’ I n;
“N-I-1 ZEV?,- 3 Zmﬂf = ﬂzzz:(z.-,- - 2;.)?] .
=1 j=1 =1 i=1 j=1

The estimators (6:1, .- -,é}) have a multivariate normal distri-
bution with mean (ay,-- -, a;) and variances-covariances

Var(a;) = o? [1 + i ]

ag) = - : ’

' n Ty Diialzyg - 2:)? (5.65)
A A 25 Xy

Cov(a;,ap) = o? [ — ] )
. s{=l ;'l‘=1(z"j - %:)?

The variance estimator 62 is independent of (&;, - -- ,éy) and

(N-I-1)5?

Sy Xy—r-1- (5.66)
The classical ANOVA test of Hy :ay = --- = ay compares the

residual sum of squares under the model (5.62) with the correspond-

ing residual sum of squares under Hy. Under Hy the MLE for B8

changes to

B= s };;;:(Iﬁ - z.)(yi; - §.)

i giylwg —2)F (5.67)
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where z. = .{=1 ;’:: z;;/N, etc. The difference in the residual

sums of squares is given by ¢

I R )
SS(a; Ho) = Y nig? ~ Ng? + 823 3 (=i — 2:)?

T Lk el (5.68)
- Bz z: Z(z;j = 2)2
=1 j=1
Under Hj the ratio 1
Sliaith) (5.69)
(I -1)o?

has an F distribution with /— 1 and N — I — 1 df for numerator and
denominator, respectively.
In many instances the independent variable means z;.,

¢ = 1,---, I, are roughly equal and/or the squares of these means are
small relative to E::n ;-';l(x,-j — 2;)%. Either event ensures that

- s 1 1

A an) gl 4 — u il

Var(a; — ay) o (n.- + n._’) , e gl l
(5.70)
5 Ay 2 o? £ "
Cov(a; — ap,am — ap) = —, 4
nye

and the other covariances are all approximately zero. This covari-
anze structure is identical to the one-way classification with unequal
sample sizes, so the Tukey-Kramer method of multiple comparisons

can be applied (see Section 3.1.2). With probability approximately

l1-a, )
o= ap € i = by e | =+
' ¢ ¢ Vg N-I-1 \/§ Ln'_ ne
11/2 (5.71)
- (2. — 20.)%
' i
=1 z?:l(zii - fi')24

for all § # +', where qf 5y_;_, is the upper a percentile for the stu-
dentized range of I variables with N — I — 1 df for the error variance

B
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- estimate. The last ratio under the square root in (5.71) should be
small relative to the two preceding terms for the coverage probability
to be approximately correct.

For testing Hp : a; = -+ = ay against montone alternatives,
one can use an appropriate contrast Z::n ¢;a; (see Section 3.1.3).
The variance of 2,!:! ¢i&; can be derived from (5.65).

Although comparisons between populations with a common
slope are usually characterized by differences between intercepts, in
bioassay there is meaning in converting a difference in intercepts into
a difference in z values. Specifically, for two populations the ratio

az — Oy

B

is the amount that must be added to an z value in population 1 to

Oz =

(5.72)

achieve the same effect as an z value in population 2, i.e.,

m(z + Ayz) = p2(z), (5.73)

where p;(z) = a;+Pz,1 = 1,2. If the z scale is, in fact, the logarithm
of a drug dose, then p12 = exp(Aj2) is called the relative potency of
the two drugs and is the factor by which a dose level of drug 1 must
be multiplied to produce the same effect as an identical amount of
drug 2 (see Finney, 1978, pp. 79-80). The relative potency p;2 can
be greater or less than one depending on whether A2 is positive or
negative.

Point and interval estimation for Aj2 is very similar to the cal-
ibration problem for just one population. The commonly used point
estimate of Ajs is

Alz = 2 ’ (574)

where f is given by (5.52) and é;, s = 1,2, by (5.63). If 8 cannot be
accurately estimated, then nontrivial bias can creep into A,z due to

=



190  Chapter 5: REGRESSION

ﬂ being in the denominator, and the bias-adjusted estimator

812 = (21. = 22-) . = [t:—&‘] [1
podt (5.75)

e }
g2 Ef:l ;"'=1{x":' ~-2.)?

may offer an improved estimate. Fully exact Fieller intervals analo-

gous to (5.32) are

e (;:1:%)2 (5.76)
o (Fon-1) o (3 + "L?)fl gl Ef.l(’frzt;z);z,--z, )21‘/2.
B(1-¢)
where )
e (5.77)

Pl T,z - 22
Absurdities such as the confidence interval being the whole axis (in
the case of imaginary roots) or two semi-infinite intervals [when Az
lies outside the roots (5.76)] can occur just as for (5.32). For well-
estimated A the factor ¢’ is small, and the intervals

. gl1 1
AIZEA,zd:tﬂ,_,_l—:— == qp =—
|BILm "2

S 2 1/2
L ] (F2. — 1) ]

=1 ;‘.;1(1'!'1' - z;)?

(5.78)

give a good approximation to (5.76). The intervals (5.78) are always
well defined, more intuitive, and easier to explain.

When there are more than just two populations, the preceding
formulas apply for point and interval estimates of the iog relative
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potency A between any two populations ¢ and s'. With more than
two populations, it may be the case that one population, say, s =
1, is a standard population against which all others are compared.
This would limit the estimation to the I — 1 log relative potencies
Ajy2,--+,Ayr. 1f it is important to have simultaneous confidence in
all the intervals, the significance level a in (5.76) or (5.78) can be
changed to a/K, where K is the number of relative potencies being
considered [see(3.12)].

5.1.4. Multisamples: Zero Intercepts

In the model where the intercepts are known to be identically zero
(i.e., a; = 0), the individual slope estimates are

- Er"él Tii¥is
J=1"%

and the combined estimate of 4 under the hypothesis Hy : f1 = --- =

3 is
. I 3
§= L Wi
=1 Wi

I (5.80)

n; oB3T0g
=1 Z,‘:n Zi;Yis
I n; 2 !
1=1 Lvj=1 Vij

x

where
n;
w; = Z z?j. (5.81)
=1

For different J; the estimate of 02 is

I n;
. 1 P
02 = '&,—_'—I E E (!h'j = ﬁiIij)z:
i=1 =1
I n n; 2
1 : (7L, 2ij9i5)
=N -1 E : y.'z,' - “Jn.—z'z_

i=1 |j=1 =174

(5.82)
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The individual slope estimates f; are independently normally
distributed with means 8; and variances az/w.-, s=1,---,1I, respec-
tively. The ratio (N — I)6%/o? has a x? distribution with N — I df
and is independent of BA,,---,B;. When Hy : By = --- = By is true,
the combined estimate 4 has a normal distribution with mean # and

variance 02/ 31, w;.

The classical test of the null hypothesis Hy : 8; = --- =  relies
on the statistic
(I-1)52 :

which has an F distribution with I—1 and N -7 df. A Tukey-Kramer
type multiple comparisons procedure would compare

(5.83)

|B; - Ba|

= (5.84)

Ry
1

AR
¥ 2 ' g2
ﬁ Tl =5 ;;l’i’j

with the precentage points of a studentized range of I variables with
N — I df for the error variance estimate (see Section 3.1.2). For
monotone alternatives an appropriately selected (see Section 3.1.3)
linear combination 31—, ¢;B; with estimated variance 62 S _, ¢?/w;
would yield a ¢ statistic.

In a bioassay with two lines, the ratio py2 = A2/ gives the
relative potency of the two preparations, namely, the factor by which
a dose of preparation 1 must be multiplied to give the same rsponse
as an identical dose of preparation 2. That is,

m1(p122) = po(z). (5.85)

The customary estimate of p;2 is ﬁz / ﬁ;, but one may want to make




Section 5.2: Nonlinearity 198

a bias correction in

» ﬂz 5'2
1—-—c——|- 5.86

A fully exact Fieller interval can be constructed by solving for the

roots of

- A . 1 pz
(ﬂz—ﬂmz)’=FﬁN_,az( s + '""zz ) (5.87)

j=1F2j =1 15

but for a good assay the interval

/éz 1/2

P12 € 12 tN_, + e (5.88)
Iﬂll J-—l “g, J=l zf;

should suffice. For multiple relative potencies the significance level

can be reduced to a/K, where K is the number of potencies being

considered [see (3.12)].

In the parlance of bioassay this type of analysis with a; = 0 is
referred to as a slope ratio assay. Finney (1978, Chapter 7) studies

the more general situation where o; = a # 0.
5.2. Nonlinearity.

God has not decreed that all regressions should be linear. Many are
not. The mean regression function p(z) might be quadratic a + fz +
~z%, exponential ae—P% power az?, or something else.

If for reasons external to the data the form of the nonlinear
regression is theoretically known, then one typically has two choices.
The original scales for the variables can be maintained, and a nonlin-
ear regression analysis can be applied. For an exposition of nonlin-
ear regression analysis see Draper and Smith (1981, Chapter 10). In
many instances one can also transform one or both variables so that
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the transformed relationship is linear. For example, with the expo-
nential relation y = ae~#*, taking the logarithm of y produces a lin-
ear relation. Whether one uses a nonlinear analysis or a linear analy-
sis after transformation depends on several factors, an important one
being the availability of a good nonlinear regression computer rou-
tine. Often the linear analysis after transformation is quicker and
easier even if the nonlinear routine is available. When both routes
are equally open,the choice should depend on the appropriateness of
the error structure. Do the errors seem more normal, homoscedastic,
and free of outliers under the transformed or untransformed model?
Even this criterion becomes blurred when one admits the possibility
of weighted linear or nonlinear regression.

The remainder of the discussion in this section is focused on the
situation where the model is not known for sure a priori.

5.2.1. Effect

The effect of your or the computer’s blindly fitting a linear regression
to data from a nonliner model is that the fit of the line to the data
will be poor. Point and interval estimates of a and # will be so
much rubbish, and the estimates of 4 and z in the prediction and
calibration problems may be badly biased. How badly off you are
depends on the range of z values. Over a narrow z range even an
exponential or logarithmic function can be indiscernible from a linear
function. However, over a broad range of z where the curvature of
p#(z) is influential the miscalculation can be considerable.

In some data sets there is such substantial scatter in the y di-
rection that it is a moot point as to whether the model is linear or
nonlinear. A linear fit will do as well as anything for these data sets.

5.2.2. Detection

Detection of nonlinearity is usually by eye. A plot of the data with
the estimated regression line fi(z) = & + Az drawn on it typically
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Figure 5.7

reveals whether the y values hover around the line over the whole
range of z values. If the linear model holds, the y values should
not be systematically above or below the estimated line for different

regions of z values.

If a plot of the data is not readily available, the same sort of
examination by eye can be performed on the residuals r; = y; — & ~
Bz;, $ = 1,--,n. These should be ordered by their z values from
small z to large z. If these residuals exhibit long runs of positive
values alternating with long runs of negative values, there is evidence
of nonlinearity. For example, if you try to fit a line to data from
a concave quadratic regression function, the residuals tend to be
negative for low z, positive in the middle, and negative for high z.
This is illustrated schematically in Figure 5.7. The opposite pattern
of + — + signs holds for convex quadratic functions.

Plotting the pairs (z;,r;), s = 1,-- -, n, of independent variable




196 Chapter 5: REGRESSION

values and residuals is a very effective method for spotting nonlin-
earity. If the model is correct, the residuals should jump randomly
above and below the z-axis and not exhibit any discernible pattern.

This sort of human inspection is not possible when a decision
on linearity vs. nonlinearity needs to be made automatically by a
computer. If a large number of regression lines need to be estimated
routinely, one may want the computer to compute each estimated line
and flag those for which there is evidence of nonlinearity. One could
try to mimic the eye inspection internally in the computer, but an al-
ternate approach is simpler and probably better. The approach is to
embed the linear model in a larger model with an additional param-
eter (or parameters) which for nonzero values produces nonlinearity
in the model. For example, a + Az is a special case of a + 8z + vz2,
and increasing the value of || induces increasing curvature into the
model. The particular choice of a larger model usually reflects in-
terplay between computational simplicity and the type of nonlinear
departures one is anticipating. Once the larger model is selected,
the data are tested for nonlinearity by testing whether the added
curvature parameter is zero. Execution of this leads into multiple or

nonlinear regression.

This latter numerical approach can be applied as well even when
visual inspection is possible. It may be desirable in equivocal cases,
but often a plot of the data can settle the issue without further
calculation.

5.2.3. Correction

The correction for nonlinearity is to change the model. There are
several ways to accomplish this.

One can attempt to retain the simple straight line analysis by
transforming either the z or y variable. Which variable is selected
depends on what transformation will linearize the data. For instance,
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with slowly increasing concave shaped positive data the log transfor-
mation of the z-axis from the model y = a+ 8z to y = a + fz where
z = log z may produce linear data. On the other hand, for positive
data which decays away as z increases the change from y = a + fz
to z = a + Az where z = logy may yield a linear fit.

There are various graph papers that will assist you in search-
ing for or checking on a linearizing transformation. Log-linear paper
allows one to examine the effects of transforming either z or y by
logarithms. Log-log paper gives a check of the model y = azf.
For bounded response variables like percentages or proportions, sig-
modial regression functions are common, and probit and logistic pa-
pers with linear or log scales are useful in checking on the model.

It is more common to transform the y variable than the z vari-
able. The logarithmic transformation z = logy is frequently used,
and another common one is the reciprocal transformation z = 1/y.
Rather than using a hit-or-miss search for the appropriate transfor-
mation one can use the systematic, analytical approach of Box and
Cox (1964). For positive data (i.e., y > 0) they consider the family
of power transformations

-1 A#£0
2=y = { L Pep i (5.89)
logy, A=0,

in conjunction with the linear model and suggest maximizing the
normal likelihood or adopting a Bayesian analysis. Specifically, ex-
cept for constants the log likelihood of the observations maximized

over a and B is

log Lmax(A) = =2 log | Y (s} - & ~ f¥z,)?
=l (5.90)
+ (’\ - l)zlogyn

=1
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where ¢ and B(Y) are the usual intercept and slope estimators (5.6)

applied to yw

)
the maximizing value of A or a close approximation thereof.

,t=1,---,n. A numerical search routine will reveal

As stated for (5.89), the power transformation family is ap-
plicable only for positive observations. For data that include some
negative values it may be possible to add a constant ¢ to make all
the data positive before transformation as in (1.22).

For greater detail on the Box-Cox method of locating a lineariz-
ing transformation the reader should consult their original article.
Andrews (1971b), Atkinson (1973), and Carroll (1980) consider tests
associated with the power parameter. The reader should be cau-
tioned that the Box-Cox estimates are nonrobust. This is discussed
in Section 5.3, along with the controversy over the appropriate vari-
ability estimates for &(») and AV,

After the data have been transformed to linearity, the questions
of normality, homoscedasticity, and independence of the errors need
to be addressed. If the errors were normally distributed with equal
variances for the original data, they may not be after the transfor-
mation. It is hoped that the reverse will be true. In many instances
the data look more normal and homoscedastic after the transforma-
tion than before. Achieving the correct model takes precedence over
compliance with assumptions about the error structure.

In some problems it is not possible to find a satisfactory lineariz-
ing transformation. The correct model may really be quadratic or a
mixture of exponentials or some complicated function. This is by no
means the end of the world. It simply means you need to penetrate
beyond the scope of this book into the realms of multiple regression
and nonlinear regression. For guidance see Draper and Smith (1981).
It also means you will probably need a large computer, particularly

for nonlinear regression.

S -
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5.3. Nonnormality.
5.3.1. Effect

The effects on the intercept and slope estimates and their distribu-
tions from sampling underlying distributions with nonzero kurtoses
are relatively minimal. The impact of distributions with tails that
are somewhat longer or shorter than the normal or are skewed is
similar to the one sample problem; see Section 1.2.1.

The eflects on the sample correlation coefficient are more pro-
nounced. The null distribution of r [namely, that (5.22) has a ¢
distribution] is relatively undisturbed by sampling from nonnormal
distributions with nonzero skewness and/or kurtosis. Thus tests of
p = 0 are relatively robust. However, the validity of the asymptotic
variance for (5.23) being equal to 1/(n — 3) depends crucially on the
assumption of normality and can be quite different for nonnormal
distributions. This makes confidence interval construction for p sen-
sitive to the assumption of normality. For a quantitative assessment
of these effects and earlier references by E. S. Pearson and others,
see Duncan and Layard (1973).

Outliers are a disaster story. They can be really troublesome.
It does not matter whether they are generated by a heavy-tailed
distribution such as the Cauchy or by a contaminated normal distri-
bution. If there are points that lie at a distance from the body of
the data, they can exert an undue influence on the estimates. This
is particularly true for the slope estimate B. The relative position of
the z value(s) associated with the outlier(s) in relation to the other
observed z values plays a crucial role. Outliers with z near the ends
of the z range unduly increase or decrease B. On the other hand,
outliers with z near the middle of the range have little impact on 8.

However, these can still affect a.

These qualitative assertions about outliers can be quantified
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through examining the effect of deleting an observation (z;, y;). For
a multiple linear regression model y = X8 + e with full rank, the
estimator A_; with the sth observation deleted is related to the full
estimator # = (X7X) !XTy by

B-Boi= ——(X"X)'], (5.91)
1—hy
where X is the n x p design matrix with rows xz, £ =1,---,n, of

independent variables (usually z4; = 1), hjy; = x.‘(XTX)"x.T is the
sth diagonal element of the hat matrix H = X(XTX)~!XT, and
ri = y; — X;B is the sth residual (see Miller, 1974b, Lemma 3.2). In

the case of linear regression (5.91) reduces te

b—di= T (l_(iz_*_)f)‘

n e

el " et (5.92)
ﬂ-ﬂ—i= l—h.'.'( Szz )9
where
ri=yi — & - Bz,
Szz = ;(z,, - z)?, (5.93)
Ln 1 (z;- 2)2
h" = ; + '——‘STzz—'—

The change from f_; to A in (5.92) is easily interpretable. The
larger the absolute value of the residual r; is, the greater the change
will be, but the amount of change is influenced by the position of
z; relative to 2. This enters both through (z; — 2)/S;. and through
1 = h;;. The larger |z; — 2] is, the greater the change will be, with
no change whatsoever when z; = 2.

Cook (1977, 1979) proposed as an overall criterion for judging

il
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the influence of the sth observation the ratio

_ (b= A XTX)B - B)
po? (5.94)

D;

__ riha
T (1 = hy)2pe?’

where 6% equals yT(I — H)y/(n — p) in general and (5.8) in the
case of simple linear regression with p = 2. Clearly, the size of D; is
affected by the magnitudes both of the residual r; and of h;;/(1-h;),
which measures how centrally located the z; value is. Hoaglin and
*Welsch (1978) have suggested separately examining the h;; for high
values to identify points of high leverage on the estimates and the r;
to determine whether leverage has been applied.* Others, notably
Box and Draper (1975), Davies and Hutton (1975), and Huber (1973,
1975), have also contended that large h;; identify points of sensitivity
in the design.

Andrews (1971b) was the first to sound the alarm that the Box-
Cox procedure for selecting a transformation is sensitive to outliers.
The estimates of A and (a, §) are unstable under small perturbations
of the data. Andrews (1971b) and Carroll (1980) proposed more
robust tests.

Bickel and Doksum (1981) established by asymptotics and sim-
ulations that A and (a(i),é(i)) fi.e., (&, B) computed from y(i)] are
highly correlated and (&(i),ﬁ(i)) has a substantial extra variance
component due to A being estimated. This has raised a controversy
as to whether one should make inferences on the regression parame-
ters unconditionally as in the Bickel-Doksum theory or whether one
should operate conditionally given the value of A (see Box and Cox,
1982). The latter is the procedure if one chooses a linearizing trans-

* Note that 0 < h,;; <1 and Z:_l hii = p; thus p/n is an average value for
h||-
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formation by the hit-or-miss search method. Carroll and Ruppert
(1981b) have shown that in the prediction problem there is ouly a P
small increase in mean squared error due to not knowing A in es- '
timating the conditional median of y on the original scale given zo.

Also, Doksum and Wong (1983) have established that the usual tests

of hypotheses behave as though A were known in terms of level and

power.
5.3.2. Detection |

Detection of outliers can usually be accomplished by eye from a plot
of the data. Also, the impact of an outlier on the slope estimate can
be judged by noting how far away the z; associated with the offending
y; lies from 2. Quantitative assessment of a potential outlier and
its impact is embodied in the residuals r; = y; — & - B:r,- and the
hat matrix diagonal values hy, ¢ = 1,---,n [see (5.93)]. The r;
and h;; are particularly useful when visual inspection is not possible.
Formal tests of significance for outliers in regression are considered by
Andrews (1971a). The work of Andrews and others is fully discussed
in Barnett and Lewis (1978, Section 7.3).

Detection of distributions more or less kurtotic than the normal

is not so important because the effects on the regression estimates
and tests are minimal. However, one can make a probit plot of
the residuals r;, s = 1,---,n. (See Section 1.2.2 if probit plotting
is unfamiliar.) The r; are correlated due to the subtraction of the
estimated regression line values, but the empirical cdf of the residuals
is a consistent estimate of the underlying distribution function (see
Duan, 1981); Pierce and Kopecky (1979) and Pierce and Gray (1982)
consider goodness-of-fit tests in the regression setting.

5.3.3. Correction

For the correction of nonnormality there are alternative nonparamet-
ric regression procedures based on the median rather than the mean.

B—
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G. W. Brown and Mood’s (1951) regression coefficient estimators are
obtained by dividing the z; values into two groups at their median
m, and then solving the equations
it s o =mmly e bnd sen)
n}g(‘lg:n{y. —-a-bz;} =0,
fora=a, b= B For distinet z; Theil (1950) introduced the slope

estimator

B = median {h—i} ; (5.96)

2;<z; T; — Z{

Sen (1968) generalized the Theil estimator to nondistinct z;. The
Theil-Sen estimator is described in Hollander and Wolfe (1973, Chap-
ter 9). Andrews (1974) proposed a robust estimator based on medi-
ans, and A. Siegel (1982) has a robust repeated medians estimator.
However, these median-based estimators are seldom used in practice.
In estimating regression coefficients, consumers usually do not worry
about a lack of normality - with the exception of concern about
outliers.

Outliers need to be reckoned with because of their possible sub-
stantial impact on the regression coeflicient values. Most practi-
tioners fit the least squares line, examine the residuals, trim any
observations that appear to be outlying and influential, and refit the
least squares line to the observations left after trimming. With very
few trimmed observations, the variance estimates are typically com-
puted as though the remaining untrimmed observations constituted
the whole sample.

In an important paper Ruppert and Carroll (1980) have tried
to formalize this process and study it. Their results are disturbing.
This procedure is inefficient for normal or near normal distributions
and also for very heavily contaminated distributions. In the latter
case the outliers tend to mask themselves by substantially distorting
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the initial least squares estimate of the regression line. In addition,
the asymptotic variance is not analogous to a trimmed mean because
of a component that depends upon the estimator used to fit the line
initially. This component is impossible to estimate without enor-
mous samples because it requires density estimation, and its effect
is nonnegligible. This leaves the aforementioned trimming procedure
in a very unsatisfactory state unless the amount of trimming is very

minimal.

Ruppert and Carroll (1980) have identified an initial estimator
for the regression line that gives the trimmed sample regression es-
timator an asymptotic variance analogous to a trimmed mean. Un-
fortunately, this initial estimator requires specialized computation
involving “regression quantiles® as defined by Koenker and Bassett
(1978).

A variety of other robust regrssion estimators have been pro-
posed and championed by different investigators. Bickel (1973) con-
sidered a class of L-estimators (see Section 1.2.3, “Robust Estima-
tion,” for terminology.) Various M-estimators for regression coeffi-
cients corresponding to different ¢ functions have appeared in the
literature. Huber (1977, 1981) gives a general discussion, and Gross
(1977) studies the bisquare estimator in considerable detail. Also,
R-estimators are well represented. For references on R-estimators
see Bickel (1973) and Juretkova (1977). Most of these L, M, and
R-estimators are computationally cumbersome. Since packaged pro-
grams are not commonly available, they are seldom used in practice.

As noted at the beginning of this section, the nonnull distribu-
tion of the sample correlation coefficient is sensitive to departures
from normality. If one is wedded to the product moment correlation
r given by (5.9), then far more robust confidence intervals can be con-
structed by jackknifing or bootstrapping the transformed correlation
tanh~!r. For descriptions of these procedures and their assessment
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see Duncan and Layard (1973) and Efron (1981). It should be men-
tioned that jackknifing is not resistant to outliers. Trimming is best
to remove their effects (see Hinkley, 1978, and Hinkley and Wang,
1980). Devlin et al. (1975) consider the general problem of robust
estimation of correlation coefficients.

An alternative estimator used with some frequency for nonnor-
mal looking data is Kendall’s coeflicient r. This is a nonparametric
measure of the degree of association between z and y used in lieu of
the correlation coefficient. In spirit it is related to the Mann- Whitney
form of the two sample Wilcoxon rank statistic.

Define
1 if (2~ zj)(!li - yj) >0,

_ (5.97)
0 if (z; — z;)(yi — y;) <O.

T(zi,2j; 95, 95) = {
The function T is an indicator function that scores 1 for concordant
pairs in which z; — z; and y; — y; both have the same sign and scores
0 for discordant pairs. Let

n-1 n
1
T= (T) Z Z T(zi, 25 ¥i,v;), (5.98)
2/ §=1 j=i4i
which is an estimate of
p = P{(z1 — z2)(y1 - y2) > 0}. (5.99)
The statistic .
i=2(T-5) (5.100)

estimates Kendall’s 7 coefficient
r=p-(1-p), (5-101)

which varies from —1 to +1 like the correlation coeficient and mea-
sures the association between z and y. For the bivariate normal

-
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distribution 7 is related to p by

r= %sin"l p- (5.102)

Hollander and Wolfe (1973, Table A.21) give the upper tail of
the cdf for K = (3)7 under the null hypothesis of no association for
n = 4(1)40. Owen (1962) gives a smaller table [viz., n = 2(1)12]
for T. Asymptotically, 7 has a normal distribution with mean and

variance
E(?) =0,
. _ 2(2n+5) (5.103)
Var(7) = on(n~1)’

under Hy. P values for testing no association between z and y are
readily obtained from the small sample tables or the large sample
normal approximation. A confidence interval for r can be computed
as well; for details see Hollander and Wolfe (1973, Chapter 8).

When ties are present for either the z or y observations or both,
the score function should assign the value 1/2 when (z; — z;)(y; -
y;) = 0.* For a small number of ties the effect on the null distribution
is minimal. However, for larger numbers of ties the null variance is
smaller than (5.103). For a corrected variance see Hollander and
Wolfe (1973, p. 187).

There are other nonparametric measures of association. A pro-
minent one is Spearman’s rank correlation coefficient in which the
observations are replaced by their ranks and the usual Pearson prod-
uct moment correlation (5.9) is then computed. For details on Spear-
man’s coefficient and references on the other nonparametric measures
available, consult Holland and Wolfe (1973) or most any standard
nonparametric textbook.

* Some texts recommend changing the denominator in T as well; see Gibbons
(1971).
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yﬁ p(x)+20(x)

p(x)

plx)—20(x)

Figure 5.8

When one or both variables are binary or dichotomized, there
are special correlation coefficients defined to cover these situations;
see Walker and Lev (1953, Chapter 11) and Bishop et al. (1975,
Section 11.2).

5.4. Unequal Variances.

The standard linear regression analysis is based on the assumption
that the errors ¢; in (5.1) all have the same variance 02. This, of
course, need not be the case. Although any sort of heteroscedasticity
is possible, it is likely that if there is a departure from equality it will
be monotonically related to the regression mean value. Specifically,
for data with positive z and y, the variance of y may tend to increase
as the mean of y increases. This phenomonen is illustrated in Figure
5.8 where the shaded region indicates plus and minus two standard
deviations.



208 Chapter 5: REGRESSION

The situation where the error variance is related to the mean
regression has been modeled in the literature by -

Var(e;) = 0? = o?V (p(z;), A) (5.104)
where, for example,

V(p(2:), A) = |n(z) (5.105)

is a family of possible choices for V (see Box and Hill, 1974). Impor-
tant special cases of (5.105) are A = 1 and 2.

5.4.1. Effect

The effects of nonhomogeneity of variance are usually not dramatic
unless the disproportionality between the variances is particularly
severe. Even with unequal variances the usual least squares estima-
tors (5.6) are unbiased, and under a variety of mild assumptions they
are consistent. They no longer have any optimality properties, but
most practitioners do not lose too much sleep over this. In multi-
ple regression there are rare occasions in which the standard least
squares estimator coincides with the best linear unbiased estimator
(see Zyskind, 1967; Watson, 1967; Kruskal, 1968).

For normal errors the intercept and slope estimators are nor-
mally distributed, and for nonnormal errors they can be asymptoti-
cally normally distributed. The troublesome aspect is that the esti-
mates of their variances are screwed up. The mean squares for error
62 given by (5.8) estimates a mixture of different variances and the
formulas (5.10) no longer apply. For example, the actual variance of

B is
2?:1(1‘ - 5)20’?
2 9
[ (zi - 2)]
and this is estimated by 62/ 3%, (z; — z)%. However, if the weighted
and unweighted averages of the variances are approximately equal,

(5.106)

S— |
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ie.,

E"_l(zi 5 2)26? o 1 ia?’ (5107)
Y (zi - 2)? ni
then the usual estimate for the variance of 3 should not be grossly in-
accurate. This should be the case if the z; are roughly symmetrically
distributed about Z.
For a regression where the intercept a is known to be zero, the
effect on the variance of 4 from a fan-shaped error structure such as
Figure 5.8 is considerably worse. The actual variance of 3 is

> = Zi0} zlo?

A

whereas the usual estimate of its variance is approixmately estimat-

(5.108)

ing R
£, (5.109)

n :"=1 o
i=1 77

Slnce large o; correspond to large z;, the weighted average L
z2a?/ 21—, 2% definitely exceeds the unweighted average PN .2 /n,
80 (5.108) is larger than (5.109), possibly considerably larger. Thus
the usual estimator for the variance of may be badly underesti-

mating the true variability.
5.4.2. Detection

Detection of heteroscedasticity is often relatively easy through a plot
of the data or examination of the residuals. The fan-shaped behavior
depicted in Figure 5.8 is readily detectable from a scattergram of
the data. Other sorts of nonhomogeneity of variances can usually
be spotted as well. When a graphical display is not available, or
even when it is, the residuals can be examined. If they are ordered
according to increasing values of z, the fan-shaped errors are revealed
by the increasing size of the residuals. Other forms of inequality of
variances lead to systematic changes in the sizes of the residuals.
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There are formal tests for the homogeneity of the error variances
based on analysis of the residuals. I do not feel a need to use them
because if the disparity in the variances is not blatantly obvious from
a scattergram or the residuals, it is not worth trying to correct. How-
ever, for readers who are less laid back about the problem and would
like a significance test the following references should be valuable:
Anscombe (1961), Bickel (1978), Carroll and Ruppert (1981a), and
Cook and Weisberg (1983). Anscombe assumes normally distributed
errors. Bickel does as well, but he also considers more robust tests

as do Carroll and Ruppert.
5.4.3. Correction

If correction for heteroscedasticity is the prudent course of analysis,
one might be extraordinarily lucky and find a transformation that
both stabilizes the variances and creates a more linear model. How-
ever, in most instances one has to resort to a weighted least squares
analysis.

In a weighted least squares analysis the sum of squares to be
minimized is

zn:w.-(y; - a - fz,)? (5.110)
=1

where w; = 1/0%. If God or the Devil were willing to tell us the

values for w;, § = 1,---,n, the solution would be

Gy = Ju — PuwZw,

by = o Wil % — Zw)(¥i = Gu) (5.111)
L 2?:1 wi(z; — Zy)? '
where 5o -
= _’.=l wiz‘. = _c'_:] wiyi
fw = ?=l w.' y w E:.:l w.. e (5112)

Since most of us cannot get help from above or below, we are faced
with having to estimate the unknown weights.
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One approach is to select a sensible system of weights involv-
ing the unknown regression parameters. For example, with positive
data the variance at z may be roughly proportional to the mean
of z, so w; = (a + Bz;)~!. For constant coefficient of variation
w; = (a + Bz;)~%. Both are special cases of (5.105). After selection
of an appropriate weight structure, minimization of (5.110) can be
achieved through an iterative process. Initial estimates ay, Bo (e.g.,
unweighted least squares estimates) are substituted for @, 8 in w;,
and for the first iteration the estimates a;, ;91 are calculated from
(5.111) and (5.112). The one step estimates &;, f are then used
as the initial estimates in the weights, and the process is repeated.
Convergence of the sequence of estimates ay, 3,,, k=1,2,--- to &y,
;‘}.z, is not a problem for smooth weight functions, but local, rather
than global, minima can be troublesome.

Amemiya (1973) evalutes the performance of the one step esti-
mates &;, B, where the aforementioned iterative procedure is stop-
ped after the first step. Bement and Williams (1969), Jacquez et al.
(1968), and Fuller and Rao (1978) also study one step estimators for
the related problem where there are multiple observations at each
distinct z value. When there are repeated y values at each differ-

ent z, sample variance estimates (e.g., s?) can be substituted for the

unknown o?.
Under mild conditions on the ¢? and the z;, the estimators
&, P are asymptotically normally distributed as n — oo. Their

variances and covariances are estimated by

T~ . ) — ~2 [ l i';:’
Var{ag) = 65 T, + }::-'__.l Wiz — %)2] ’
——— 2 r —QA
A 4.y = a2 =
COV(aW’ﬂW) O'W -2?=1 i).'(x.' - E‘a)Z] 3 (55113)
o A Y — ~2 [ l
Var(fg) = 6¢ | S Wiz — 2«3)2] i
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where estimates w; of the weights w; are used in the calculation and

1
n—

5 D wilyi — G — fazi)’. (5.114)

=1

6% =

The rationale for using n — 2 in the denominator of (5.114) has been
totally lost; thus n might just as well be used instead. Also, the
basis for using ¢t distribution critical points has disappeared; normal
critical values are justified by the asymptotics.

Instead of using weights involving the unknown parameters, em-
pirical weights can be substituted. For example, if the variances are
considered to be proportional to the square of the means, rather than
using w; = (a + Az;)~% in the iterative process, one can substitute
w; = y'-—z. If there are values of y; close to zero, the estimation may
be improved by adding a small positive constant to the observed y;
in the weights [i.e., w; = (c + y;)~2). The use of empirical weights
has the big advantage of eliminating the necessity for iteration.

My first preference is to use an unweighted analysis unless ab-
solutely forced by the data to abandon it. In my experience un-
weighted estimates tend to be more stable than weighted estimates
in the sense that small perturbations in the data do not produce
much change in the estimates. However, if a weighted analysis is the
order of the day, I would be more likely to use empirical weights than
go through an iterative process. With much less fuss and bother, the
empirical weights seem to produce estimates that are as reasonable
as the estimates obtained through iteration. I do not know of any
theoretical work or simulation to substantiate this, but the work of
Berkson (1955) on the minimum logit x? estimators is related sup-
portive evidence. I have had no experience with one step estimators
(see Amemiya, 1973), but they may also do as well as the estimates
obtained from a full iteration.

Any of the weighted estimators can be disturbed by outliers just
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as for the unweighted estimators. There has been some theoretical
work on robust estimators for heteroscedastic linear models (see Car-
roll and Ruppert, 1982), but judicious trimming is probably what is
mainly used in practice.

An unusual consequence can come from weighting when the
intercept a is known to be zero. Consider the heteroscedastic model

yi = Prit+ ¢ (5.115)

with Var(e;) = 0. The weighted least squares estimate of 3 is

ﬂ . 3 =

By = E!‘i.l..f‘_‘x‘g' (5.116)
i=1 WiZ;

where w; o 1/0?. For the special case in which 0} = 0?%|8|z; with

z; > 0, the weight w; can be taken equal to 1/z;. In this event B.,,

simplifies to

n . _
Buw = ——L—E,‘f :‘ = %, (5.117)
s=1 s

that is, the ratio of the sample means. More generally, as long as o?

is proportional to a known power of |u(z;)| (i.e., 0? = 0%|8z;|*), the
weights are known (i.e., w; = |z;|~*), and no iteration or empirical
weights are required in the estimation procedure.

If the z; are fixed, or viewed as conditionally fixed, the variabil-
ity of fjw is estimated by

3

—— - a
T . e
Var(fy) = oA (5.118)
where =
.2 1 -
LA e ) wilyi - fuzi)’. (5.119)

=1
As long as the weights w; are known powers of z;, the usual nor-
mal and x? distribution theory goes through for (5.116) and (5.119),

respectively.
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Ratios of sample means are treated in Chapter 6. In the context
there, the sample mean 2 is viewed as a random variable, and its
variaiblity is taken into account in estimating the variation of §/z.
Thus, in the special case where z; is random and w; = l/a:,:, there
may be some question over whether to estimate the conditional or

unconditional variance of ,5.,,
5.5. Dependence.

Dependence between the y observations can creep into a regression
model in a variety of ways, but the brief discussion here is limited to

a few main possibilities.

If the pairs of observations (z;,y;) are collected in different
blocks, as for example, on different days, from different patients,
or with different equipment, one regression line may not adequately
model the data. The observations within a block may be more closely
related than between blocks and the regression relationship may vary
between blocks. Ignoring this blocking may still provide nearly un-
biased estimates of the regression coefficients if the z values are ap-
proximately balanced with regard to blocks, but the estimates of
variability can be fouled up.

When blocking is known to be present, the wise statistician
investigates whether there is any block effect. This can be accom-
plished by fitting a separate regression within each block. The actual
variability between blocks for the estimated intercepts and slopes can
be compared with the average of the variabilities estimated internally
from the regressions within the blocks. Formal tests of equality can
be executed by computing F statistics or studentized range statistics
(see Section 5.1.2).

If the regressions are judged to be different between blocks, it

may be more appropriate to think of the slopes and intercepts within
blocks as being random effects rather than as fixed effects in Section
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5.1.3. This is especially germane when the blocks can be viewed as
random effects like days or patients. The statistical model would be

¥ij = 6; + bizi; + ¢y, (5.120)

1=1,--k,g=1,--,r; (n= Ef:x r;), where the (a;, b;) are inde-
pendent and have a bivariate (normal) distribution, and the ¢,; are
independently [of themselves and the (a;, §;)] normally distributed.*
The separately estimated aj, b, s = 1,---,k, can often be treated
as independently, identically distributed random variables, and their

means and variances estimated by

k k
3 1 = o 1L 1 _ s avg
Bs = z ;G., Vﬂ.l'([la) - k(k _ 1) ;(Gl "G) ’
e = (5.121)

k k
b= L3 b Varlig) = ——— (6 ~ 5517
Bs = k gbh Val‘([lb) = k(k'— l) .Z__;(b’ pb) Y

These estimates are especially appropriate when the variation in the
o? and z;; between blocks can be viewed as random. Weighting
the a; and b; by their within-biock estimates of variability is not
recommended. This ignores the variability between blocks and tends
to produce unstable estimators (see Section 3.5.4).

When there are two or more regressions to be compared and
each contains block effects, the just described procedure of individ-
ually estimating the intercepts and slopes within blocks and then
treating these estimates as the basic random variables in a multiple

sample problem is often very useful.

An extreme form of blocking can occur when replications (two
or more) are taken at each distinct z value. If the replicate observa-

* An appropriate modification should be made to (5.120) and the subsequent
analysis if either the slopes or intercepts are judged to be equal between
blocks.
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tions are taken under the same experimental condition, on the same
patient, for example, they may exhibit less variability than the over-
all variation about the regression line. To treat them as independent
observations in a standard analysis may lead to incorrect estimates
for the variability of the regression estimators.

To be more specific, consider the case of r replicate observations
at each of k distinct z values. The total sample size n equals rk. Let
the model be

vij =a+ Bz; + €5, (5.122)

t=1,---,k,5=1,.---,r, where
e = i+ g5 - (5.123)

The variable f; is the error for the group of observations at z; as a
whole, and g,; denotes the replication error within the group. The
distributional assumptions are that f; is distributed as N(O, a}), 9ij
is distributed as N(O, 03), and the f; and g,; are all independent.
The r replicates at z; are no longer independent because of the com-
mon factor f; representing their communal experimental condition,
patient, etc.

If the n observations are (incorrectly) substituted into a stan-
dard analysis, the error sum of squares can be written as

31 k r
YD (wii-a- Bz =) (vij - 9:)?
=1 j=1 =1 j=1 : (5.124)
+rY (0 — 6 — Bz)?,
=1

where the least squares estimates simplify to

é=4g.- pz,
§= E::l(zl' - z) (g - 9.) (5.125)
= 5 _

1(11' - z)?
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From (5.124) it should be clear that 62 [i.e., SS(E)/(n - 2)] is esti-
mating
k(r = 1)o2 +r(k - 2)[o? + (07 /r)]
rk—2
since y;; — . = ¢ij — §i. and §;. = a + Bz; + f; + §;. . Expression
(5.126) can be rewritten as

(5.126)

o? -a + 2%—:) (5.127)

The estimate of the variability in § [i.e., Var(8)] is trying to
estimate

0.2
?:1 ;=1(1€j —-2.)?
2, 2r(k-2) 1
[U' + 0'! rk — 2 rzk (I" [~ j)z ) (5.128)

== 2 2
HECEN z:,-,(z. —z)’

whereas the actual variance of 8 is

2
[ .] 3 (I ! (5.129)

Thus the variance a} of the block component in Var(f) is being
underestimated by the factor (k — 2)/(rk — 2).

A similar effect occurs for a.

The way to detect this is to compare the replication variance
estimate

lz'epl k(r 1) EZ(%J gi.)? (5.130)

=1 §=1
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with the (suitably scaled) regression variance estimate based on the
means §;., 1.€.,

k
a 7 a 2

ra,z.eg =] =1 Z(g, —-—a - ﬂz;)z. (5.131)

i=1
If (5.131) is much larger than (5.130), this indicates the presence of
a nonzero a? in (5.131). Under Hp : a} = 0 the ratio r&%eg/c‘;:epl
has an F distribution with k — 1 and k(r — 1) df, but this test is
extremely sensitive to the assumption of normality (see Chapter 7).

When there is evidence that the replication variance is smaller
than the regression variance, the safest analysis is to average over the
replicates and run the regression on the mean values §;., s =1,--- k.
The incentive for not doing this unless absolutely necessary is the
considerable loss in degrees of freedom from rk — 2 to k — 2.

Another type of dependence can be created by baseline adjust-
ment. Although this adjustment procedure may arise in multisample
and cross-classification problems as well, it seems to occur more fre-
quently in regression contexts in my experience. It occurs when the
recorded observation y; is actually a measured value u; that is di-
vided by a baseline measurement ug or has a baseline measurement
subtracted from it. That is,

yi = u;fug or y;=u;— uo, (5.132)

§ =1,---,n, and these adjusted values y; are felt to have a linear
relationship with the independent variable values z;, 1i=1,---,n.

If the investigator has been wise enough to measure uo with
far greater accuracy than u; by taking more replicates, observing
longer, etc., then for practical purposes ug can be considered to be
a constant and no dependence is introduced. On the other hand, if
Var(uo) is nearly the same size as Var(u;), then dependence has been
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created between the y; by the communal ug. This needs to be taken
into account in the analysis.

With the ratio adjustment y; = u;/ug, the estimated regres-
sion coefficients of y on z are algebraically equal to the regression
coefficients of u on z divided by up (i.e., &y = éy/uo, B, = 3u/uo).
Similarly, 62 is the mean square error for u regressed on z divided by
u? (ie., 63 = 0%/u?). The usual tests of Hy:a =0and Hy: =0
are valid, but tests of any nonzero values are conditional on ug. The
customarily estimated variability of & and 4 does not include a com-
ponent from the variability in uy. To incorporate this, the method
in Chapter 6 for estimating the variability of a ratio needs to be
applied. An estimate of the variance of ug is required for this.

With the subtraction adjustment y; = u;—ug, the usual estimate
of ﬂ and 6% are undisturbed since ug cancels out, but Gy = Gy ~ Ug.
Clearly, Var(ay) = Var(a,) + Var(up). The first component can be
estimated from the standard regression analysis, but an estimate of
the second has to be obtained elsewhere. If ug is in fact an average
of a group of m baseline values, V;(uo) can be calculated from the
sample variance of the group divided by m.

The final type of dependence to be mentioned is serial corre-
lation. Concern for this arises most frequently when the index s
measures time. The z variable may itself be time or a function of
time. The model is still (5.1), but the ¢;, which are N(0,02%), may
have Cov(e;, e4;) = pjo® # 0for 5 > 1.

Although the standard regression coefficient estimators remain
unbiased, the usual estimates of variability can be quite inaccurate.
Durbin and Watson (1950, 1951, 1971) proposed a test for H : p; =
0, 5 2 1, based on the statistic

pw = Zimi (rivs = rif? (5.133)

Zin=1 "-? d
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where r; = a — fz;, i =1,---,n are the residuals from the standard
regression analysis. The null hypothesis is rejected for small values
of DW. For details see the original sources or Draper and Smith
(1981, Chapter 3). Adjustment for serial correlation draws one into
the domain of time series analysis, which is beyond the scope of this

book.
ERRORS-IN-VARIABLES MODEL

In this model the measurements on both variables are subject to

error. Specifically,
A (5.134)
yi = vi e,
where u; and v; are the true sth values of the first and second vari-
ables, respectively. However, we can only observe z; and y;, which
are u; and v;, respectively, with the observational errors d; and e;
attached. The true underlying variables u and v are related by the
linear relation

v=a+ fu, (5.135)

which could just as well be reversed to
u=a'+f'v, (5.136)

where 3’ = 1/8 and o' = —a /8. The standard distributional as-

sumptions on the errors are
d; independent (0,03),"
¢; independent (0,0?), (5.137)
{d;} independent of {e,}.

Before launching into a discussion of the statistical analysis as-
sociated with the model (5.134)-(5.137), it is important to try to
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delineate when this model is appropriate and when the already dis-

cussed regression model is more valid.

The errors-in-variables model is popular in economic analysis
where all the economic variables entering the model are measured
with uncertainty. The goal of the analysis for economists is to deter-
mine the relationship between the underlying variables.

The errors-in-variables analysis is also especially appropriate
when comparing two different techniques for measuring the same
quantity, where both techniques experience errors in reproducibility.
An example would be measuring cardiac output by the dye-dilution
and thermodilution methods; neither method exhibits substantially
less variability than the other when repeated measurements are ob-
tained. In this situation, one usually wants to know whether both
methods are providing the same reading except for noise, which is
the hypothesis Hy : a =0, 8 = 1.

If one of the variables, say z, is the gold standard of measure-
ment, then a standard regression analysis may be more appropriate.
By “gold standard” is meant that the value of this variable is uni-
versally accepted as the true value, even though it may not be any
more reproducible or accurate than the other variable. In this cir-
cumstance, everyone wants to know how the new variable y relates to
the old accepted variable z. When the gold standard measurement
is also less variable, there is no question about the analysis; it should
be a regression analysis.

When the problem is to predict y from z, the correct analysis
is a regression analysis. With mean squared error, E(y | z) is the
optimal predictor. Under normal theory for u, v, d, and ¢ (see Section
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5.6), E(y | z) is linear in z, but

E(ylz)=E(a+ﬂu+c|z),

= a+ﬂE(U|I),
2 2

94 Oy
=a+ +8( =23,
ﬂ(a§+¢7§)”u ﬂ(a?,+a§

which differs from a+ 8z.* For nonnormal distributions, the last line
in (5.138) is still the optimal linear predictor. In either case the least

(5.138)

squares regression line is correctly estimating (5.138) [see (5.141)].

Another instance in which regression analysis is the correct anal-
ysis is referred to as the Berkson model of a controlled experiment.
Here the first variable is under the control of the investigator, and he
or she actually sets the value z;. However, the true u; determining
v; may differ from z; in that the delivered voltage may not equal the
set voltage, the drug dilution may not be exact, etc. In these cases
where the investigator is setting z; and not having it measured for
him or her, Berkson (1950) showed that one should apply regression

analysis.

For a fuller discussion of these issues, the reader is referred to
the gold standard reference for this araa which is Madansky (1959).

Given that the errors-in-variables model is appropriate, a dis-
tinction arises over the character of the u; (or v;) values. If they are
nonrandom quantities that should be viewed as unknown (design)
parameters of the data, then there are n+ 4 parameters in the model
to be estimated, namely, u; (or v1), -+, tn (or va), a (or a'), B (or
B'), 03, and 0?. This submodel is referred to as a functional rela-
tionship between z and y. The alternative is for the u; (or v;) to be
viewed as random quantities generated by a distribution with mean
pu (or py) and variance 02 (or 02). The u; (or v;) are considered to

* pu=E(u).
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be independent of d; and e;. This is called a structural relationship
between z and y. In my opinion, the choice of the words “functional”
and “structural” is very unhelpful mnemonically, but we are stuck

with them for historical reasons.

The presentation here is limited to the structural relation case.
In my experience most applications involve random u;. There are
differences in the analyses, except for the most important special
case where A = 02/03 is known. Kendall and Stuart (1961, pp. 383~
388) is a good reference for a discussion of the functional relation

case.

Before giving the analysis for a structural relation model, it is
instructive to see what happens with the usual regression analysis.
Consider the slope estimator:

B- Et“ ( - z)(yi — )
Zn (I, il :l") 2
 Thluitd; La (i)(: d+ _ﬁf; T-S;a @=h8=8 (5130
AE AUl

—}li ?:1(“'_“ + 5 Es=1(d|"d) + Ry’

where
Ry = % [ﬂZ(ds' - d){u; — @) + Z(“i +d; — @ - d)(e; - 5)] :
Ehe % [2 z":(u; — a)(di - d)] . (5.140)

Since the u;, d;, and e; are independent, R; and R, converge to zero

o?
R ’9(02+ad) (5.141)

The usual regression slope estimator is asymptotically biased down-

as n — oco. Thus

ward from B by the inaccuracy in the z measurement. The degree of



224 Chapter 5: REGRESSION

asymptotic inconsistency depends on the relative sizes of 0} and o2.
However, it is correctly estimating the slope in (5.138). Similarly, &
is estimating the intercept in (5.138) rather than a.

5.6. Normal Theory.

In addition to the assumption that the {d:}, {e;}, and {u; or v}
are all independently distributed, it is postulated that their respec-
tive distributions are all normal. This creates a bivariate normal
distribution for the pair of observable variables (z;, y;).

The maximum likelihood approach to estimation of the param-
eters in the structural errors-in-variables model maximizes the prod-
uct of the bivariate normal densities for (z;,¥i), s = 1,---,n, with
respect to the five parameters pz, py, 0%, 0}, and 0,y. The MLE
are the usual sample means, variances, and covariance, each with
denominator n. Since these five parameters are functions of the six
parameters a, 8, p, o, 0%, and o2 in the model, the equations relat-
ing the bivariate normal parameters to the model parameters define
the MLE of the model parameters when estimates are substituted:

e = 2,
&+ Pie =1,
62 + 6% = 62, (5.142)
gl + i = a3,
ol = 62y,

where*:**

* The six parameters a’, 8, p, 03, 04, and 02 could be used instead; they
lead to equations analogous to (5.142).

** Some statisticians may prefer to use the denominator n — 1 in 82,53, and

&5y The estimates & and f§ are invariant under the choice.
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2 1o
03 3 ;Z(zi_ i')2?

=1

&y = % > wi-9)%, (5.143)
=1
&zy = %Z(zi = 2)(%’ = ﬂ)
=1

Since (5.142) comsists of five equations in six unknowns, there
is clearly a difficulty. The parameters are nonidentifiable. Extra
information is needed to pick out a unique solution. The sort of
information that is usually available involves knowledge about o3
and o?. This can take the form that either one or their ratio is
known. Typically, replicates have been run for the measurement
processes on z and y for previous data or even on the current data.
Using this information to establish a value for the relative sizes of
the error variances through the ratio A = 02 /0% usually produces a
more stable result than trying to tightly estimate the absolute size

of 02 or 02.

When replicates have been run in the experiment, they should
be averaged and the average values used in the errors-in-variables
analysis. Otherwise, the dependence between different data points is
being ignored. Since the data exhibit variability in both the z and
y variables, the usual standard error bars, like those in Figure 1.1,
should be displayed both horizontally and vertically. This is depicted
in Figure 5.9 along with the structural line.

On rare occasions one knows the value for A without having to
separately estimate it. I encountered this once when the measure-
ment processes were identical except for the site of sampling, so )\
was necessarily equal to one.

The analysis to follow is restricted to the case of known ). For
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Figure 5.9

a discussion of the other cases, see Kendall and Stuart (1961, pp.
380-382) and Birch (1964).

Since 67 and 62 must satisfy A = 62/6%, the term 142 can
be substituted for 62 in the fourth equation of (5.142). The third
through fifth equations can then be manipulated to eliminate 62 and
6%. This yields the following quadratic equation for B

B262y + B (X623 = 62) — X4y = 0. (5.144)
The solutions to (5.144) are

1/2
63 - 2ot + [(63 - 262)° + 4r07, ] /

264,

(5.145)

From the last equation in (5.142), # must have the same sign as 6.y.
Since 24,y is the denominator in the ratio in (5.145), it follows that
the numerator must be positive. This implies that the correct root
in (5.145) is the “+” root because the square root term is larger than
the preceding term.
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The roots of (5.144) are sometimes written in the form

B=U=x[U%+ /2 (5.146)
where
52 ~ 26?2

The correct root has the same sign as 4,,; that is, if 6,y > 0, use
“+,” and if 6,y < 0, use “~.> See Madansky (1959, Appendix) for
errors in the literature on this sign calculation.

Once A has been determined from (5.145)~(5.147), the esti-
mates of the other parameters follow immediately from the equations
(5.142):

b = 2,
& =g - fz,
62 = b./8, (5.148)
63 = 63 — (629/8),
62 = 6% — fosy.

Although the estimators (5.145) and (5.148) were derived under
the assumption of normal distributions, they have a more nonparam-
eteric quality to them. Inspection of the equations (5.142) reveals
that they are method of moments estimators, where u, d, and ¢
can have any distributions with finite second moments. Also, Dem-
ing (1943) and Lindley (1947) have derived these estimators from
weighted least squares points of view. They are in fact the orthogonal
regression estimators when the variable scales are appropriately ad-
justed for o3 and 0?. Actually, the history of errors-in-variables anal-
ysis extends back into the nineteenth century (see Madansy, 1959,
Appendix for early references).

When the error variances ratio A = 0? /03 is known, the MLE for
a, f obtained by maximizing the likelihood with respect to uy, - -, u,
a, #, 0%, and 62 in the functional errors-in-variables model coincide
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with those given in (5.145) and (5.148). For details of the derivation,
the reader is referred to Kendall and Stuart (1961, pp. 383-386) or d
Graybill (1961, pp. 189-191). |

Additional references for the reader who wishes to delve more
deeply into errors-in-variables analysis are Sprent(1966) on a gen-
eralized least squares approach, Lindley and El-Sayyad (1968) on a
Bayesian approach, T. W. Anderson (1976) on connections with si-
multaneous equations in econometrics, and Gleser(1981) and Chan
and Mak (1983) on a multivariate model.

What about tests and confidence intervals for the unknown pa-
rameters in the structural errors-in-variables model? The results here

are a little sparse.

Creasy (1956) gave the interval

tan™! (%) € tan™’ (\%) (5.149)

49 a g 1/2
+ L sin~! 2t°{_22 /\(57303 - oZ,) - L
2 "% | (n = 2)((6% — A62)® + 4A62))

where tﬁ{ zz is the upper 100(a/2) percentile of the t distribution
with n — 2 df. This interval has probability nearly 1 — a of be-
ing correct and can be converted into an interval on 8. The “nearly”
comes from omitting any probability associated with |tan=!(8/v/}) -
tan~!(8/v2)| > x/4 in order to avoid additional roots of a trigono-
metric equation; for details see the original Creasy reference or
Kendall and Stuart (1961, pp. 388-389).

The large sample variances and covariance of & and f can be

I |
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estimated by

T~ . g A 29 . 22 - AD a a
nVar(&) = 03 — 2064y + ﬂza: + &f (03‘73 = ”zy)’
zy
T o B a2az a2
nVar(f) = (626, — 6z), (5.150)
62,
————— ~ Az
nCov(&, f) = - 20 (%52 - 32,).
62,

The expressions in (5.150) are derived form the influence functions
for & and §; the details are given in Kelly (1984). Use of (5.150)
with normal critical constants will produce approximate confidence
intervals and tests. However, these confidence intervals and tests are
dependent on the normality assumption; see Section 5.7.

There are no classical methods for obtaining confidence inter-
vals and tests for 02, 02, and 02 (or 62). This is just as well because
whatever they might be would be very sensitive to departures from
normality. Jackknifing and bootstrapping the data are the best cur-
rently known methods for assessing the variability in the estimates.
For related discussion on inference with variances see Chapter 7.

If it is known a priori that a = 0, then the nonidentifiability
problem vanishes. The & term disappears from the first two equa-
tions in (5.142) so the estimate of § is §/% (i.e., the ratio of the
sample means). To assess the variability (and bias) in § the meth-
ods of Chapter 6 can be applied.

When a = 0, estimates of 03, 62, and 02 can be obtained from
the last three equations in (5.142) as well. For ill-behaved data, it
can happen that one of these variance estimates is negative. For
example, # > 0 and Osy < 0 yields 62 < 0. This means that the
actual maximum for the likelihood must occur somewhere on the
boundary of the admissible parameter region.

Before closing, a second technique should be briefly mentioned.
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It was introduced by Wald (1940) in the context of a functional
relationship (i.e., u; fixed), but there is no reason it cannot be applied
in a structiral relationship setting. Wald’s original idea was to divide
the data into two groups according to the ordering on the z-scale.
Nair and Shrivastava (1942/44), Nair and Banerjee {1942/44), and
Bartlett (1949) generalized this to three groups. Since three groups
seem to be more effective than two, the technique is described using

three groups.

The group mean method orders the data lexicographically ac-
cording to the values z;, s+ = 1,---,n, and then divides them into
three roughly equally sized groups. An underlying assumption of
the method is that the noise terms d; are small compared to the
variation in the u; so that the data are actually divided into three
groups containing the smallest third of the u;, the middle third, and
the largest third. No u; should be in the wrong group, or, if there
are some mistakes, they should be insignificantly few. Let 2;, 25, 23
(%) < Z2 < %3) and §;, §2, §s be the means of the z and y variables
in the three groups. Then the group mean estimate of the slope is

a_Us—th

A= e (5.151)
and the intercept estimate is

a=g- Bz, (5.152)

where %z, § are the means for all the data. Note that the slope
estimate (5.151) ignores the middle third of the data; it also treats
the data asymmetrically in that the z variable determines the three
groups.

Wald (1940) and Bartlett (1949) considered the distribution
theory for &, # under the assumption that the d; and ¢; are normally
distributed.
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5.7. Departures from Assumptions.

Nonlinearity is best spotted though a plot of the data and the esti-
mated linear structural relation. Residuals can be examined as well
just as for regression. In this case, one can actually look at residuals

in either direction, namely, y; — & — 5::,- or

Al Bl — o, i = L .
zi—a - fy; :.+(ﬂ) (ﬁ)yn

= (_—;—) (vi — & — Bxy).

To my knowledge, no formal tests for nonlinearity have been

(5.153)

proposed in the errors-in-variables model other than to embed the
linear model in a larger model and to test the added parameters
for significance. Even this is difficult because of the complexities
involved in fitting and testing structural or functional relations for
models other than a simple straight line. Some work has been done
on the quadratic model v = By + fju + fzu?, but it falls outside
the intended scope of this book. It is primarily concerned with the
functional relation model. For recent work and earlier references, the
reader is referred to Wolter and Fuller (1982).

Nonnormality of the underlying d, e, or u(v) distributions is
not a serious threat to the accuracy of the estimates of a, 8, o3,
02, o2, or o2 except for the effects of outliers from contaminated
or heavy-tailed distributions. The estimates defined by (5.142) are
method of moments estimators as well as being maximum likelihood
estimators under the normality assumption so their calculation is not
dependent on the normality assumption. However, outliers can dis-
tort the sample moments entering (5.142) and thus affect the values
of the estimators. The position and magnitude of an outlier govern

its impact on the estimators just as in regression.

Diagnostics for the errors-in-variables analysis is nowhere as
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well developed as for regression analysis. Plotting of the data is

the best means of spotting outliers. Examination of the residuals
yi— & — Bz; or T;— & — f'y; and their relative positions determined
by (2i - 2)/[S0y (2 — 212 or (y: - ) /[0y (i — 9)21V/% may be

useful as well.

At this point in time, judicious trimming is the only antidote
used for outliers. Robustics have not yet come to errors-in-variables,
but some proposals are given in M. L. Brown (1982).

Although the estimators themselves are modestly robust to a
lack of normality (except for outliers), this is not true for their dis-
tribution theory. The confidence interval (5.149) and the asymptotic
variances (5.150) are very dependent on the normality assumption.
This was shown in the work of Kelly (1984), who derived the in-
fluence functions for & and A defined by (5.148) and (5.145), re-
spectively, under a general distribution F for (z,y). In a simulation
study she compared the estimates of the variability in & and § for
the normal theory estimators (5.150) with estimators based on the
influence function and the estimators obtained by jackknifing and
bootstrapping. The normal theory and influence function estimators
performed very poorly. The influence function estimates were con-
sistently much too small. The normal theory estimators also tended
to underestimate but by not quite so much. The jackknife and boot-
strap did much better with the jackknife always being somewhat
conservative. The bootstrap behaved a bit erratically.

Since the jackknife yields the preferred estimators of variability
at this time, it should be described explicitly. Delete in succession
each data point (z;,y;), s = 1, - -, n. With the sth data point deleted,
let é._; and B_; be the estimates calculated from (5.145) and (5.148)
with the sample moments based on n — 1 data points. The pseudo-

v
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values are defined by

a; =na - (n-1)a_,,

2 . A 5.154
Pi=nf~-(n-1)8, ( )

for § = 1,---,n, where & and § are the estimators based on all n
data points. Then the jackknife variance and covariance estimators

are
Vo (@) = - S (a: — 412
nVar; (&) = = g(a, a),
aVars(4) = ——= Y (i - Y%, (5.155)
=1
nCovs(, ) = —= Y& - &)(hi - B),
=1
where @ = ) 7, &;/n and g = P 5.-/1:. The expressions in

(5.155) are also the variance and covariance estimates for the jack-
knife estimators &@; = & and #; = B. The variability estimates
(5.155) used in conjunction with the approximate bivariate normal
distribution for & — a and ﬂ —~ B (or @5 — a and 31 — f) yield ap-
proximate confidence intervals or regions for a and 8.

Brillinger (1966) was the first to suggest applying the jackknife
to the linear structural relation problem.

The reader should be warned that the jackknife is not resistant
to outliers. Therefore, any influential outliers should be trimmed
before jackknifing.

Nothing has been published on what happens or what to do
when the observational errors have unequal variances. A common
situation is where 03 and 0? increase as u and v increase. In par-
ticular, the observational errors may have a constant coefficient of
variation. If a transformation is found that both stabilizes the error

-
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variances and maintains or creates a linear relation between u and
v, the problem is resolved, but most of the time we are not so lucky.

Dependence between data points in the errors-in-variables
model — who knows anything?

Exercises.

1. Verify that the expressions in (5.10) are the variances-covari-
ance for &, # for fixed z;,- -, z, and independently, identically
(but not necessarily normally) distributed ¢,,- - -, e,.

2. Verify the relationship between r and ﬂ/.S/'l\)(ﬂ) given in (5.22).
3. Use the probability equality

P{a® € &"  |m|3,_,6(1/n)'/?
and
B* € 8" % |m|3, 26(1/S::)/?} =1 -,
to prove that

2 A3 . 1
P{a +fz€a+fz+ |m|g,,,_2a(——-n1/2

+M) forallz}=l—a,
Gt

where S;; = Y1, (z: — 2)%.

Hint: Figure out the projections of the confidence rectangle onto
(1,z - 2), or, for P{A} and P{B} above, show that A C B and
ADB.

4. Use the delta method to show that asymptotically

Var (I‘oﬂ- &) a? [l s (po—a - ﬂf)z]

= Fi n B2Sz.

as n — 00, Szz — 00 [see expression (5.35)].
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Hint: Use the Taylor series expansion

9(u,v) = g(p,n) + (u - #)%y(#,n) + (v~ n)%y(n,n) e,

where p = E(u) and n = E(v).

For the multisample regression problem with common slope,
obtain an expression for Var (E‘!:l c.-c‘;,-), where the intercept
estimates &;, § = 1,---, I, are defined by (5.63) and ¢;, § =
1,---, 1, constitute a contrast.

Use the delta method to justify the bias-adjusted estimator [;,2
given in (5.75).

Verify the value of E(y | z) given in (5.138) for the normal

theory errors-in-variables structural model.

For the errors-in-variables structural model with krown error
variances ratio A = 0?/03, derive equation (5.144) and the esti-
mates (5.148) from the relations in (5.142).

In the data in Exercise 6 of Chapter 1, donor blood was collected
into paired bags containing ACD and ACD+A.

(a) Compute the product moment correlation coefficient r
for the 12 paired values.

(b) Does the size of r have any implication for whether a
paired or unpaired t test should be run?

(c) Is r statisticlaly significantly different from zero?
(d) Compute Kendall’s rank correlation coefficient 7.

(e) Is 7 statistically significantly different from zero?

For the data in Exercise 9 of Chapter 3, regress the girls’ muscle
grades on their (group) ages. Is the variability in the 5 mean
values about the regression line consistent with the variabilty

within age groups?
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The 6 commercially available contrast agents used in the ex-
periment described in Exercise 10 of Chapter 4 are chemically
different. However, the investigator felt that the only quantity
that affected the opacification index was the amount of iodine in
each agent. The iodine concentrations (mg I/m1) in the agents
are as follows:

A =400 B = 320 C =400
D = 480 E =370 F = 282

A Gl analyais of the extta period Lakin aquate data ndicatrs
that there are no period or residual effects, but there are dog
«ects. For (he purpose of this txertise disturd 4he dava Stom
the extra period.

(a) Calculate a linear regression between opacification in-
dex and iodine concentration. Obtain estimated standard

deviations for the regression coefficient estimates.

(b) Is the investigator justified in his claim that the iodine

concentration in the agent determines the opacification in-
dex?

(c) Is there any evidence of nonlinearity between the opaci-

fication indices and iodine concentrations?

Blood volume in a newborn can be calculated by injecting dye
and then dividing the amount injected by the concentration
mesured in the blood. The optical density (OD) of the dye is
measured at wavelength 620. However, other color agents in
the blood have density curves overlapping this wavelength. Be-
cause of this it is necessary for the blood volume calculation to
subtract from the optical density at wavelength 620 an estimate
of the density without dye predicted from the density measured
at wavelength 740, which is unaffected by the dye.
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The optical densities (without dye) at wavelengths 620 and 740
for 36 newborns on phototherapy for jaundice are presented in
the table. A prediction equation from which the OD 620 can
be estimated from the OD 740 is desired.

(a) Obtain the regression estimates &, A, and 62.
(b) Is OD 740 significantly related to OD 6207

(c) Does any adjustment need to be made for departures
from assumptions?

(d) What is your final prediction equation?

s e
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Newborn Od 620 OD 740 Newborn OD 620 OD 740
01 28 14 19 26 9
02 14 7 20 36 17
03 37 12 21 48 20
04 84 40 22 54 30
05 28 11 23 56 31
06 38 16 24 135 74
07 98 54 25 40 16
08 21 9 26 21 8
09 44 22 27 48 19
10 118 74 28 30 10
11 42 18 29 22 11
12 60 31 30 50 30
13 106 48 31 18 8
14 62 42 32 35 16
15 49 22 33 241 124
16 38 18 34 73 29
17 26 9 35 40 11
18 46 23 36 42 20

13. Premature babies are extremely susceptible to infections. At the
Stanford Medical Center Intensive Care Nursery, kanamycin is
used for the treatment of sepsis. Because kanamycin is ineffec-
tive at low levels and has potentially harmful side effects at high
levels, it is necessary to constantly monitor its level in the blood.
The standard procedure is to take blood samples from a baby’s
heel. Unfortunately, frequent samples leave badly bruised heels.

Kanamycin is routinely administered through an umbilical
catheter. An alternative procedure to a heelstick for measuring
the serum kanamycin level is to reverse the flow in the catheter
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and draw a blood sample from it. However, physicians are relue-
tant to rely on measurements from the catheter because prox-
imity to the site of infusion and residual amounts of kanamycin
on the wall of the catheter might elevate the levels.

A study of 20 premature babies was conducted to see if kanamy-
cin levels measured in blood drawn from the heel and the cathe-
ter are equivalent.* The data from simultaneously drawn sam-
ples are presented in the table. Since the preparation and assay
processs are identical for both blood samples, it is reasonable
to suppose that A = 02/03 equals 1 in a structural errors-in-

variables model.

(a) Estimate the intercept a and slope # in a structural
errors-in-variables model by normal theory maximum like-

lihood under the assumption A = 1.

(b) Estimate the variability in & and A by the jackknife
method.

(¢) Would you conclude that the two methods are equiva-

lent?

* For additional details on this study see Miller, R. G., Jr. (1980), Kanamycin
levels in premature babies, Biotatistics Casebook, Vol. 8 (Technical Report
No. 57, Division of Biostatistics, Stanford University), pp. 127-142.
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Baby Heelstick Catheter

01 23.0 25.2
02 33.2 26.0
03 16.6 16.3
04 26.3 27.2
05 200 23.2
06 20.0 18.1
07 20.6 22.2
08 18.9 17.2
09 17.8 18.8
10 20.0 16.4
11 26.4 24.8
12 21.8 26.8
13 14.9 15.4
14 174 14.9
15 20.0 18.1
16 13.2 16.3
17 28.4 31.3
18 25.9 31.2
19 18.9 18.0

20 13.8 15.6



Chapter 6

RATIOS

For two variables z and y, interest may center on the ratio of their
means n/pu, where p = E(z) and n = E(y). The mean ratio is
pertinent when one wants to know the average amount of variable
y per unit of variable z. An example might be the protein content
of cells per unit DNA. The mean ratio is also involved when the
parameter of interest is the percentage change or relative change
between experimental (y) and control (z) conditions. Percentage
change is defined by

(.,_-_,.) AL (g 4 1) x 100, (6.1)

and relative change is defined by (6.1) without the factor 100.

For a sample of pairs (z;,y;), s = 1, -+, n, an obvious estimator
of n/p is §/2, where 2 and ¢ are the sample means. This estima-
tor, which is the ratio of the sample means, will converge to n/p as

n — oo, but the estimator (1/n) 3"

=1 (yi/z;), which is the mean of
the sample ratios, will not. The latter estimator is consistent for the
expectation E(y/z). The two quantities E(y/z) and E(y)/E(z) are
rarely equal. They can be nearly equal or quite far apart, as de-
termined by the joint distribution of z and y. The investigator and
statistician should have clearly in mind which quantity they want to

estimate. In most cases it is the ratio of the population means n/pu.

The ratio of the means estimator §/2 came to the fore twice in
Chapter 5, once in the regression model as a weighted least squares
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estimator when a = 0, and once in the errors-in-variables model as
the MLE of # when a = 0. The values z; were asumed to be fixed
in the regression model, but the probability structure for §/z in the
structural errors-in-variables model was basically the same as that

considered in this chapter.

Ratio estimators play an important role in survey sampling.
However, the context in which they are used in sample surveys is
a bit different from that being considered here. The probability
framework frequently postulated for survey work is sampling without
replacement from a finite population of N units. Moreover, often
the objective is to estimate Y, the finite population mean of the y
variable. The finite population mean X may be known from a more
complete survey or census (possibly obtained previously), or it may
be known through routine tabulation of other population statistics.
When X is known, the ratio-type estimate (§/2)X can be a more
acurate estimate of ¥ than the simple estimate §.

In survey sampling the ratio estimator has been generalized to
stratified samples and other more complex sampling schemes. An
excellent reference on the use of ratios in sample surveys is Cochran
(1977, Chapter 6). With minor modification from finite to infinite
population sampling, most of the discussion in Cochran’s book ap-
plies to the situation being considered in this chapter.

6.1. Normal Theory.

The one sample problem with paired data is the primary focus of
attention. Let (z;,¥;), 1 = 1,---,n, be n independent pairs of values
that are distributed according to a bivariate normal distribution with

mean vector and covariance matrix given by

(e &



Section 6.1: Normal Theory 243

respectively. The problem is to test whether 8 = n/p has a specified
value 8, or to construct a confidence interval for 8.

The maximum likelihood estimator of # is § = g/z. This is
an obvious and intuitive estimator, but it has some difficulties as-
sociated with it. For one, it is not an unbiased estimator. In fact,
its expectation does not even exist in an absolute sense. For sam-
pling from distributions other than the normal, its expectation can
exist, and in the next section modified estimators that reduce the
bias in small samples are discussed. For another, the distribution of
§/% is exceedingly complicated and unsuited to confidence interval
construction or hypothesis testing (see Geary, 1930; Fieller, 1932;
Marsaglia, 1965; and Hinkley, 1969). However, a trick allows one to
construct confidence intervals and test hypotheses.

Paulson (1942) explicitly described the following procedure for
constructing a confidence interval on @ = n/p. Earlier Fieller (1940)
had used the same idea in a regression context [see Section 5.1.1,
(5.31)-(5.33)). Precursors of the procedure appear in Geary (1930)
and Fieller (1932).

Under the bivariate normal model, the variables z; = y; — 8z,

t=1,--- n, are independently normally distributed with mean
n
n~0u=n—(~)p=0 (6.3)
n
and variance
o2 - 200,, + 0%}, (6.4)
Consequently, the ratio
- (6.5)

[F(hi " (2 - 2)2] 1/2

has a ¢ distribution with n — 1 df. In terms of the original variables,
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(6.5) can be written as
g—0z i
[2(s2 — 20,y + 0232)]1/2 ’

(6.6)

where 82, 82, and s, are the sample variances and covariance for the

z,y variables.*

The 100(1 — a)% confidence region for n/p consists of all values
0 for which the absolute values of (6.6) does not exceed /2

n—-1’
equivalently, for which the square of (6.6) does not exceed Fy,_,. In

or

most instances the confidence region has upper and lower limits (6y
and 0, respectively) which are the roots of the quadratic equation

(g - 02)% = }-F"’,,_l(sz — 20s,, + 0%52). 6.7)
n 1, y ¥

This can be rearranged to
82 s
o (f= - Fﬂ,,_,;’) - 20 (29 - Ffas222)

2 (6.8)
+ gz - Fl(:n-l Ll =o.

n

Thus
7§ — Fﬁn_ Fxy
PO i (6.9)
22 (l == :ﬂ—l;;i)

) R 2_ 1/2
| BV [0 = 2y + 820) ~ P (7))
2 |
2 (1~ Fooih)

If the quantity inside the radical in (6.9) should turn out to be neg-
ative, then the roots of the quadratic equation are imaginary, and

v 2= T -0 (1), & = T~ )/ (n 1), and e =
T (@ - 2 9/ (n = 1).
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the entire real line constitutes the confidence interval. Also, if # does
not lie between 8y and 07, then the confidence region consists of
the whole real line except for the points between 8y and 4, ie.,
two semi-infinite intervals. These latter two pathologies are not apt
to occur unless the sample size is unusually small and the data are
particularly variable.*

When n is large, the higher order terms in n become negligible
relatively, so the interval simplifies to

o+ tzﬁ I;"_l(a; — 208, + 62s2)1/2, (6.10)
Since (Fg,_,)/? = t:{ ?, the more natural ¢ critical constant is used
in (6.10). The quantity multiplying the ¢ eritical constant in (6.10)
is the large sample standard devation of § = 7/2, which one could
also obtain through the delta method.

To test the hypothesis H : 8 = 0o that @ has a specified value
b0, one can check whether 8, lies in the confidence region, or, if the
roots (6.9) have not been computed, one can simply compute (6.6)
with 8o substituted for  and check whether the absolute value of the
ratio exceeds tsi 21 If the specified value is 0o = 1, this procedure
reduces to the ordinary one sample ¢ test of the mean equaling zero
for paired differences.

Multiple ratios can arise in two contexts.

The first is where more than two variables are measured. Here
there are p-dimensional vectors of observations 9 and means g, and
the objects of interest are the ratios of the mean corrdinates pu;/p;,

* These two cases arise when the quadratic inequality af?+b0+4¢ < 0 defining
the confidence region (i.e., (6.8) with < 0) has b?—4ae < 0 (imaginary roots)
and b’ —4ac > 0,a <0 (two semi-infinite lines). The point §/2 is always in
the region because at it the left-hand side of (6.7) is zero and the inequality
is satisfied,
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i, 7 = 1,-<-,p. This leads into the arena of multivariate analysis.
Scheffé (1970b) investigated the construction of simultaneous confi- #

dence intervals for all ratios of interest

The second context in which multiple ratios arise is in the
comparison of ratios for different populations. For population s,
s =1, .-, 1, the ratio b; = §;/%; estimates the mean ratio 8; = n;/p;.
Interest may center on the equality of 8,,- -, 8y, or the lack thereof.
No special procedures have been developed for handling this prob-
lem. If the samples are not small, then the d; are approximately
independently normally distributed with means é; and variances

-12—(03.- ~ 20,0, + 0702,). (6.11)

B
Sample moment estimates can be substituted for the unknown pa-
rameters in (6.11). Ad hoc test procedures and confidence intervals
can sometimes be created on this basis, but inequality of the vari-
ances (6.11) for different s is a thorn 1n one’s side. The large sample
model structure is essentially that of a one-way classification with
unequal variances between populations so the discussion in Section

3.3 1s relevant.

Malley (1982) considered the multiple comparisons aspects of
both types of multiple ratio problems and their combination.

Although paired data are more common for ratio problems, the
case of unpaired data does arise on occasion. In this case the z;, s =
1,---,m, are assumed to be independently distributed as N(p,o2)
and the y;, s = 1, -+, n, as independent N('I,f’f) variables. The z;
and y; are also assumed to be independent. The two sample sizes m
and n need not be equal as with paired data.

The maximum likelihood estimatorof 8 = 5/pis § = /2 just as

with paired data. If it is possible to assume that the twe population

2

Z = %), then the confidence interval

variances are equal (i.e., 02 =

BN |
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and test procedure closely parallel those for paired data with zero
correlation and are based on exact distribution theory.

Let 82 be the pooled estimate of variance with m +n —2 df, i.e.,

(m —1)a2 +(n —1)s}
m+n—2

= 0 + = [Z(zl - 5)2 + Z(yl - g)z

=1

82 =

’

] (6.12)

The 100(1 — a)% confidence interval consists of all values 8 for

which the ratio
g-—0z

s[4
\Vatm

does not exceed the critical constant t;/_:,._z = (F{m +,'_2)1/2 in

absolute value. The values of @ where the ratio actually equals the

(6.13)

critical constant are the roots of the quadratic equation

82 i P 82
0? (52 - l"fm+,,_2-';‘—) - 20(zy) + (y2 - F{’,"H,"_z;) =0, (6.14)

which are

a1 (1) P 2]
03 ==

z2 (1 - F7 m+,,_2;n~;,) R

The confidence interval for & is the interval between the two roots
(6.15) except when the following two pathologies occur. If the quan-
tity inside the radical in (6.15) is negative, then the entire real line
constitutes the confidence interval. If # = §/2 does not lie between
the two roots, then the confidence region consists of all values below
the lower root and above the upper root. Neither of these oddities
is apt to happen unless s is large relative to m, n, and z.

-
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For large sample sizes the roots (6.15) are approximately

N 1/2
§opor 2 (1,0
2 -2y (n el (6.16)
The quantity multiplying the t critical constant in (6.16) is the delta
method estimate of the standard deviation of §/Z. The square of it
[i.e., §\D2(ﬁ/i)] can be written in the form
$D'(g/2) _ 5D’(a) , SD'(9)
(9/2)? z? g
where SD(z) = s//m and SD(g) = s/\/n. Expression (6.17) is

easily remembered as

, (6.17)

cV’(g/z) =TV (2) + TV (9), (6.18)

where CV (z) denotes the coefficient of variation of z [i.e., CV(z) =
SD(z)/E(z)]- For a ratio of independent means the squares of the
coefficients of variation add (approximately) as in (6.18). This holds
true even if the variances of z and y are different.*

To test the hypothesis Hp : @ = 8 the ratio
§— 0,2

can be compared with a t,,,,—2 percentile or can be used to calculate

(6.19)

a P value from the same table. When the hypothesized value §; is
1, the statistic (6.19) reduces to the usual two sample ¢ statistic for
unpaired data [see (2.1)].

When it is not possible to assume that the variances for z and y
are equal (i.e., 02 # 0?), difficulties similar to those encountered for
the two sample t statistic arise. See the next section for discussion.

% A similar interpretation can be given to (6.11) if a coefficient of covariation
is defined.
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Multiple ratios involving independent samples may present
themselves for analysis. They must be dealt with on an ad hoc basis.
No schemata for their analysis have been written down anywhere.

6.2. Departures from Assumptions.

The bivariate normal is not the most satisfactory distribution for
modeling paired data in problems involving the ratios of means. Most
data in mean ratio problems are positive and possibly skewed to-
ward higher values, wheres the bivariate normal is symmetric along
its principal axes and has infinitely long tails in all directions. In
many other types of problems the infinitesimal probability on the
negative part of the axis does not cause any difficulty but here it
does. Expectations, variances, mean squared errors, etc., for ratios
fail to exist in the absolute (Lebesgue) sense because of the density
where the denominator can be close to zero. There are methods of
circumventing this, but the difficulty is a nuisance.

Alternative models assume that z and y are related by
yi = a+ fz; +e;, (6.20)

where E(e; | ;) = 0 and the conditional variance is allowed to
depend on z through a power relationship, i.e.,

Var(e; | z;) = 6|z, (6.21)

where §, A > 0. This permits the fan-shaped behavior displayed
in Figure 5.8. The marginal distribution of z is usually assumed to
be either a gamma distribution or a log normal distribution.* Both
these distributions are skewed to the right.

Much of the research on ratio estimation has been concentrated
on reducing the bias in the estimator §/z created by the fact that

* The random variable 2 has a log normal distriution if log z is normally
distributed.
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for most distributions E(z~!) # p~!. A variety of estimators have
been proposed of which three are applicable to the situation being
considered in this chapter. '

Beale’s (1962) estimator is

; [1 + (s2y/n29)|

1+ (s2/nz22) (6.22)

Tin’s (1965) estimator is

T A N N L
0";[”"(19 22)]. (6.23)

When E(y/%) exists absolutely under the model, the delta
method gives

”+(1 #)(” )+(9 n)( ) (6.24) |
+ 3w (32) +2m-mie-m (53) + - o7
+ ofmax{( - u)*, (g - n)?)),

2
()33 )2 (2)--C)
i f "l (6.25)
2[1+"—"2—1’i’—+o(-)].
pl " nut onpn n

The Beale and Tin estimators, each in its own way, are clearly de-

L] I'el

S0

K€

signed to eliminate the 1/n bias term in (6.25).

The third estimator, the jackknife, was introduced by Que-
nouille (1949), to reduce the bias of a serial correlation estimator.
Quenouille (1956) briefly considered the reciprocal of a mean, but it
was Durbin (1959) who first studied in detail the application of the
Jackknife to ratio problems. If the data are randomly divided into

B |
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two groups of size n/2 (assumed to be an integer), the jackknife is

defined by
i oI\ 1(0 %2
0l—2(5> 2(11+12)’ (6.26)

where Z;, §; are the means for the sth group. However, intuition and
papers by 1. Rao (1965) and J. Rao and Webster (1966) indicate that
the full jackknife (see Section 5.7) defined by

. . e
0;—n0—(n—1)(;§8_.). (6.27)
where 0_; = g-i/2—; is the ratio with the sth pair (zs,9:) deleted
from the data, constitutes an improvement, albeit slight.

When the sampling is from a finite population and the mean X
of the z variable is known, there exist unbiased estimators proposed
by Hartley and Ross (1954) and Mickey (1959), and an approximately
unbiased estimator by Nieto de Pascual (1961), but these are not
applicable to the problem being considered here.

There have been a number of papers comparing various subsets
of these estimators under sampling from the bivariate normal model
(6.2), the regression model (6.20) and (6.21) with z either gamma
or log normal, and a selection of actual finite populations. The list
includes Tin(1965), J. Rao and Beegle (1967), J. Rao (1969), P.
Rao (1969), Hutchinson (1971), P. Rao and J. Rac (1971) as well as
others.

Although the estimators ip, 57, and @; have smaller bias than
é, they tend to have increased variability. Since the mean squared
error is the sum of the variance and the square of the bias, the effect
on overall performance is unclear. The Monte Carlo and theoretical
results that have been obtained about the MSE are confusing. The
superiority or inferiority of any one estimator seems to depend on the
particular sampling model. In general, fp, 0, and 85 tend to do a bit
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better than 5, but any difference is very slight if it exists at all. The
variabilities in the three bias-reduced estimators increase relative to
the unadjusted ratio estimator as ) in (6.21) increases. There is little
to choose between 53, fr, and 6, as they all perform essentially the
same. The jackknife estimator requires more computation, which is
a disadvantage, and it is more erratic for small samples.

My impression from having tried the bias-reduced estimators in
a few biostatistical problems is that the correction for bias is usually
relatively very small in magnitude. The amount of change is of no
consequence to the investigator. This would seem to be in agreement
with the previously cited studies. However, it should be remarked
that the studies indicate improvement should occur with the use
of bias-reduced estimators when there are multiple strata in finite
population sampling.

Less attention has been paid to the skewness and kurtosis of
6 = g/z and the three bias-reduced estimators. A few results are
mentioned in J. Rao (1969). The asymptotic normality of é for any
distribution of (z,y) with finite second moments is guaranteed by
the bivariate central limit theorem for (%, ) and the asymptotic nor-
mality of a continuously differentiable function of sample means (see
C. R. Rao, 1973, Section 6a.2). Scott and Wu (1981) establish the
asymptotic normality under finite population sampling. For small
to moderately sized samples there is some evidence that for positive
z,y the distribution of §/2 is positively skewed. This skewness is
primarily caused by small values of z.

The statistic (6.6) is the basis for testing hypotheses and con-
structing confidence intervals. It is a one sample ¢ statistic (6.5).
Thus the effects of skewness, kurtosis, and outliers on tests and con-
fidence intervals are similar to those mentioned in Section 1.2.1.

There has been no work to date on robust estimation proce-
dures especially designed for ratio estimation to counter the effects
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of heavy-tailed distributions.

Several papers (viz., J. Rao, 1969, and P. Rao and J. Rao, 1971)
have indicated that the estimate

%(33 - 253,, + 6%52) (6.28)

of the variance used in (6.10) is a biased estimate. It can be biased
positively or negatively depending on the model. However, it is a
consistent estimate of the correct asymptotic variance for any under-
lying distribution with finite second moments. Therefore, in large
samples the interval (6.10) must be correct even if the distribution
for z and y is not a bivariate normal.

An alternative estimate of the variance is provided by the jack-
knife estimate of variance (see Section 5.7). Its application to ratios
is described in detail in Cochran (1977, Section 6.17) and Mosteller
and Tukey (1977, Section 8C). The performances of the jackknife
variance and (6.28) were compared in J. Rao and Beegle (1967), J.
Rao (1969), and P. Rao and J. Rao (1971). The results on which
one is superior are inconclusive. The two variance estimators seem
to perform similarly except that the jackknife can be more erratic in
small samples. The jackknife may tend to overestimate the variance
of § and (6.28) to underestimate the variance. Clearly, the jackknife
requires considerably more computation.

For unpaired data the effects of normality and nonnormality
on the distribution of /2 are analogous to the paired data case Just
discussed. The central limit theorem provides approximate normality
for §/2 in moderate to large samples. In smaller samples there may
be some positive skeweness. Outliers can be troublesome.

The pivotal statistic (6.13) and the test statistic (6.19) are two
sample ¢ statistics based on the assumption of equal variances for z
and y. If this assumption is false, the effects are analogous to those
described in Section 2.3.1 for the two sample problem.
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When the evidence for o2 being substantially different from o7

is sufficiently strong, an appropriate reaction is to use Welch’s ¢
statistic (see Section 2.3.3, “Other Tests”). The sample variances s2

and sZ are not pooled as in (6.12), and the test statistic

)

e (6.29)

is used in place of (6.19). The approximate degrees of freedom asso-
ciated with (6.29) are

o2 2,2 2
(i)
1

b= : (6.30)
i ('J:‘)2 o ('j‘"%z‘)z
Since the pivotal statistic for confidence intervals
j— 02
N kA (6.31)

has varying @, the degrees of freedom associated with it should be
the conservative lower bound min{m — 1,n — 1}.

There have been no studies of the effects of dependent structures
such as serial correlation on the ratio /% for paired or unpaired data.
One is left to infer what one can from the one sample problem.

Exercises.

1. Use the delta method to justify the large sample standard devi-
ation estimate for § employed in the confidence interval (6.10)
[see also (6.28)).

2. Use the delta method to justify the approximation (6.17)-(6.18).
3. Show how

(a) Beale’s estimator (6.22),
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(b) Tin’s estimator (6.23),
(c) the jackknife estimator (6.26)

eliminate the 1/n bias term from E(y/z).

. A study of structural evolutionary change utilized the specific
adherence of lymphocytes to specialized lymphocyte-binding
high endothelial venules (HEV) in lymph nodes.* When sample
lymphocytes from other vertebrate species are perfused through
mice, their exact number is unknown so the number of sample
cells adhering to HEV must be scaled by the number of standard
cells also adhering to HEV.

The table gives 59 number pairs of sample (y) and standard (z)
cells adhered to HEV.

(a) Compute §/z.

(b) Compute an estimated standard deviation for §/z.
(c) Compute Beale’s estimator (6.22).

(d) Compute Tin’s estimator (6.23).

(e) Compute the jackknife estimator (6.26).

* Butcher, E., Scollay, R., and Weissman, I. (1979). Evidence of continuous
evolutionary change in structures mediating adherence of lymphocytes to
specialized venules. Nature (London) 280, 496-498.
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Standard Sample

Standard Sample

‘1
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5. In a study of diabetes, 21 patients, characaterized as normal,
mild diabetic, and severe diabetic by a previous glucose toler-
ance test, were subjected to a constant glucose infusion.* Their
steady-state values before and during the infusion and the in-
creases A (= during - before) are given in the table.

The investigator was intrested in whether there were any differ-
ences in the insulinogenic index AI/AG between the 3 groups.
What is your answer to this question?

* Reaven, G. and Miller, R. (1968). Study of the relationship between glucose
and insulin responses to an oral glucose load in man. Diabetes 17, 560-56.

-
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Glucose Concentration (G) Insulin Concentration ()

Before During AG

86
80
73
81
84
82
82

88
131
105

93

93

94

98

154
164
185
254
175
157
320

Before During

Patients With Normal Glucose Tolerance

150 64 26 63
174 94 11 46
137 64 16 72
166 85 28 57
153 69 12 48
170 88 24 210
164 82 24 51
Patients With Mild Diabetes
198 110 21 72
300 169 76 264
238 133 32 102
193 100 18 64
220 127 29 163
187 93 34 138
217 119 30 75

Patients With Severe Diabetes

330 176 26 42
324 160 49 111
379 194 26 44
426 172 44 61
370 195 44 90
286 129 32 83
486 166 22 46

Al

27
35
56
29

186
27

51
188
70
46
134
104
45

16
62
18
17
46
51
24

d



Chapter 7

VARIANCES

The previous chapters in this book have been predominately con-
cerned with the estimation and testing of mean values. The only
exceptions to this have been the estimation and testing of the vari-
ances of random effects in Chapters 3 and 4. This preoccupation
with means is caused by most questions in applications being con-
cerned with differences in location of different data sets. However,
questions about variability do arise either as the primary issue as in
random effects variance component problems and in deciding which
of several measurements is more reproducible, or as a secondary issue
as in deciding whether to pool sample variances.

This chapter focuses on inferences about variances for one, two,
and more than two populations. The first section describes the sta-
tistical methods based on the assumption of an underlying normal
distribution. Since all of these normal theory procedures are so very
sensitive to departures from normality, the second section on nonnor-
mality contains considerable discussion of alternative robust methods
that are safer to use in applications.

7.1. Normal Theory.

Consider the one sample problem first. Let y;,- -,y be indepen-
dently distributed as N(p,0?).
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To test the hypothesis Hp : 0% = 02 against the two-sided alter-
native H, : 0% # o2, the ratio

2 _ (n—1)s?
9%

(7.1)

is used, where s? is the sample variance. Under Hj this ratio has a
x? distribution with n — 1 df so the test rejects when

2 21—(a/2) 2 2af2
2 o %0Xn-1 J0Xn-1 2
< — 7 or —=r=— <, (7.2)
where xil;(alz) and xif{z are the lower and upper 100(a/2) per-

centiles of a x2_, distribution. The test (7.2) is called a x* test and
is essentially the likelihood ratio test. The latter uses slightly differ-
ent critical constants. A two-sided P value is obtained by doubling
the probability in the lower or upper tail of the x2_, distribution
beyond the observed value of (n — 1)s?/o2.

For a 100(1 — a)% confidence interval the pivotal statistic s?/o?
yields the interval
(n=1)s* o  (n—1)s*

2af2 21—(a/2)°
An—1 Xn—i

(7.3)

A slightly shorter interval could be obtained by not restricting the
probabilities in each tail to be equal (see Murdock and Williford,
1977).

For a one-sided test against H, : 02 < o or H; : 0% > 03 there
is just one inequality in (7.2) with the whole significance level a
being placed in one tail. Similarly, a one-sided P value is calculated
form the single tail ia the direction of the alternative. One-sided
confidence intervals can also be obtained.

Problems of comparison of two or more variances arise more
frequently than the one sample problem just discussed. For multiple
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samples, let y;1,- - -, yin, be independently distributed as N(p;,0?),
s =1,---,1, with independence between the samples for different .
The sample variances

o} = : Z(y.'j - 9:.)? (7.4)

ni—14%
]=l

2

are unbiased estimates of the corresponding population variances o?,

i=1,.---, L
In the case of two samples (I = 2), the likelihood ratio of Hj :
0% = 0% versus H, : 0? # o0} leads to the ratio

5
F = 3_2I (7.5)
-

which has an F distribution with n; — 1 and n2—1 degrees of freedom
under Hy. The two-sided F test would reject Hp when (7.5) exceeds
the upper 100(a/2) percentile or falls below the lower 100(a/2) per-
centile of the F distribution:
2 2
8 1-(af2 s 2
G<REN ., o S>RE (7.6)
2 2
The actual likelihood ratio test uses slightly different critical con-
stants in (7.6). A two-sided P value is calculated by doubling the
probability in the tail of the F,,_;n,-1 distrbution beyond the ob-
served s2/s2.
A 100(1—a)% confidence interval is constructed from the pivotal

ratio (53/of)/(s3/3):
o Pt o? ~(a a2
W/El ) (3) < Z <m0 (%), @
2 2 2

One-sided tests, P values, and confidence intervals can be com-
puted.



262 Chapter 7: VARIANCES

The reader will have noticed by now that ratios of estimates
and parameters are playing a key role in these variance problems
whereas differences were central to mean problems. This is because
questions about dispersion are ones of scale changes which lead to
multiplicative factors.

For I > 2 samples there are three tests that share the limelight.

Bartlett’s (1937) test, which is a slight modification of the like-
lihood ratio test, rejects the null hypothesis Hy: 0% = -+« = o2 when
the statistic

I
M;=(N-Din 8]2)001 - Z(n; - 1)in &2 (7.8)

=1

exceeds the upper 100a percentile of the x? distribution with 7 —1 df
for large samples, where N = E,!:l n;, “In” is the natural logarithm,

and a; ool is the pooled sample variance, i.e.,

I
1
J;OOI = N—_—i Z(n" - l)a?- (7.9)
=1
For smaller samples M, is approximately distributed as

(1 + A)xi-1, (7.10)

where

1 L 1
A=W-T)[(§n.-_1)°~-1]- (1)

For very small n; tables are given in Pearson and Hartley (1970).

The next two tests are not as general as Bartlett’s test in that
the sample sizes need to be equal (i.e., n; = n).

Hartley’s (1950) test compares the statistic

82
My = fmax (7.12)

3.
min
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where

312nu =max{’f"”1"?}v (7.13)
sfnin = min{’f) e & v"z[’}1

with the upper 100a percentile for the distribution of this ratio under
Hp. Tables of this maximum F ratio were given by David (1952) for
a = .05, .01, I = 2(1)12, and n - 1 = 2(1)10, 12, 15, 20, 30, 60,
00. These tables are reproduced in Owen (1962) and Pearson and
Hartley (1970).

Cochran’s (1941) test compares the statistic
My = — 2% (7.14)

with the upper 100a percentile for the distribution of this ratio under
H,. Tables are given in Eisenhart and Solomon (1947) for a = .05,
01, T =2(1)12, 15, 20, 24, 30, 40, 60, 120, oo, and n — 1 = 1(1)10,
16, 36, 144, co, and these are reproduced in Pearson and Hartley
(1970) for I up to 20.

The statistics M; and Ms do not lend themselves to the de-
velopment of multiple comparisons procedures, but M; does. In
particular, with probability 1 — a

1 (82 o? 8% g
Xl—.f (3—%:) < ‘—’? < M7 (8—%’) for all 1,1, (7.15)
where Mg is the upper 100a percentile of the M distribution for 1
populations with n ~ 1 df for each sZ.

No techniques have appeared in the literature that are tailored
to testing the null hypothesis Hy : 0 = --- = 0? against the ordered
alternative H; : 0? < 0% < --- < o} with strict inequality at least

once.
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7.2. Nonnormality.

1.2, Yfiech

The efiects of nonnormality on the distribution theories for the test
statistics (7.1), (7.5), (7.8), (7.12), and (7.14) are catastrophic. For
each test the actual significance level can be considerably different :
from the nominally stated level. For a heavy-tailed distribution the
probability of rejection under Hj greatly exceeds a, and for a short-
tailed distribution the probablity is considerably less than a.

Pearson (1931) first pointed out this sensitivity in the two sam-
ple problem through the use of sampling experiments. These results.
were later confirmed theoretically by Geary (1947), Finch (1950),
and Gayen (1950a). Box (1953) found the effects to be even more,
extreme with three or more populations. Pearson and Please (1975)'
carried out extensive simulations for one and two samples.

To given an indication of the magnitude of the effect, Geary!
(1947) in his Table 1 gives the probability .166 of rejecting Hy in large
samples with an o = .05 F test when Hp is true but the underlying
distribution has kurtosis 7, = 2. Box (1953) in his Table 1 shows
that for the M; test this increases to .315 for I =

5 and then to
489 for I = 10. On the other hand, for v, = —1 Geary and Box
give .0056, .0008, and .0001 for I = 2, 5, and 10, respectively, as the

actual significance levels for a 5% level test with large samples.

The effect of skewness (i.e., 7; # 0) on the actual significance
levels of the variance tests is much less extreme. Some values are

given in Table 1 of Finch (1950), and numerous figures are given in
Pearson and Please (1975).

The reason for this hypersensitivity can be seen in the variance,
of a single sample variance s2. If the observations y;, -, y, entering:

8* = 30, (yi — §)2/(n — 1) are independently distributed according.
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to a general distribution F(y), then
E(s%) = 0%,

Var(s?) = o* (n_i_l + %) , (7.16)

where 72 = 72(y) is the kurtosis of F(y). The distribution theory
for the test statistic (7.1) is based on the normality of the y;, which
implies that the variance of s? is 20*/(n—1) [i.e., (7.16) with ~; = 0].
Nothing informs the critical points in (7.2) that the variability of s2
is larger than this when 42 > 0 and is smaller than this when ¥2 < 0.

Similar phenomena occur for the other test statistics (7.5), (7.8),
(7.12), and (7.14). Their variability is greater or less than that pre-
supposed by normal theory depending on whether 42 > 0 or v, < 0.

This situation is very different from the ¢ tests of Chapters 1
and 2. There the standard deviation of the numerator statistic is
correctly estimated by the denominator regardless of whether the
data are normally distributed.

The ANOVA F tests of Chapters 3 and 4 for location differences
do not have the same sensitivity to nonnormality as the F test based
on (7.5) because the numerator mean sum of squares is computed
from mean values in which the kurtosis is diminished [see (1.10)).
The denominator mean sum of squares scales the statistic to have
the correct approximate expectation. Also, the denominator usually
has sufficiently large degrees of freedom that its variability is not an
important factor.

In short, F tests for location are reasonably robust, but F tests
for dispersion are not.

7.2.2. Detection

The problem of detecting nonnormality when the inference is con-
cerned with variances is no different than in the one sample, two sam-
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ple, and one-way classification designs for location inference. Probit
plots of the data in each sample are especially recommended, and
tests of normality are also available. The reader is referred to Section

1.2.2 for a full discussion of these graphical and testing procedures.
7.2.3. Correction

There is an abundance of nonparametric rank tests for the two sample
dispersion problem. Unfortunately, none of them is much good for

applications.

Perhaps the best known is a test proposed by Freund and Ansari
(1957), Barton and David (1958), and Ansari and Bradley (1960). It
assigns rank 1 to the smallest and largest observations in the com-
bined data set from the two samples, rank 2 to the second smallest
and second largest, etc. The test statistic is the sum of the ranks
associated with the observations in one of the samples. Small sam-
ple tables and large sample means and variances are available. For
greater detail and discussion the reader should consult Hollander and
Wolfe (1973) or Gibbons (1971).

For this test to not give misleading results the population medi-
ans must be equal. Moses (1963) gives examples of what can happen
when the medians are not equal. Since medians between two popu-
lations are hardly ever known to be equal in applications, the worth
of this procedure is in question. Moreover, there is no escape from
this judgment by subtracting the sample median from the data in
each sample, i.e., by ranking y,; — m;, y = 1,---,n;, combined with
y2; — mz2, § = 1,---,n2, where m; and m; are the medians of {y;;}
and {y2;}, respectively. Standardization by median subtraction pro-
duces a test which is not distribution-free.

S. Siegel and Tukey (1960) proposed a test with a different rank-
ing scheme from the aforementioned one, but it is essentially equiva-
lent to the Ansari-Barton-Bradley-David-Freund test (see Gibbons,
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1971, H4jek and Sidak, 1967, or Klotz, 1962).

There have been a number of other rank tests based on squared
central ranks, normal scores, etc. For a complete list of references
see Hollander and Wolfe (1973, Chapter 5). However, all these
tests require some assumption concerning known or equal medians,
and these assumptions cannot be relaxed while still preserving a
distribution-free test. In addition, it can be argued that rank tests
do not make sense without a restriction on the locations because
a monotonic transformation, which preserves the ranks, can create
unequal sizes of variation between two populations with identical dis-
persions but unequal locations. For an example and discussion see
Moses (1963).

Box (1953) proposed a procedure based on grouped data. Select
a group size k, and divide each sample n; into ¢; groups of size k.
Hopefully, k can be selected so that g¢; - k, which has to be smaller
than n;, is very close to n; for all s because the remaining n; — (g; - k)
observations are discarded in each sample. For the k observations
in the jyth group of the sth sample, let s?j be their sample variance.
The a?j are identically distributed within each population, and they
are all independent. Define

z'j = logs?’-, ‘.= l’-..’I’ j= 1"",0.'- (7.17)

Since
E(z;;) = loga?, (7.18)

with the approximation improving as k increases, Box’s proposal is
to treat the z;; as observations in a location problem in order to
test hypotheses about the a'?, t$ =1,---, I, or construct confidence
intervals. For I = 1 and 2, ¢ tests and confidence intervals can be
applied, and for I > 2 the techniques of analysis of variance, multiple
comparisons, and monotone alternatives are appropriate.

o
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The log transformation is applied to a?j in (7.17) in order to
make the distribution of z;; more symmetric. However, without it
E(z;;) would exactly equal 6?. Thus there is a trade-off in the use or
nonuse of log in terms of whether symmetrization is more important

than an exact expectation or vice versa.

A major question is how to select k. As k is increased, the
symmetry of the distribution of s%; or log s%; is improved and (7.18)
becomes more exact, but the number of groups ¢; in each sample
decreases so the t and ANOVA analyses lose power and the confidence
intervals become broader. Shorack (1969) recommends selecting &
as large as possible but not exceeding 10 while preserving reasonable
sizes for g1, --,9r. | would suggest having k at least 5 if at all
possible, and then seeing what increasing k does to the g;.

Clearly, this method throws away information. Some observa-
tions may be discarded, and no comparisons are made between the
yi; in different groups within a sample. Also, different groupings of
the data within each sample have the potential to produce substan-
tially different answers. Nonetheless, simulation studies show that
this technique works satisfactorily in an inefficient manner. If one
can afford to be inefficient because of an overabundance of data, this
technique is easy to apply and interpret.

Moses (1963) suggested applying nonparametric rank tests to
the Box a?j, t$ =1,---,I, 5 =1,---,¢9;. For example, run the
Wilcoxon rank test on the g, + g2 values of a?j in the two sample
problem. Shorack (1966) extended this idea to obtaining point and
interval estimnates. The power of this test in the two sample problem
is compared with other competitors in Miller (1968) and Shorack

(1969). Like the original Box test, it is reliable but inefficient.

There are three approximate robust tests that do not have the
unrealistic assumptions of the nonparametric rank tests applied to
the y;; and utilize the data in an ungrouped fashion.
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The first is a simple idea due to Levene (1960). The Levene
s test is to treat the values z;; = (yi;j — §i.)%, 7 = 1,---,n; in each
sample i, s = 1,---, I, as though they are independently, identically,
normally distibuted under Hy, and to apply the usual t and ANOVA
tests and confidence intervals to them.

Clearly, the 2;; do not satisfy the assumptions imposed on them.
Within a sample they are not independent because of the common
#i., but the correlation is of order 1/n?. They are not identically
distributed under Hy unless n; = n, but any departure from this has
a minor effect. They are not normally distributed, but the ANOVA
procedures for location inference are reasonably robust for nonnor-
mality.

In spite of worries over the assumptions, the Monte Carlo stud-
ies reported in Levene (1960), Miller (1968), Shorack (1969), and
M. B. Brown and Forsythe (1974), demonstrate that the Levene s
test performs quite satisfactorily. It has reasonably good robust-
ness for validity against nonnormal distributions. However, its power
against heavy-tailed alternatives is not quite as good as that of the
Box-Andersen and jackknife tests described next.

Levene (1960) also proposed applying the preceding idea to
zij = lvij — 9|, 2zij = loglyij — 9i|, and z;; = ly;; — §i.|'/2, but
the test with z;; = (yij — #;.)? is the generally accepted version. A
small difficulty with using z;; = |y;; ~ 9;.| is pointed out in Miller
(1968). M. B. Brown and Forsythe (1974) consider variations on the
Levene approach with different location estimates.

Box and Andersen (1955) applied permutation theory to con-
struct approximate robust tests. To understand their procedure, con-
sider the hypothetical two sample dispersion problem with known
population means, which for simplicity are assumed to have been
subtracted already from the observations.

The moments of the test statistic are considered under two dif-
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ferent distribution theories. Normal theory assumes that the data are
normally distributed. Permutation theory assumes that the two sam-
ples have been randomly selected without replacement from u,,- -,
Upn,4n, Where

U = Y1157 5 Uny = Ying Ungtl = Y2157 s Unydng = Y2nse  (7.19)

Each of the ("‘,:"’) possible combinations is equally likely.
Rather than computing the moments of the F' = s?/s2 statistic,
it is simpler to calculate the moments of the related ratio
B = ;‘;' .ﬁf_
i Vi + L2 v

because the denominator remains constant for the permutation dis-

(7.20)

tribution. To reject for small or large B is equivalent to rejecting for
small or large F.

The theoretical mean of B is the same whether it is computed
under the assumption of a normal distribution or under the permu-
tation distribution:

En(B) = Ep(B) = 3, (7.21)

where N = n; + n2. However, the theoretical variances differ. Under
the normal distribution

2”1”2
N%(N +2)’

and under the permutation distribution

Vary(B) = (7.22)

Varp(B) = % 1+ % (TV_N:T) (b2 ~ 3)] [ (7.23)

where

(N +2) Z:.l: uf

= (7.24)
(Z:’V:l “3)

bg:
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The variance (7.23) can be made to equal the variance (7.22) if new
sample sizes n} and n3 are used in (7.22) where n] = dn;, n; = dn.,
and

= [1 + % (1#/-1:,—;3_52) (b — 3)]_l : (7.25)

The mean of B remains unchanged under this substitution since
n}/(n} + n3) = ny/N. Thus the normal theory distribution for B
can be made to approximate the permutation theory distribution for
B by redefining the sample sizes as described.

This suggests the following approximate Box-Andersen test. It
is called the APF-test by Shorack (1969). Calculate the usual F
statistic (7.5), but compare it with the critical points of an F distri-
bution on

d(ny —1) and d(n;—1) (7.26)

degrees of freedom where

e [1 + %(52 - 3)] N (7.27)

by = [_E?:‘ "‘] {E?ﬂ E?él(yi:' = 37;.)‘]
* [Zizn E?;;(y.'j - ﬁ;.)’]z

Because of the closeness of the first two moments, the normal theory

(7.28)

critical points are good approximations to those that would have
been obtained for the permutation distribution.

The Monte Carlo studies in Box and Andersen (1955), Miller
(1968), and Shorack (1969) demonstrate that the Box-Andersen test
maintains the correct approximate significance level under the null
hypothesis for a variety of heavy and short-tailed distributions and
has superior power to the other competitive tests with the exception
of the jackknife, which performs approximately the same.
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Box and Andersen also considered the I > 2 sample problem.
For I samples the analogous procedure is to compare dM; with criti-
cal points from a x%_, distribution, where d is given by (7.27) and b,
in(7.28) is calculated by summing over all I samples in the numerator

and denominator.

Layard (1973) proposed a somewhat different statistic for the
I > 2 problem which also involves an estimate of the population
kurtosis.

There is no possibility of a permutation distribution in the one
sample problem, but a different approach yields an analogous proce-
dure. From (7.16)

1

2 4
Var(s?) & x f’_ ; (l + 5‘72) (7.29)

for any underlying distribution. Since the variance of s? is exactly
20%/(n — 1) under normal theory, the variance of s* for an arbitrary
distribution is approximately equal to the normal theory variance
with degrees of freedom d(n — 1) where

-1
d= (1 + %—‘12) (7.30)

and the sample estimate of the kurtosis is

n 2;'.=1(!Ij - §)* -
[ ;:l(!/j - 9)2]2

A2 = 3. (7.31)

Thus d(n—1)a2/0? is approximately distributed as a x? variable with
d(n — 1) degrees of freedom. Tests or confidence intervals for 02 can
be constructed from this pivotal statistic.

The jackknife is the final procedure to be mentioned. It is a
general technique that has already been suggested in this book for
variance component problems (Sections 3.6.3, 4.6, and 4.7.2), the
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correlation coefficient (Section 5.3.3), the errors-in-variables model
(Section 5.7), and ratios (Section 6.2). A general review of the jack-
knife is given by Miller (1974a). Its specific application to the one
sample variance problem is described in Mosteller and Tukey (1968,
1977), to the two sample problem in Miller (1968), and to I > 2
populations in Layard (1973).

The sample variances could be jackknifed directly, but jackknif-
ing their logarithms produces better results. Thus for population
let 8; = logo? and é; = log a?. The pseudo-values for 3 = 1,---,n;
are defined by

é.’j = nb; — (n; - l)é.',..,'. (7.32)
where the estimate 6; _; = log s} _; has the jth observation in sam-
ple i deleted. The 6;; should be treated as independent observa-
tions (even though they are not), which are identically distributed
in sample ¢ with approximate mean #;. For the one and two sample
problems ¢ statistics can be computed from the 6,-,- to test hypothe-
ses and construct confidence intervals for 8; and 8,, 8., respectively
(see Chapters 1 and 2). Taking antilogs of the endpoints transforms
any confidence interval back into a confidence interval in the original
variance scale. For I > 2 populations a one-way ANOVA can be used
for testing Ho : 8; = --- = 0y (i.e,, Ho : o == o‘i). Multiple
comparisons and monotone alterntives techniques are also available
(see Chapter 3, “Fixed Effects”).

The simulations of M. B. Brown and Forsythe (1974) suggest
that for very unequal sample sizes in the two sample problem (e.g.,
ny = 2n; with n; = 10, 20) the actual significance levels for the jack-
knife exceed the nominal levels when the distribution is heavy-tailed.
This may be due to pooling somewhat unequal variances calculated
from pseudo-values. Given a choice one would prefer a balanced ex-
periment. However, if this is not the case, then the variation in the
pseudo-values should be examined to determine the best method for
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their statistical analysis.

The logarithmic transformation seems natural to use with the
sample variance because it keeps the variance estimate associated
with each pseudo-value (i.e., antilog 0.,-,-) positive and it is the vari-
ance stabilizing transformation. Cressie (1981) gives a theoretical
foundation for this selection, and empirical work supports its use.

The Monte Carlo studies in Miller (1968) and Layard (1973)
establish the jackknife as a robust procedure for testing equality of
variances that has power equivalent to the Box-Andersen test. Each
test in its own way Is using the data to estimate the fourth central
moment of the underlying distribution. This moment controls the
variation in s?. Levene’s s test is also doing the same thing but not
quite as effectively.

Since the jackknife and Box-Andersen tests are essentially equi-
valent in performance, which one should be chosen in practice? The
choice may be made on computational grounds. Since neither is part
of the standard computer packages, it may be a question of which is

easier to program and implement.

Even though the jackknife and Box-Andersen tests are robust
for heavy-tailed distributions, they are not resistant to outliers. Sin-
gle or multiple aberrant values can grossly distort s®> because the
deviation is squared. The impact of an outlier is greater on s2 than
on §. The jackknife and Box-Andersen tests can be misleading if one
or more s have been affected by outliers. Trimming the outlier(s)
is the only known recourse, but the effect of this on the performance
of the tests has not been studied.

To counteract the effects of outliers, one might consider alter-
native measures of dispersion that are more resistant to outliers.
Unfortunately, this area is not well developed. Huber (1981) dis-
cusses L, M, and R-estimators of scale. My discussion is limited to
brief descriptions of two estimators whose values are invariant under
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changes in the most extreme observations and therefore are resistant
to outliers.

For a single sample y1, - -,yn the median absolute deviation
(MAD) is defined by

MAD = median{|y; — m|}, (7.33)

where m = median{y;}. In words, MAD is the median of the absolute
deviations of the observations from their median. It estimates the
corresponding quantity defined in terms of population values. To
date, the application of MAD seems to be limited to providing a
scale estimate for use with M- estimators of location (see Section
1.2.3, “Robust Estimation”).

The interquartile range (IQR) is the seventy-fifth percentile of
the sample minus the twenty-fifth percentile. It estimates the corre-
sponding percentile difference in the population. For a normal distri-
bution the population interquartile range is related to the standard
deviation by

IQR = 1.350 (7.34)

(to two decimal accuracy) and to the population MAD by

IQR = 2MAD. (7.35)

Both MAD and IQR have seen limited use in applications. Nei-
ther has been investigated as a tool for testing the equality of dis-

persion between populations.
7.3. Dependence.

When there is known blocking in the data due to observations being
taken at different times, with different equipment, etc., this must be
taken into account in the statistical analysis. Variances need to be
calculated within blocks. If there are enough blocks, this may be
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a blessing in disguise because then a Box type approach using the
variation between block variances forms a basis for inference.

Little is known about the eflects on variance tests for other
types of dependence between the observations and how to properly
correct for them. For example, serial dependence in the data changes
the expectation [see (1.48)] and variance of s2, but appropriate mod-
ifications to the procedures mentioned in this chapter have not been

worked out.
Exercises.

1. Derive the normal theory likelihood ratio statistic for testing
Hy : a? =0%14=1,--,1I, versus H; :a? # 0. How is this
statistic similar to Bartlett’s M; statistic (7.8)?

2. Show that for yy, - - -, y» independently, identically distributed,

Var(s?) = o* (L + B) :

n—1 n
where 32 is the sample variance, o2 is the population variance,
and ~; is the population kurtosis.

3. Show that for y;,---,y, independently, identically distributed
the correlation between (y; — 9)? and (yi» — #)2, 5 # ¢, is of the
order 1/n?.

4. For the data in Exercise 5 of Chapter 2, test the equality of
variances between the R and NR groups by

(a) the F test,
(b) the Box-Andersen test,

(c) the jackknife test.

5. For the data in Exercise 10 of Chapter 3, test the equality of
variances between the three groups by
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(a) Bartlett’s M test,
(b) the Box-Andersen test,
(c) the jackknife test.

6. Thermodilution cardiac output (TDCO) measurements are
commonly employed as a useful adjunct in the management of
critically ill patients. TDCOs often exhibit considerable varia-
tion in clinical settings. Prior to this study there had been no
clinical studies revealing when to perform TDCOs in relation to
the respiratory cycle.* In this Stanford study 32 patients were
prospectively studied to compare TDCOs measured at peak-
inspiration, at end-exhalation, and at random times in sponta-
neously breathing or mechanically ventilated patients. Three
TDCO measurements were obtained at each of the 3 different
times in the respiratory cycle in each patient. The data for 12
spontaneously breathing patients are displayed in the table.

Determine if any of the three times show significant more (or

less) variation in their 3 values than the others.

* Stevens, J. H., Raffin, T.A., Mihm, F. G, Rosenthal, M. H., and Stetz,
C. W. (1985). Increased reproducibility of thermodilution cardiac output
measurements in clinical practice. Journal of the American Medical Asso-
ciation, in press.
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P_atient End-Exhalation  Peak-Inspiration Rgndom
01 694 6.57 638 6.35 6.73 643 7.27 6.35 595
02 544 524 505 533 530 515 501 517 5.34
03 7.18 685 6.80 734 671 694 7.14 681 7.18
04 726 837 838 825 806 883 10.21 8.40 10.11
05 524 509 494 475 541 532 532 582 4.33
06 845 900 839 886 7.98 803 894 822 9.80
07 3.28 3.44 351 295 3.24 348 3.04 410 3.31
08 5.39 521 6514 513 493 533 5.13 4.19 5.17
09 2.71 268 284 251 254 269 251 251 255
10 11.10 10.71 10.41 10.74 10.38 10.64 11.92 11.02 8.31
11 6.14 623 591 6.03 6.08 597 570 694 6.51
12 13.06 12.76 13.65 12.12 13.42 13.51 14.87 14.24 10.66
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